
SIAM J. MATH. ANAL.
Vol. 18, No. 1, January 1987

(C) 1987 Society for Industrial and Applied Mathematics
001

ERGODIC PROPERTIES OF LINEAR DYNAMICAL SYSTEMS*

RUSSELL A. JOHNSON,’, KENNETH J. PALMER* AND GEORGE R. SELL

Abstract. The Multiplicative Ergodic theorem, which gives information about the dynamical structure
of a cocycle , or a linear skew product flow r, over a suitable base space M, asserts that for every invariant
probability measure/ onM there is a measurable decomposition of the vector bundle overM into invadant
measurable subbundles, and that every solution with initial conditions in any of these subbundles has strong
Lyapunov exponents. These exponents depend on the measure , and when/ is ergodic, they are constant
(almost everywhere) onM and form a finite set meas X(/). The dynamical spectrum dyn X consists of those
values A e R for which the shifted flow r fails to have an exponential dichotomy over m. The Spectral
theorem for linear skew product flows states that when M is compact and dynamically connected then dyn X
is the finite union of k disjoint compact intervals and the vector bundle overm is the sum of k continuous
invariant subbundles. We show that

Boundary dyn X
_
U meas X(/)

_
dyn :

where the union above is over all ergodic measures on M. Also we show that the measurable invariant
subbundles which arise in the Multiplicative Ergodic theorem form a refinement of the continuous invariant
subbundles described in the Spectral theorem. A new proofofthe Multiplicative Ergodic theorem is presented
here. This proof is a substantial simplification over other arguments. Applications of the theory of Lyapunov
exponents to "spiral" systems, products of "random" matrices, stochastic differential equations, and the
almost periodic Schr6dinger operator are included.
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1. Introduction. Nearly two decades ago Oseledec (1968) published his proof of
the Multiplicative Ergodic theorem. This theorem, which is one of the milestones in
the study of ergodic properties of dynamical systems, has had far-reaching applications,
including its role in the work of Margulis (1975) on arithmeticity in Lie groups, in the
theory of Pesin (1977) on Bernoullian substructures for diffeomorphisms, in the theory
of Katok (1980) on entropy and periodic points, in the study of Kotani (1982) on
spectral measures for Schr/Sdinger operators, in the work of Constantin and Foias
(1983) on attractors in the Navier-Stokes equations, and in the study of Novikov
(1975) and Millionscikov (1978) on almost reducible systems with almost periodic
coefficients. As a testimony to the importance of this theorem one finds several
alternative proofs including the contemporaneous paper of Millionscikov (1968), and
those of Raghunathan (1979), Ruelle (1979) and Crauel (1981), as well as the anticipa-
tory paper of Liao (1966).

The Multiplicative Ergodic theorem gives information about the dynamical struc-
ture of a cocycle , or a linear skew product flow w, over a suitable base space M. In
typical applications the base space M is either an attractor, a compact invariant set,
or the space of coefficients for a diffeomorphism, a differential equation, or a vector
field. This theorem asserts that for every invariant probability measure/ on M there
is a measurable decomposition of the vector bundle overM into invariant measurable
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subbundles, and that every solution with initial conditions in any of these subbundles
has strong Lyapunov exponents. These exponents, or growth rates, depend on the
measure/, and when/ is ergodic, they are constant (almost everywhere) on M and
form a finite set meas E(/.), the measurable (Millionscikov-Oseledec) spectrum.

The main objective in this paper is to study the connection between the measurable
spectrum meas E(/) and the dynamical spectrum dyn E introduced by Sacker and Sell
(1975), (1978), (1980). (Also see Daletskii and Krein (1974), as well as Selgrade (1975).)
The dynamical spectrum dyn E consists of those values A R for which the shifted
flow r fails to have an exponential dichotomy over M. It follows from the Spectral
theorem for linear skew-product flows, Sacker and Sell (1978), that the dynamical
spectrum is the finite union of disjoint compact intervals when M is compact and
dynamically connected.

The dynamical spectrum and the theory of exponential dichotomies are central
concepts in wide-ranging branches of analysis including the perturbation theories for
invariant manifolds (see Sacker (1969), Fenichel (1971) and Hirsch, Pugh and Shub
(1977), the bifurcation theories of Chenciner and Iooss (1979) and Sell (1979), the
characterization of the spectrum of Schrfdinger operators in Johnson (1982), lineariz-
ation theories near invariant manifolds in Sell (1984), the study of transversal homo-
clinic orbits in Palmer (1984), as well as the study of inertial manifolds for dissipative
systems in Foias, Sell and Temam (1985).

It is important therefore to understand the connection between these two spectral
concepts. We will show, in 8, that

(1.1) boundary dyn E
_
U meas E(/)

_
dyn E,

where the union above is over all ergodic measures/ on M. We actually derive much
more than (1.1). We show that the measurable invariant subbundles which arise in the
Multiplicative Ergodic theorem form a refinement of the continuous invariant sub-
bundles described in the Spectral theorem. The relationship (1.1) also leads to good
methods for computing the Lyapunov exponents and the continuous spectral bundles
(see Perry (1986) ).

Another objective is to show that the cocycle , itself, has a strong Lyapunov
exponent (almost everywhere) and that this agrees with max meas (/). Although
simple, this fact is very important because it forms the foundation for deriving an
approximation theory which leads to the numerical evaluation of the measurable and
dynamical spectra. The approximation theory and the related numerical coding is
described in the University of Minnesota Ph.D. thesis of David Perry (1986).

While doing this investigation we discovered a new proof of the Multiplicative
Ergodic theorem. Since our proof is a substantial simplification over other arguments,
we present it here. In addition to this simplification, our proof has some interesting
geometrical features which may be useful elsewhere. While our proof of the Multi-
plicative Ergodic theorem is restricted to cocycles over a compact base space M, we
will see that this includes practically every application. Among other things, our theory
applies to linear stochastic differential equations with bounded measurable coefficients,
as well as to the linearized flow near an attractor in a nonlinear dynamical system.

A final objective of this paper is the presentation of several applications of these
spectral theories. One of these theories, the theory of Lyapunov exponents for "spiral"
systems, is central to any numerical investigation of Lyapunov exponents. Other
applications include products of "random" matrices, stochastic differential equations,
and the almost periodic Schrfdinger operator.
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This paper is organized as follows: In 2 we present the statements of the main
theorems in this paper. Section 3 is concerned with a number of technical details which
shall be used in the proofs of our theorems. One may wish to skip this on the first
reading. In 4 we present the basic triangularization method as it applies to linear
skew product flows. Section 5 is concerned with a brief review of some basic facts
about invariant measures, and in 6 we present our proof of the Multiplicative Ergodic
theorem. The ergodic properties of the induced flow on the projective bundle are
presented in 7. In 8 we derive (1.1) which describes the connection between the
measurable and the dynamical spectra. In 9 we study the theory of wedge-product
flows and show how this can be used to compute the measurable spectrum, and in
10 we present the applications discussed above. The paper concludes with an Appen-

dix which contains some comments on related geometric properties of linear skew
product flows.

2. Statement of main theorems. Let M be a compact Hausdorff space and let T
denote either the integers Z or the reals R. Assume that 0. is a flow on M, i.e. the
mapping (0, t)-> 0. of MxT into M is continuous and satisfies 0.0= 0, and
0. (t + s)= (0. t).s. The Krylov-Bogoliubov theorem (see Nemytskii and Stepanov
(1960)) assures us that there is an invariant probability measure/ on M. This means
that tz(A" t)=lz(A) for all Borel setsAM and all tT, where A. t={O. t: OA}.
The invariant measure/z is ergodic if/z(AA A. t) 0 for all T implies that/x(A) 0
or/z(A) 1. Recall that AAB (A\B)[.J (B\A) is the symmetric difference. For an
integer m >= 1 let (m) denote the group of all isomorphisms on Rm, i.e., the group
of nonsingular (m x m) matrices with entries in R. A cocycle on M is a continuous
mapping M x T--> (g(m) that satisfies

(2.1) alP(O, + s) dP( O t, s)dP( O, t)

for all 0 M and s, s T. We note that is a cocycle on M if and only if

(2.2) or(x, 0, t):= ((0, t)x, O. t)

is a linear skew product flow on R"x M.
If T R we shall say that the flow 7r is smooth provided the mapping

d
A" 0--(0, t)lt=o

exists and is continuous. In this case the cocycle (0, t) is simply the fundamental
matrix solution of

(2.3) x’= A(O. t)x (x Rm)

that satisfies (0, 0)= I. This is the prototypical example of a cocycle.
Let and be two cocycles on M with range in qd(m). We shall say that q)

and are cohomologous if there is a continuous mapping F:M -> cg(m) that satisfies

(2.4) (0, t)= F(O. t)(O, t)F(O)-1

for all 0 M, T, where (-1) denotes the matrix inverse.
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Let P be a cocycle on M. Let x ER (xO) and 0M and define the four
Lyapunov exponents A +/-(x, 0), A = (x, 0) by

1
A(x, 0) lim sup log I(0, t)xl, A=(x, 0):= lim inf

I
log I(0, t)x I.

If it happens that the following two limits exist and are equal

(2.5) lim
I
log I(0, t)xl lim

1
log I(0, t)xl,

t-,+ t-,--oo

then we shall denote the common value as A (x, 0). In the future when we write the
symbol A (x, O) this should be interpreted as an assertion that both limits in (2.5) exist
and A (x, O) is the common value. In this case one says’that (x, 0) has a strong Lyapunov
exponent.

Let and V be two cohomologous cocycles on M that satisfy (2.4), and let
x- F(O)y. Then one has

1 1
lim sup log I(0, t)xl lim sup log IV(0, t)y

and

lim
I
log II)(0, t)xl lim

I
log IV(0, t)yl.

Itl-" Itl-’

In other words, cohomologous cocycles have the same Lyapunov exponents.
For 0-< k-< m let (m, k) denote the Grassman manifold of k-planes in Rm, and

let (g(m)- [.J kin=0 d(m, k) denote the disjoint union of these compact manifolds. For
k {1,..., m} we shall let N(k) denote those vectors rfi- (ml,"" ", mk) with 1 <_-mi
and m +" + mk m.

The first two theorems are statements of the Multiplicative Ergodic theorem.
THEOREM 2.1. Let M be a compact Hausdorff space with a flow 0. and let tx be

an invariant probability measure on M. Let dp denote a cocycle on M. Then there exist"
(i) an invariant set M,

_
M with/z(M,) 1;

(ii) a measurable decomposition M, [.J M,(p) where each M,(p) is invariant
and the union is taken over allpairsp k, rfi where 1 <- k <-_ m, and rfi N k

(iii) measurable mappings A1," , Ak’M,(p) -> R, where

,1(0) < X2(0 <’’" < ,k(O)

for 0 M, (p); and
(iv) measurable mappings /i" M,,(p)--> (m, m), 1 <= <= k, where

n =(m,,... ,mk),

such that for 0 M, (p) one has:
(v) { /4/1(0),. ., /k(0)} is linearly independent;
(vi) R= /4/’1(0)+...+ /k(0);
(vii) ifxe (0), x#O, then A(x, O)=A,(O) for l <-i<-k.

If, in addition, tx is an ergodic measure, then precisely one M,, (p) has positive measure,
and the mappings A" M, --> R are constant, 1 <= <-k.

The results in the last theorem extend readily to linear skew product flows on
arbitrary vector bundles, Sacker and Sell (1978).
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THEOREM 2.2. Let g be a vector bundle over a compact Hausdorffspace M and let
r be a linear skew product flow on . Let tz be an invariant probability measure on M.
Then the conclusions of Theorem 2.1 remain valid where 14i, 1 <- <- k, now assume values
in the appropriate Grassman bundles over M.

The measurable spectrum meas E(/x) is defined to be the collection {A1,’’ ", ’k}
when/x is ergodic. The numbers ml, ", mk are the multiplicities of the spectral values
A1,’" ",Ak. When /z is not ergodic, then the spectrum is measE(/z, 0)=
{AI(0),’’ ",Ak(0)} and the multiplicities {ml," ",mk} depend on 0M, and 0
M(p). For an ergodic measure/z, the measurable bundle associated with a spectral
value Ai, 1 <_- <_- k is

//, {(x, 0): x /r,(0), 0 M,}.

If/ is not ergodic, then the measurable bundles are defined similarly on each of the
invariant sets M,(p).

The next theorem compares the measurable spectrum and the measurable bundles
with the dynamical (or continuous) spectrum and associated continuous spectral
subbundles arising in the theory of exponential dichotomies in linear skew product
flows; see Sacker and Sell (1978), (1980).

Let r(x, 0, t) be a linear skew product flow on Rm M, where M is a compact,
connected space, and for A R let

(2.6) rx (x, 0, t):= (x (0, t)x, O" t)

be the shifted flow, where qx(0, t):= e-a’q(0, t). Recall that r has an exponential
dichotomy over M if there is a (continuous) projector P(x, O)=(P(O)x, O) on R and
constants K => 1, a > 0 such that

[qx (0, t)P(O)dp-l(o, s)l<-_ K e-’-s), s<= t,

Iq(0, t)[I-P(O)]c-(O,s)l<=Ke--’, t<-_s

for all 0 M and s, T. The set A R for which era fails to have an exponential
dichotomy overM is defined to be dyn E, the dynamical spectrum. The Spectral theorem
(Sacker and Sell (1978)) assures us that dyn E uk__l [a, b] is the union of k-nonover-
lapping compact intervals, where 1 =< k-< m. Also corresponding to each spectral interval
[a, b] there is an invariant spectral subbundle Fi ofR xM with dim ri(0) => 1, where
l/’(O)={xRm:(x,O)V}, l<-i<=k, the spaces {l(O),’’’,k(O) are linearly
independent and RmxM //’1 +... + Fk (as a Whitney sum). The boundary of dyn g
is the finite collection of end points {al, , ak, bl, , bk}. The next theorem, which
describes the connection between the measurable and dynamical spectra, is proved in
7.

THEOREM 2.3. Let r be a linear skew productflow on R xM where M is compact
and connected, and let dyn denote the dynamical spectrum of r. Then one has

(2.7) boundary dyn
_
U meas g(/x) dyn E

where the union is either over all invariant probability measures I on M or over all ergodic
measures on M. Let tz be a given invariant probability measure on M and let
meas (/, 0) {A 1(0)," ., Ak(0)} be the measurable spectrum for 0 M,, (p). Then for
each Aj there isprecisely one spectral interval [a, b] with Aj( O) [a, b] for all 0 M,,(p).
Also the associated measurable bundle l’j(O) satisfies lCj(O) l/’i(O) for all 0 M,(p).



6 R.A. JOHNSON, K. J. PALMER AND G. R. SELL

Finally one has i(0)= .W(0)for all 0 M,(p) where the summation is over allj with
Aj(0) [a,, b,].

If T-Z, then the last theorem is valid when M is compact and "dynamically
connected," where the latter means that M cannot be written as the union of two
disjoint nonempty closed invariant sets. Also, as in the spirit of Theorem 2.2, we note
that Theorem 2.3 extends to linear skew product flows on general vector bundles.

Our next theorem is concerned directly with the problem of computing the
measurable spectrum meas X(/z, 0). The point is that one is able to do this without
computing the basis elements el," ", era. The key idea here is the notion of a wedge
product, cf. Matshushima (1972). For 1 <-k<_-m let AkR denote the vector space
generated by all k-fold wedge products Xl ^" "^ Xk where xi Rm, 1 _-<i_-< k. Recall
that the wedge product xl ^...^ xk is linear in each factor and antisymmetric, i.e.
x ^ y -y ^ x. If L: R -> R is linear, then this induces a linear mapping AkL on AkR
by the formula

AkL(x ^" ^ Xk) := LXl ^" ^ LXk.

Since one has Ak(LM)= (AkL)(AkM), we see that if (0, t) is a cocycle on M then
Ak(I)(0, t) is also cocycle, for 1 _--< k-<_ m.

In the statement of the next theorem reference will be made to the notation of
Theorem 2.1. In particular for 0 M,(p) the growth rates

x(0) < x(0) <... <

with multiplicities m,. ., mk will be rewritten in the form

(2.8) v(0) -< (0) <-... _-< v(0)

where A(0) is repeated m-times in (2.8), 1 _-<i<_-k.

THEOREM 2.4. Let M be a compact Hausdorff space with a flow O. and let ix be
an invariant probability measure on M. Let dp denote a cocycle on M and adopt the
conclusions and notation of Theorem 2.1. Let y,..., Ym satisfy (2.8) for 0M,(p).
Then for all 0 M, (p) one has:

(i) limt_+o (l/t) log I(0, t)l= ym(O),
(ii) lim,_+oo(1/t)loglak(0, t)l= Y,,,+l-k(O)+" "+y,,,(O), for 2<-k<-rn,
(iii) lim,__oo (l/t)log](0, t)l= yl(O),
(iv) lim,__oo (1/t) log lake(0, t)] y( O) +... + yk( O), for 2 <--_ k <= rn.
The last theorem extends to linear skew product flows on a vector bundle g over

a compact Hausdorff space M. In this case the wedge product of vectors xl,’", Xk
g(0) forms a new bundle Akg’, 1 =< k _<- rn over M. Also the flow r on g induces a flow
Akr on Akg. This extension is a direct consequence of the proof of the last theorem
together with Lemma 3.4 below. We will omit the details.

Remark 2.1. For simplicity of exposition we have formulated these theorems for
cocycles with values in 3(rn, R). The theorems are valid for cocycles with values in
q3W(rn, C), and the proofs we give below extend with only trivial modifications.

3. Some technicalities. Before we turn our attention to the proofs of the main
theorems, we need to dispense with some technical details which will enable us to
simplify our arguments. We begin with a proof of the following facts:

1. One can assume, without loss of generality, that the base space M is a compact
metric space instead of a compact Hausdorff space. (This fact simplifies substantially
some of the measure theoretic considerations.)
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2. If T R one can assume that the cocycle is the fundamental solution matrix
of an ordinary differential equation on M with continuous coefficients. We call such
a cocycle smooth.

3. A linear skew product flow on an arbitrary vector bundle over a compact
Hausdortt space M can be imbedded into a linear skew product flow on R"xM for
some m >-_ 1.

The argument in each of these three cases is based on the same principle, viz. one
can show that the given flow is cohomologous to the desired flow. The resulting
cohomology preserves all the desired properties of our main theorems. In particular
if 1 and (I)2 are two cohomologous cocycles on a compact Hausdortt space M that
satisfy

F(O. t)l(0, t)- (I)2(0, t)F(O)
where F’M c(m) is continuous, then as noted above ’1 and (I)2 have the same
collection of Lyapunov exponents. Furthermore (x, 0) has a strong Lyapunov exponent
for ’I’1 if and only if (F(O)x, O) has a strong Lyapunov exponent for 2. Thus F
preserves the measurable spectrum meas E(/x, 0) and it maps the measurable bundles
of1 onto those of 2. In addition F preserves the dynamical spectrum, and it sets
up a one-to-one correspondence between the continuous spectral subbundles.

The situation is, in fact, more general. Let M1 and ME be two compact Hausdorff
spaces and let f’M1 M2 be a flow epimorphism. Next let ’I’i be a cocycle on Mi
(i- 1,2) and let F’M1--> d(m) satisfy

F(01" t)’l(01, t)=cI’2(f(O1), t)F(O1).
Then 1 and (I)2 have the same measurable and dynamical spectra and F sets up a
one-to-one correspondence between the associated spectral bundles.

Our first step is to show that we can replace a compact Hausdorff base space M1
with a compact metric space ME. We use an argument of Ellis (1969).

LEMMA 3.1. Let 1 be a cocycle over a compact Hausdorff space M1 with a flow
01 t. Then there is (i) a compact metric space ME with aflow 02" t, (ii) aflow epimorphism
f" M1 ME and (iii) a cocycle di,2 over ME such that ’1(01, t)--’I’2(f(01), t).

Proof. Let { tn} be a countable dense subset of T. Let M be the closed subalgebra
of C(M1, R) generated by all functions of the form {01 bij(01, tn)} where bij are the
components of . Then M is a separable subalgebra of C(M1, R). Since M is closed
it contains all mappings {01- th0(01, z)} where re T; in fact :d is also the closed
subalgebra generated by all such mappings for r T. Because of the cocycle identity
(2.1) we see that M is invariant, in the sense that if g M then g :d, where g(01)-
g(Ol" ’). The Stone theorem, cf. Hewitt and Ross (1963, pp. 483-484), says that
M (M2, R), where M is the maximal ideal space of M. Since M is separable, ME
is a compact metric space. Recall that ME can be realized~ as the space of equivalence
classes [01] where 01---01 p.rovided (ij(O1, tn)= b,j(01, t,) for all i,j and all t,. Note
that if 01- 01 then 01"z’ 01" " for all z T. Consequently a flow on ME is given by
[01]" r-[01" z]. Also the mapping f(01):= [01] from M1 to ME is an epimorphism
because M is invariant. Finally we see that for each T the cocycle I’1(01, t) depends
only on the equivalence class [01]. So we conclude the proof by defining (I)2 by
2([01], t):= 1(01, t). Q.E.D.

The following lemma appears in Ellis and Johnson (1982), but we include a proof
for completeness of exposition.

LEMMA 3.2. Let dp be a cocycle over a compact Hausdorff space M with T R.
Then di, is cohomologous to a smooth cocycle over M, i.e. (0, t) is a fundamental
matrix solution to x’= A( O. ’)x where A is given by (3.1) below.
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Proof Let V d(m) be a compact convex neighborhood of the identity I and
choose r>0 so that .,(0, t)V for all 0M and 0=<t<_-r. Define F(0):=
(1/r) o (0, s) ds. Then F(0) is invertible, and it is easily verified that the cocycle

(0, t):=F(0 t)dP(O,t)F(O)-1
1 [- t+r

di,( O, s) ds F(0) -1,

which is cohomologous to ,I, is the fundamental matrix solution to x’= A(O. t)x where
1

(3.1) A(0) := -[(0, r) I]F(O) -1. Q.E.D.

The next lemma will allow us to conclude that the Multiplicative Ergodic theorem
2.2 is valid for linear skew product flows on a vector bundle ’ over a compact Hausdortt
space M. The same lemma shows that Theorems 2.3 and 2.4 extend to vector bundles
as well. Before stating this we need to derive the following general fact concerning
smooth approximations to continuous mappings on a compact invariant set.

LEMMA 3.3. Let M be a compact Hausdorffspace with a flow O. and letf:M-> N
be a continuous mapping where N is a smooth compact Riemannian manifold. Then for
every > 0 there is a continuous function g :M ->N with the following properties:

(i) sup {dist (f(0), g(0)): 0 M} -< i5,
(ii) for every 0 M, the mapping O (d/ dt)g O t)],__o ofM into the tangent bundle

TN is a continuous mapping in O.
Proof. Let 5 > 0 be given. The Tubular Neighborhood theorem, see Guillemin and

Pollack (1974), assures us that for a sufficiently large m -> 1 there is a smooth imbedding
h :N--> R", an open set W_ h(N) and a smooth retract R:W--> h(N). Now choose
r/>0 so that if bl, b2 h(N) and < then dist (h-l(tl), h-1(,#2))-< t. Next
choose z> 0 so that

V(O):=Co{h(f(O t)):0_-< t_<-r} W
for every 0 s M, where Co refers to the closed convex hull, and [h(f(O))-R(y)l=< r/
for every 0 M and y V(0). We now define g M--> N by

g:= h -l R h f( O. s) ds

Since 1/z o hf(O. s) ds V(O) we see that If(0) g(0)l <- for all 0 M. Further-
more it is easy to conclude that g is C along trajectories and the mapping
O-->(d/dt)g(O. t)l,__o is continuous. Q.E.D.

LEMMA 3.4. Let be a finite dimensional vector bundle over a compact Hausdorff
base space M and let ,r(x, O, t)= (di,( O, t)x, O. t) be a linear skew product flow on .
Then for any A R there exists an integer m >- 1, a monomorphism H 7g --> R" x M, a
smooth cocycle :M d(m) and an orthogonal invariant resolution of the identity
Q (Q1, Q2) such that H()= Range QI and

Q(O. t)(O, t)= V(0, t)Ql(O), H(O. t)cb(O, t)= (0, t)H(O),
Q2(O" t)(O, t) (0, t)Q2(O) eXtQ2(O).

Proof. Since dim g’(0) is constant on the components of M, there is no loss in
generality in assuming that dim ’(0)= k for all 0 M. The first step is to apply a
standard result in the theory of vector bundles, Atiyah (1967, p. 25), which states that
there is an integer m > 0 and a projector PI" R xM R xM such that the vector
bundle Range P1 is isomorphic to ?. Let H: - Range P

_
R xM be the isomorph-

ism. Without any loss of generality we can assume that P1 (0) is an orthogonal projection
on R for all 0 M. Let P2 :- I P1.
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The mapping I’" 0 Range P(0) defines a continuous mapping of M into the
smooth manifold qd(m, k) of k-planes in Rm. By Lemma 3.3, there is a smooth mapping
WI:M qd(m, k) that is close to W1. Define QI(0) to be the orthogonal projection
with W(0) Range Q(0). Since W is smooth this means that O(d/dt)Ql(O. t)l,_-o
is continuous. Also Q2(0)= I- Q(0) is smooth. Since Q1 is close to P it follows that
H Q is an isomorphism of g’ onto Range Q1.

Next we define a flow on RmM under which Q and Q2 are invariant. Let
S(0) Q(0)Q(0) + Q(O)Q2(O) and let 1(0, t) be the fundamental matrix solution
of x’= $(0. t)x satisfying (0, 0)=/. Then as shown by Daletskii and Krein (1974)
one has

Q,(O. t)XIl(O, t) 1(0, t)Q,(O)

for all 0 M, R, and 1, 2. Define a cocycle on M by

(0, t)Q(O) H(O. t)(O, t)H-(O),

V(0, t)Q2(0) ext*l( 0, t)Q2(0).

It is now straightforward to check the remaining details. Lemma 3.2 assures us that
can be chosen to be smooth. Q.E.D.

4. Triangularization of eoeyeles. We turn next to the theory of the Gram-Schmidt
factorization of isomorphisms on R", where R has the Euclidean inner product ).
Let c(m) denote the grOup of all isomorphisms of Rm. Each element L (m) is
identified with the (m m) matrix whose column vectors satisfy coli L Lei, 1 <- <- m,
where {el,’", era} is a fixed orthonormal basis in Rm. Let = (m) denote the
subgroup of(m) consisting of all orthogonal linear transformations, and let T+(m)
denote the subcollection of all upper triangular matrices L d(m) with positive
entries on the main diagonal. Then -+(m) is also a subgroup of c(m) and one has

(4.1) ?(m) fl +(m) {I}.

The Gram-Schmidt orthogonalization process assures us that for every A (m)
there are unique matrices G(A) 7(m) and T(A) ff+(m) such that

(4.2) G(A)=AT(A).

Since the entries in T(A) are algebraic functions of (col A, colj A) we see that both
T(A) and G(A) are smooth functions of A.

Next we note that one has

(4.3) G(AB) G(AG(B)), T(AB) T(B) T(ABT(B)).

In order to prove (4.3), we define U, V (m) by

U := G(AB) ABT(AB), V := G(AG(B)) ABT(B) T(ABT(B)),

where (4.2) is used above. One then has

(4.4) U-1V= T(AB)-’ T(B) T(ABT(B)) e C(m) f-) +(m).

Hence by (4.1) U-IV I, which proves (4.3).
Let:M (m) be a cocycle on M. Then (4.2) admits the factorization

(4.5) O(( O, t) U) cb( O, t) UT(c( O, t) U)
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for every U (m). This permits us to define a new flow on H :=M x (m) as follows"
Let b := (0, U) M x (7(m) and define

(4.6) b. t:= (0. t, G(,I,(0, t) U)).

LEMMA 4.1. Equation (4.6) defines a flow on H M x (m).
Proof. It suffices to verify the group property

G[,(0. t, s)G((O, t) U)] G((0, + s) U).

However, this is an immediate consequence of (2.1) and (4.3). Q.E.D.
We noted in {} 2 that the cocycle ,I,(0, t) on M defines a linear skew product flow

on R"xM by 7r(x, 0, t)= ((0, t)x, O. t). By using (4.6) we see that 7r can be lifted
to a new flow , on RmH by

(x, 6, t):= (@(0, t)x, " t)

where b (0, U). Let q-Mx d(m). (g(m) and r-Mx d&e(m)M, (or r’H-M)
be the natural projections. Define (b, t) by

(4.7) (b, t):= q(6" t)-l’}( O, t)q(6) G(,I(O, t)U)-Io(O, t)U

where the (-1) denotes the matrix inverse and b (0, U). Since b. is a flow on H,
it follows that is a cocycle on H, and

(4.8) (x, b, t):= ((,, t)x, dp. t)

is a linear skew product flow on Rm H which is cohomologous to -. The following
lemma is now an immediate consequence of (4.2) and (4.7).

LEMMA 4.2. Let ’I’ be a cocycle on M and define b. and (,, t) by (4.6) and
(4.7). Then one has

(4.9) (b, t)= T(dP(O, t) U)-I ff+(m)

for all b (0, U)H and tT.
Remark 4.1. The triangularization method described above is directly related to

the familiar technique developed by Lyapunov (1892), Perron (1930) and Diliberto
(1950). Let T R and let ,(0, t) be a smooth cocycle and (therefore) the fundamental
solution matrix of a differential equation

(4.10) x’ A( O t)x, x Rm, 0 M,
where A is a continuous (m x m) matrix valued function defined on M. Then V(b, t)
is the fundamental solution matrix of

(4.11) y’= B(. t)y, y R", ck H,

where tk =(0, U),B G-I(AG-G’), G= G(cYp(O, t)U) and G’ =(d/dt)G. The change
of variables which maps solutions of (4.11) onto those of (4.10) is

x P(t)y G(dP(O, t) U)y.

Also since the fundamental matrix solution of (4.11) is xIt, an upper triangular matrix,
we see that B is also upper triangular.

Remark 4.2. For T Z this is basically the triangularization method described in
Oseledec (1968).

5. Invariant measures. In this section we record for reference a number of known
results concerning invariant measures associated with the flows on M and H. Let r be
the natural projection of H onto M. By (4.6) we see that r is a flow epimorphism, i.e.
r(b), t= r(. t).
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Because of Lemma 3.1 we see that there is no loss in generality in assuming M
(and therefore H) to be compact metric spaces. The Riesz Representation theorem
says that for any compact metric space M there is an isomorphism between bounded
positive linear functionals on CO(M, R) satisfying 1(1)- 1 with the (regular, positive,
Borel, probability) measures/x on M, and this isomorphism is given by the formula

l(f)= If(O)l(dO).
Hereafter we will interchange freely such functionals and the associated measures and
write/(f) in place of l(f).

The measure / is invariant for the flow O. if and only if/(f) =/x(f) for all
f C(M, R) and all ’T where f,(O)=f(O. -). Also / is ergodic if and only if for
f I(M, R) one has

/ (f,) -/ (f) for all T: f-= constant.

The Krylov-Bogoliubov method, cf. Nemytskii and Stepanov (1960), is a method
for constructing invariant measures. Let us review this for the case T R. Let/ be a
given measure on M and define

1for5.1 /-(f) :=- /. (f,) d"

for T> 0. Let T, +o, and suppose (by choosing a subsequence if necessary) that
/xr. converges weakly to a measure/2. Then/2 is easily seen to be invariant.

If the original measure / is a g-measure, i.e. i(f)=,$o(f)=f(O), then (5.1)
becomes

llor(5.2) /r(f) :=- f(0" ’) d’.

Notice that if the original measure/ has support in a closed invariant set Mo, then
the induced invariant measure/2 has support in Mo as well.

Let/ be a given invariant measure on M. Let I(/) denote the collection of all
invariant measures v on H that cover/, i.e. , I(/) if it is invariant and r(u)-/. If
/ is an ergodic measure on M we let E(/) denote the ergodic measures , I(/x). By
using the Krylov-Bogoliubov method we see that I(/) is nonempty. Indeed if is any
measure on (m), then/ x is a measure on H. Now form

llor(/x x/)-(g) =- (/ x/)(g,) d’,

and let , be a resulting invariant measure. In order to show that v covers/x we need
to show that ,(f)=/(f) whenever f=f(O) depends only on the coordinate 0 M.
However in this case one has

(Iz x l)(f,) It(f,) Ix(f) (I.t x l)T(f)

since /x is invariant. Hence the limit , satisfies ,(f)= g(f). Since I(/x) is nonempty,
compact and convex it has extreme points. The extreme points in I(/x) are ergodic
measures t, when/z is ergodic.

6. Proof of the nultiplieative Ergotlie theorem. Throughout this section we will
adopt without any loss of generality the following Standing Hypotheses which will
lead to a proof of Theorems 2.1 and 2.2" Let 7r(x, 0, t)= (q(0, t)x, O" t) be a given
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linear skew-product flow on the trivial (Lemma 3.4) vector bundle Rm M, where M
is a compact metric space (Lemma 3.1). If T R we assume that q(0, t) is smooth and
is the fundamental solution matrix (Lemma 3.2) of

(6.1) x’ A( O t)x, x Rm, 0 M.

Let (x, b, t)=(V(b, t)x, ok" t) be the cohomologous triangular flow induced on
Rm H ( 4). If T= R then (, t) is also smooth and is the fundamental solution
matrix of

(6.2) y’= B(. t)y, y am, H

where B is a continuous upper triangular matrix. Let g be a given invariant measure
on M and let v I() be any invariant measure on H that covers . If is ergodic
we assume that v is ergodic ( 5). Also r’H M is the natural projection.

We shall say that a point 0 M (or H) is a Lyapunov point for (or ) if
there are real numbers yl," ", Ym and a basis e,. ., em of R such that

(6.3) h(e,, 0):= lim log 1(0, t)e,[

(6.4) (or
Itl

for lim.
Roughly speaking, the Multiplicative Ergodic theorem asses that there are many

Lyapunov points (i.e. (M,)= 1) and that they fit together in a measurable manner.
As we now show this follows from the triangularization technique described in 4.

LEMMA 6.1. Let O, U) H be a Lyapunovpointfor. en 0 M is a Lyapunov
point for

Proo Choose yl,’", Y in R and a basis e,..., em in R so that (6.4) is
satisfied. Define fl, ",fm by Ue, 1 m. Equation (4.7) yields

(6.5) O((0, t)U)(, t) (0, t) U.

Since G((0, t)U) is an ohogonal matrix one has

[(0, t)ZI I(, t)e,I, 1 m.

It follows that (6.3) is satisfied with the same
lim. Q.E.D.

The next lemma is the key step in our proof.
LEMMA 6.2. Let (0, U) H be fixed. Assume that the diagonal entries (, t)

satisfy

(6.6) lim
I1

for some constants %, 1 m. en is a Lyapunov pointfor where the growth rates

1, m are given by (6.6), and the associated matrix V of basis vectors {e, era}
is an upper triangular matrix given by (6.7) with v, 1, 1 m.

IfT= R, then ,(, t) =exp (o b,(. s) ds) where b,, 1 m, are the diagonal
entries of the triangular matrix B in (6.2). In this case (6.6) becomes

lira
1
log I,,(, )1 I b,(" s) ds %, 1 m.

Itl
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Also if T Z, then the diagonal elements of satisfy
t-1

,i (tk, t) I] t,, (tk. s, 1),
s=0

with a similar expression valid for < O. For > 0 one has

lt1
log ]t.(b, t){ - log

We see then that for both T-R and T Z, the limits in (6.6) are time-averages of
continuous real-valued functions defined on H. This fact will be used later when we
apply the Birkhott Ergodic theorem.

Proof. The argument we now give applies to any triangular cocycle over any
compact metric space H. We will not use the special form of the flow on H.

Let satisfy 1 _-< =< m. For any upper triangular (m x m) matrix T we let T denote
the lower-right (kx k)-dimensional block where k-(m-i+ 1). Thus T1-T and
T,,- (tm,). For the matrix B given by (6.2) we let fli denote the (m-/)-dimensional
row vector that satisfies

0 Bi+
for l <--i<--m-1.

The upper triangular matrix V of basis vectors is obtained by constructing the V
inductively starting with Vm- (1). Suppose 1 <_-i<_-m- 1 and that V+I has been con-
structed with the properties that its diagonal elements are 1 and

/ (colj (E+I), ()-- ’j

for + 1 <--j <-m. To construct V with the corresponding properties we first define
v.=l. Forl_-<i<_-m-1 and i+l-<j<-mwedefine

(6.7) vi: v,j(b):= [o @/l(th, s)i(dp" s)Xlti+l(th, s) colj (V/+,(b)) ds

where

COlj (E) :’--
COIj (E+I)

c if y > T,

z=z0:= 0 if ’)li--j- ify<y.

Equations (6.4) and (6.6) and the induction hypothesis imply that for every e > 0 there
are constants K and K2 such that for t->_ 0 one has

],i(O, t)[<=g2exp[(T+e)t], 1(0, t)l<=K=exp[(-T,+e)t],
K, exp [(T e)t] <--I,+,(b, t) col (V+,) _-< K2 exp [(yj + e)t]

for i+ 1 =<j-<_ m. Since I/3i[ is uniformly bounded on H, it follows that the infinite
integral in (6.7) is well defined.

We assume for the moment that T R. The modification of our argument needed for the case T Z
is described in the last paragraph of the proof.
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The variation of constants formula for the block-triangular system u’= Bi(ck" t)u
yields

(6.8) i(b, t) COIj ,I,,+(, t)cob
for i+l<-_j<-m and W,(b, t)col (V)=col (,(0, t),0,... ,0). Let vii(t) denote the
first entry in (6.8). One then has A(coli (V), b)= %. While it is known that

(6.9) )t (colj (V), b) A (col (V+I), b)

for + 1-<j-< m, cf. Millionscikov (1968), we shall include a proof for completeness.
Indeed it follows from (6.8) and the inequalities after (6.7) that there is a constant K
such that

Iv,(t)l<-g exp [(T +3e)t]
for i+ 1 _--<j _--< rn and => 0. Since e is arbitrary one has

1
(6.10) lim sup log Iv,(t)l < _-j<

t-+oo
y’ i+l < =m,

and therefore by (6.8) we have

Tj lim llog Ixlt,+l(b t)col (E+)l_-<lim infllog Iq,(4,, t)col (V)I
t-,+oo t-,+

1 1
-<_lim sup- log Iq(4,, t)cob (V)l <_-lim sup- log I,(t)l -< ,,

t-+oo t-+oo

A similar argument applies as t-->-oo. Also (6.10) is valid as t-->-oo.
This completes the argument for T= R. If T= Z the integrals in (6.7)-(6.8) are

replaced by sums. For example by the variation of constants formula in Sacker and
Sell (1976b), v(t) takes the form

t--1

v0(t)= ii(b t) ’. /l(b, s+l)fl,(b" s)W,+l(b, s) colj (V/+I)

where fl =/3(b) is the (m-/)-dimensional row vector that satisfies

.,(b, 1)=(,(b, 1 fl,(b) )0 qi+l(6, 1)

for all $ H. We will omit the details, which are easily verified. Q.E.D.
LEMMA 6.3. Let k (0, U) satisfy the hypotheses of Lemma 6.2 and let V be the

matrix ofbasis vectors constructed above. Then there are upper triangular m x m) matrices

S($, t) and D($, t) that satisfy
(i) xlt(ck, t)V= S(c, t)D(dp, t),
(ii) D(b, t)=diag ($11(b, t),..., ’mm(b, t)),
(iii) limsupl,l_o (1/[tl)log Is(, t)l-<-0,
(iv) lim supl,l_.o (1/Itl) log Is-(, t)l<-0.
Proof. S and D are uniquely determined by (i) and (ii) and

1 ,2(ck, t)v12(t) I]lmm(c, t)Vlm(t)
bmm(6, t)V2m(t

S( dp, t)
0 1 -1

0 0 1
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It follows from (6.10) that

1
lim sup log I’(b, t)vij(t)l < 0

for 1 m 1 and + 1j m. Paas (iii) and (iv) then follow from the last inequality
and the fact that the entries in S-1 are polynomials in the entries of S. Q.E.D.

Next we apply the Birkhoff Ergodic theorem which assures us that there are a
good supply of Lyapunov points in H.

LEMMA 6.4. ere is a Borel measurable invariant set H H with v(H)= 1 and
such that eve point H is a Lyapunov point.

oof As noted above the limits

lim log I(, t)[, 1 i m,

are time-averages of continuous functions defined on H. The Birkhoff Ergodic theorem,
see Nemytskii and Stepanov (1960), asses that there is a Borel set H,H with
v(H,) 1, and there exist bounded Borel measurable invariant functions
Pl, Pro"H R with the propey that

lim log I@(, t)] p,( ), 1 m,(6.11)
Itl-

for all H. It then follows from Lemma 6.2 that each H is a Lyapunov
point. Q.E.D.

Let p,..., Pm satisfy (6.11). For each integer k, 1 k m, let N(k) denote the
collection of vectors (ml, , m) with integer entries that satisfy 1 m, 1j k,
and m +. +m m. We will now construct a measurable decomposition of H. Fix
s H. We then note that there is an integer k, 1 k m, and an N(k) such that

the following two propeies hold:
(i) There are exactly k distinct values in the collection {p(), ., Pm()}, which

we rewrite as {AI()," ", A()} where

(6.12) x(6) < x(6) <... < x(6).

(ii) The cardinality of the set {i: 1i m and p()= A()} is m for each j,
ljk.

We denote the ordered pair (k, ) briefly by p and define H(p) to be the set of
all H to which k and correspond as above. The set H(p) is Borel measurable
since it is the pullback of the closed Set

{(Xl, , Xm): X X Xm, < Xs,+, Xm <’’" < Xm_+ X}
by the Borel measurable function that is the composition of the Borel measurable
function (Pl()," ", Pm()) with the continuous function that maps
(Xl, x:,. , Xm) onto its permutation (x, x," ", x) where x x. x.

It is easy to see thatH U H(p), where the union is taken over all such points
p (k, ), is a measurable decomposition ofH. Since each p is invariant we see that
the sets H(p) are invariant. If v is an ergodic measure, then all but one H(p) has
v-measure 0. The following result is a consequence of the measurability and invariance
of p , Pro.

LEMMA 6.5. e functions A,...,A:H(p)R are Borel measurable and
invariant.
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Let b H(p) and let pl, ",p,, and A1, , ,k be given as above. Let el, , em
be the basis in R" constructed in Lemma 6.2. Thus one has A (e,, b) p,(b), 1 _<- <- m.
For 1 <_-j _-< k define

/(b) := Span {e," h(e,, b) h(b)}.
One then has dim l(b mj and Rm= #r( qb + + t4/’k( dp ).

The next lemma shows that every y o/(b), y # 0, has Aj(b) as a strong Lyapunov
exponent.

LEMMA 6.6. Let dp H satisfy the hypothesis ofLemma 6.2. Then for all y W(p ),
y # O, one has

lim
I
log IW(b, t)y A(b), 1 <=j _--< k.(6.13)

Itl-/oo

Moreover the limit in (6.13) is uniform for lyl- 1.

Proof. We will use Lemma 6.3. Fix j and let y o/(b), x # 0. Then

y Span {col, V): A,(b) A(b)}.
If {el," ", em} is the natural basis in R then z V-y satisfies

zSpan{e," Ill-oolim
-1 log [,(tk, t)[ A()}.t

Consequently one has

lim
1
log ID(d,, t)zl

Itl-/

and the last limit is uniform for lYl 1. Since one has

[s-l(, t)l-l[D(, t)z[-< N’(, t)vzl-N’(4,, t)yl<=[S(4, t)[ [D(,, t)z[
and

1
S_lim inf

1
log [S-(b, t)1-1 -lim sup - log (b, t)[-> 0

(by Lemma 6.3), we get

h(b) _-<lim inf
I
log Is-l(b, t)l- +lim inf

1
log [D(b, t)zl

t-,+oo t-+oo

1=< lim inf 1_ log t)yl <= lim sup - log I(b, t)y
t-,+oo t.-,+oo

1 1
_--< lim sup - log IS(b, t)l + lim sup - log ID(b, t)yl

t-*Woo

A similar argument applies as t-->-oo. Q.E.D.
LEMMA 6.7. Let b H(p) and let yRm, yO. Assume that A(y, )= y. Then

there is a j, 1 <-_j <- k such that A (y, qb Aj qb and y l’j ).
Proof. Since el," ", em is a basis one has

(6.14) y ale1 +" + otmem
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where a1,’" ", c" are scalars. It is an easy exercise to see that one has

lim
I
log IV(4), t)y max {/9,(4)): 1 _-< -< m and a, 0},

lim
1
log IV(tk, t)y[ min {p,(tk)" 1 <_-- _--< m and a, # 0}.

t-

Therefore if the two-sided limit A(y, b)= 5’ exists, the only nonzero a’s in (6.14) are
coefficients of basis vectors used to define a single f(tk). Hence A (y, ok)= Aj(b) and
y o/((])). Q.E.D.

Let (b (0, U), b2 (0, U2) be two points in H with the same 0-coordinate. From
(6.5) one has

(6.15) G(dP(O, t)U1)(4)l, t)u-(l=(I)(O, t)= G((O, t)UE)(th2, t)U 1.

Therefore if y R then I((])1, t)yl II’(, t)Vyl where V= U U. We see that

(6.16) A (y, 4)1) 5’ <:> A Vy, 2) 5’.

Now assume further that 4)1 H. Then 4)1 is a Lyapunov point by Lemma 6.2 and
(6.4). Let y,. ., 5’., be the strong Lyapunov exponents and let el," ", em be a basis
with A(ei, (])1) 5’i, l<-i<-_m. It follows from (6.16) that Vel,"’, Veto is a basis for
which A Ve, 4)2) Y, 1 -< _-< m. We have just proved the following result"

LEMMA 6.8. Let dp (0, U) H, and let 5"1, 5"., be^the set of strong Lyapunov
exponents given by Lemma 6.2 and (6.4). Then every point b (0, U) in the fiber over
0 is a Lyapunov point with precisely the same set of strong Lyapunov exponents.

By combining Lemmas 6.7 and 6.8 and (6.15) we immediately have the following:
LEMMA 6.9. Let dpl- (0, U) and 4)2 (0, U2) be two points in H with the same

O-coordinate. Then and (2 lie in the same set H(p), and for 1 <-j <-k one has

(6.17) Aj(l Aj((])2) U j(()l)-- U2j((])2).

Hence Aj((])I) and U1 /j(&l) depend only on the O-coordinate.
By using (6.16) together with Lemma 6.6 we see that if 4)1- (0, U1)EH then for

any 4)2 (0, U2), with the same 0-coordinate, we have

(y, 6) vy, 6) ;tj(6,)

for all y (bl), y # 0, where V U
We now use r" H-->M to projectH and H(p) to M. DefineM and M,(p) by

r(H) := M., r(H(p)) := M. (p).

Note that since M and H are compact metric spaces, and H and H(p) are Borel
measurable sets in H, the images M, and M,(p) are /z-measurable sets in M, see
Federer (1969, Chap. 2). Furthermore one has/z(M)- 1. (Strictly speaking, M, and
M,(p) depend on the choice of, I(/z). Since/z(r(H)) v(H) 1 we see that any
two such setsM agree except on a set of/z-measure 0.)

Let 4) (0, U) E H(p). Then 0 M(p). Next define

Aj(0):=Aj(b), /(0):= U/((])), l<-j<-k.

From Lemma 6.9 we see that A(0) and U(W(4))) depend only on the 0-coordinate.
Also from Lemmas 6.5 and 6.9 we see that A,..., Ak :M,(p)-> R are/z-measurable
and invariant. For 0M(p) we see that the spaces /’1(0), , l/Yk(O) satisfy con-
clusions (v)-(vii) of Theorem 2.1.
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The only point that remains to be proven is that the mappings //’i :M,(p)-
d(m, mi), 1 -< <- k, are/z-measurable. Because of Lemma 6.9 it suffices to show that
each /4/’i is Borel measurable on H(p), 1 <= =< k. We will do this by noting that the
basis matrix V= {el," ", e,,} constructed in (6.7) is Borel measurable in b since the
coefficients in the integral depend continuously in b, and therefore the integral is
measurable2 in b, cf. Federer (1969). This completes the proof of Theorem 2.1.

Theorem 2.2, the Multiplicative Ergodic theorem on a vector bundle , follows
directly from Lemma 3.4 and Theorem 2.1. In Lemma 3.4 one can choose the A R
arbitrarily. A good choice for h is h dyn X(’), where dyn X() is the dynamical
spectrum of the linear skew product flow on . With this choice one knows that the
measurable subbundle associated with h is Range (Q2) and is disjoint from Range (Q).
(See Theorem 8.1 below.)

Remark 6.1. The uniformity described in Lemma 6.6 can be strengthened.
Let k=(O,U)H(p), let A1,’’’,Ak:H(p)->R be the growth rates with
h(b)<-." < hk(th), andlet

R= G()+"" "+ r()
be the decomposition of R" into the measurable bundles. Then every y R can be
written uniquely as y y +. + Yk where yi o/(th), 1 <_- _<-- k. Furthermore for y # 0
one has

lim
1
log IW(b, t)y] Ab(b),(6.18)

lim
1
log IW(b, t)y(6.19)

where a min {i: y # 0} and b max {i: y # 0}. (See Lemma 6.7.) By using the argu-
ment of Lemma 6.6, it is easily seen that the limits in (6.18) and (6.19) are uniform
on compact sets of the form

{y R"*: 0 < a _-< lyl, lyl --< }, {y : 0 < _-< lyo I, lyl --< }-
These considerations extend immediately to the cocycle (0, t) over M, where //’(b)
is replaced by U/Jr(b), 1-<_i=< k. (See Lemma 6.9.)

Remark 6.2. As noted by Oseledec (1968) the uniformity condition in Lemma 6.6
implies that the limits

(6.20) lim
1

1,1-,+o
log ,(0, t), 1 <= --< m,

exist almost everywhere, where/31 >=/32 >="" >= fin are the eigenvalues of the positive
self-adjoint matrix *(0, t)O(0, t).

Remark 6.3. The basis el,’", era, which we construct in Lemma 6.2, is very
closely related to Lyapunov’s concept of "regularity" or "biregularity", see Lyapunov
(1892) and Bylov et al. (1966). Note that if 0M, then there are real numbers
71 < 72 <" < ’)/k and a splitting

R= Wl+. .+w
such that if x V, x 0, then h (x, 0) %, 1 <_- <- k, and

k 1
(6.21) m,y,= lim -log [det ((I,(0, t))l,

i= [t[+

Discontinuities in $ can arise from the definition of z in Lemma 6.2.
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where mi =dim W, 1 <_-i <-k. If is a smooth cocycle, i.e. if is a fundamental
solution matrix of (6.1), then (6.21) becomes

m,3’, lim
1 fo tr A(O. s) ds.

i= Itl-’/

Also see Vinograd (1956).
Remark 6.4. Other proofs of the Multiplicative Ergodic theorem. The proof of

Oseledec (1968) uses many features of our argument, including the triangularization
method described in 4 and the theory of regularity described above. Some complica-
tion in Oseledec’s argument seems to be due to the fact that he used neither (6.7) nor
the factorization technique described in Lemmas 6.3 and 6.6. Also, Oseledec did not
assume the base space M to be a compact metric space, and consequently his proof
of the measurability (with respect to 0) of the bundles o/(0) leaves some unanswered
questions.

A portion of the Multiplicative Ergodic theorem was derived by Millionscikov
(1968) for the case where /x is an ergodic measure. He constructed the measurable
spectrum meas g(/x) and showed that it was constant almost everywhere. Equation
(6.7) was used by Millionscikov; however, he did not derive Lemma 6.6, nor did he
address the question of the measurability of the bundles /’(0).

Raghunathan (1979), Ruelle (1979), Crauel (1981), and Kifer (1985) give alterna-
tive proofs of the Multiplicative Ergodic theorem. Their approach is based on either
a theorem of Furstenberg and Kesten (1960) (see 10) or the Subadditive Ergodic
theorem, which was proved by Kingman (1968). Ruelle, for example, first shows that
the limits in (6.20) exist almost everywhere. By using the eigenspaces of the associated
self-adjoint operator q)*(0, t)q)(0, t), he constructs the measurable subbundles o/(0).

The proofby Ruelle is more general than ours in that it applies to certain linearized
semiflows generated by evolutionary equations on an infinite dimensional Hilbert
space. Ruelle does not assume the base space M to be compact; instead he uses a
logarithmic-boundedness condition on the cocycle q). This boundedness condition is
automatically satisfied when the base space is compact. As we shall see in 10, the
assumption that M be compact is not a serious restriction, since this can be satisfied
in practically every application.

7. Flow on the projective bundle. In this section we shall study the ergodic proper-
ties of the induced flow on the projective bundle, see Johnson (1978), (1980b) and
Crauel (1981).

As in 6, we let c=(0, U)H(p) and let h(b)<.. "<hk(tk) be the growth
rates with multiplicity rfi =(ml, ", mk), where m +. .+ mk m. By Lemma 6.9 we
recall that Ai(b) depends only on 0, 1-< _-< k. Next define

U:(tk) Span y R"’y # 0 and lim,_+/-sup] log Igt(b, t)y[ <= h,(tk)

Then dim Uf(dp)=m+...+m and dim UT(qb)=m+...+mk. Also one has
/4/’(b) U(b)fq U-(b), dim /’(b) m, and R 1()""" "-]- k(). By Lemma
6.9 we see that //’(0):= U/C’(b) depends only on 0.

Let pm-I(R) denote the projective space of lines in R containing the origin, with
the usual topology. We define the induced flow , on the projective bundle N=
Pm-(R)M by (l, 0). ((0, t)l, 0. t). (Since is linear it maps lines onto lines.)

IfT R, we define f: N-> R by f(l, O) (A(O)x, x), where A is the matrix function
(6.1), is the Euclidean inner product on Rm, and x s satisfies Ix[ 1. Then for
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Ix[ 1 one has

(7.1)

If T Z, we
A(0) (0, 1) and Ixl 1. Then one has

(7.2)

and

Llog 1(0, t)x]= f((l, 0)" s) as.

define f’N- R by f(0, l) 1/2 log (A*(0)A(0)x, x),

t-1

log ](0, t)x Y. f((l, 0). s), >-- 1,
s=O

log [(0, t)x[= Y f((l, 0).-s),

Next define the time-averages

t<O.

1 Lf+(l, O) =lim sup- f((l, 0). s) ds,

where

f-(l, 0) lim inf
1 Iot--o -1 f((l, 0). s)ds

when T R. (For T Z, f+/- are defined similarly by using (7.2).) Then by (7.1) and
(7.2) f+(l, O) and f-(l, O) are the Lyapunov exponents h+(x, 0) and AT(x, 0), respec-
tively, where x e l, x 0. Also the functions f+/-:N- R are Borel measurable.

For 0 e M,(p) r(H,(p)) and 1 _-< <_- k we define

u(O)={lpm-l(R)lf+(l, O) hi(O)},

us,(O)={laP’n-l(R)[f-(l, 0) =< -A,(0)}.
For 0 fixed, u(O) are closed subsets of P"-I(R), and in fact are the "traces" in
P"-I(R) of the vector subspaces U:(O) ofR defined above. This leadsus to introduce
the space Y" of closed subsets of P"-I(R), with the Hausdorff topology. Thus F, - Fin Y :> to each x F, there corresponds a sequence x, Fn so that x, x in P"-I(R).
Observe that the "trace" of /i(0) in P"-(R) is u(0) fq uT(0).

Fix the pair p (k, rfi) and restrict attention toM (p). The following proposition
is a direct consequence of the measurability of the exponents A,..., Ak.

LEMMA 7.1. For every r>0, there is a compact set Z_M,(p) such that
/x(M(p)\Z) < r and the restriction hi[z is continuous, 1 <-_ <- k.

We will now show that the functions u: are tz-measurable. (The measurability of
kVi is also a consequence of this fact.) Consider u and T-R. (The arguments for uT
and T= Z are similar and we will omit them.) Define gt(l, O):= (1/t) Jtof((l, 0). s) ds.
Then gt is continuous on N, and limsupt_+gt(l, Oo)=f+(l,O) for all (l,O)e
P"-(R)xM(p). Let r>0 be given, and let Z_M(p) be a compact set with
/.(M(p)\Z) < r, where hi is continuous on Z, 1-< i_-< k. Choose 8 so that

(7.3) O< 38 < [hi(O)- hi(O)]
for all # j and 0 Z. Finally define

vT( O) :- {l e P"-l(R) g,( l, O) (-, Ai(O) + 8]}.

Then v,+(O) ’ for 0 e Z. It is not difficult to verify that v+" Z --> ’ is a Borel measurable
function. (In general it is not continuous.)
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We claim that v+(O)-> u(O) in as t->+, for each 0sZ. Assume on the
contrary that there is a monotone subsequence tk--> q-O and an element Q such

4-thatQ u-(O) and vt(O)-> Q. Then u-(O)_ Q, since le u-(o)::: l v+t (o) for large t.
4-On the other hand, let l Q\u(O). Since vt(o)-> Q in the Hausdorff topology, there

is a sequence Ik vt(O) with Ik-> I. Therefore lk is eventually in every neighborhood
of in Pm-I(R). By Lemma 7.2 (below) we conclude that gt(lk, O)>--hi(0)+ 28, which
contradicts the definition of v t+(0).

LEMMA 7.2. Let Pm-I(R) with : u-( O) where 0 Z. Then given any > 0 there
is a neighborhood N(I) ofl and az T such thatfor all >- z one has gt( l, 0) ->_ hi(0)+ 28
for all N( h.

Proofi We will use the notation of Remark 6.1. Let x e l, x 0. Since : u(O)
one has < b where

lim
1
log [(0, t)Xbl Ab(0)

and Ix l-2 > 0. Let N(l) be those lines ]’ in P"-I(R) with the property that
1, satisfies > . The uniformity asseion in Remark 6.1 implies that for every

fl > 0 there is a r T such that

1
g,(l, 0)=7log IO(0,

for all r and all 5 N(l) with lsI 1. Now set 8, then the lemma follows
from (7.3). Q.E.D.

We see then that u is the point-wise limit of a sequence of Borel measurable
functions on Z. By the Lusin theorem, it follows that u is measurable on M,(p).

8. Comparison with the continuous spectrum. Let be a cocycle on a compact,
connected Hausdorff space M. Let dyn E =1 [a, b] be the dynamical spectrum
with the corresponding Whitney decomposition of RxM into continuous spectral
subbundles R M Y +. + Yk. Let Y(0) denote the fiber of Y in R, 1 k.
The following result is proved in Sacker and Sell (1978):

THEOREM 8.1. e spectral subbundles are characterized by

(O)=Span{xRm" xO and h(x, 0), h(x, 0) [a,, b,]}

for 1 k, where

1
A(x, O) lim sup log( O, t)x, A (x, O) lim inf log( O, t)xl.

We will next give a proof ofeorem 2.3. The essence of the argument is to verify
(2.7), i.e.

boundary dyn E U meas E() dyn E,

and to show that the measurable subbundle decomposition implied by the Multiplica-
tion Ergodic theorem leads to a refinement of the continuous decomposition given by
the Spectral theorem.

It follows immediately from Theorem 8.1 that for any invariant probability measure
g onM one has meas E(, 0) dyn E for all 0 M. In paicular one has meas E()
dyn E for every ergodic measure on M. Fuhermore the measurable bundles (0)
are contained in the associated continuous spectral bundle (0) when A(0) [a, b],
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and 0 M,. Since the sum of both the /(0)’s and the Y’i(0)’s span R for 0 s M,,
it follows that for all 0 M one has //’i(0)= /(0), where the summation is over
all j with Aj(O)[a,bi], l<-i<=k. (is also follows from applying Theorem 2.2 to
the spectral subbundle .)

It remains to show that if fl s boundary dyn E then fl meas E() for some ergodic
measure . Let fl be an endpoint of one of the spectral inteals [a, b] in dyn E. Let

be the continuous spectral subbundle associated with [a, b]. As noted in Lemma
3.1 there is no loss in generality in assuming M to be a compact metric space. Let X
be the trace of in the projective bundle N pm-I(R)x M, i.e.

X {(1, O):l is a line in (0)}.

Since is invariant under the flow (x, 0, t)= ((0, t)x, O. t), X is invariant under
the induced flow on N. Also X is compact. Let f(l, O) be given as in 7. Recall
that the time-average of f(l, 0) along orbits in N determines the Lyapunov exponents
of the solution (0, t)x where x is on the line l, x # 0.

Let J be the set of all invariant measures on X. We claim that

(8.1) a, N fd b
Xi

for all Z If, on the contrary, (8.1) is false for some J, then for -almost all
l, O) Xi one has

lim log I(0, t)xl =f(l, O)

where f is an invariant function defined on N with x,fd x,fd, x is on l, x 0,
and x,fd [a, b]. is implies that f(l, O) [a, b] on some invariant set of positive
-measure, which contradicts eorem 8.1.

Next we claim that there is a measure J such that Jx,fd ft. To see this,
assume for definiteness that fl b is the right endpoint of [a, b]. Recall that J is
compact, and that the mapping x fd is continuous. Therefore if there is no J
with x,fd fl, then it follows from (8.1) that there is an e > 0 such thatxfd fl e
for all Z It follows from the ylov-Bogoliubov method described in 5 that for
every (x, 0) with x 0 one has

1 1o’lira suplog (0, t)xl =lira sup f((l, O,s)) dsN-e.

It then follows from Sacker and Sell (1978, Lemma 4) that dyn, a contradiction.
A similar argument works for a.

We want to show next that can be chosen to be an ergodic measure on X. Now
fix eJ with Ixfdn =. Since is a metric space, we can use the Choquet
Representation theorem, Phelps (1966), to find a probability measure An on the set
of ergodic measures in J such that

kgd=I(kgd)dAn()

for each g (X, R). In paaicular for f g one has

fl=fxfd=f,(fxfd)dan(’"
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From (8.1) we see that one cannot have xjfdcr<fl=bi for all treE. It follows
then that there is an ergodic measure r E with xjfdtr

Finally let/z be the projection of tr to M. Then/Z is an ergodic measure on M,
and from 6 we see that fl meas E(/Z). This completes the proof of Theorem
2.3. Q.E.D.

Remark 8.1. In general, one cannot find a single ergodic measure /z such that
ai, bi meas E(/z) for all endpoints ai, b, even if M is minimal. Here is a simple
example. According to Furstenberg (1961), there is a discrete flow on the 2-torusM T2

with more than one (in fact uncountably many) ergodic measures. Moreover, there is
a continuous function g on M so thatM g d/z1 #M g d/z2 for distinct ergodic measures
/zl, /z2. Define M x Z R by (y, 1) exp g(y). The dynamical spectrum of the
cocycle is [a, b], where a inf g d/z, b- sup g d/z, and the inf and sup are
taken over all ergodic measures on M. However, the measurable spectrum contains
just the point{ g d/z} for each ergodic measure

Remark 8.2. If there is only one ergodic measure/z on M, for example if the flow
0. onM is almost periodic, then meas E(/z) is a subset of the dyn X and all endpoints
a, b of dyne are in measE(/z). For m=2 we conclude that measE(/z)=
boundary dyn. An example in Johnson (1986) shows that for m- 3, even if M is
almost periodic, the measurable spectrum need not consist entirely of endpoints a, bi.

9. Computation of the measurable spectrum. Wedge product flows. Let 0 M be a
Lyapunov point and let y(0)-<_...-<_ ym(0) denote the growth rates with associated
basis e,. ., e,. Thus one-has A(e, 0)= y(0), 1 -< i=< m. By a standard argument, see
Naylor and Sell (1982, p. 268) for example, there is a constant K such that for any
vector x R" one has x ael+" + amem and

(9.1) ](0, t)x <- K max {[(0, t)e,]: a # O}]x}
for all T. It follows from (9.1) that

On the other hand one has

1
lim sup 7 log I(0, t)l<= ym(0).

I( O, t)e,, < I( O, t)l levi,

which implies that

Ym(O)"-lim
l
log ldP(O, t)e,,l<--liminf

l
log ldP(O, t)],

t+ t-o

and hence one has

(9.2) lim
I
log [(0, t)[ y,(0).

A similar argument yields

lim
1
log o, t)l- ’)tl(O).(9.3)

,--.-

An early version of (9.2) for stationary stochastic process of (m x m) matrices appears
in Furstenberg and Kesten (1960).
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The same considerations extend to the induced wedge product cocycles Akt:I)(0, t)
on AkR", where 2 _-< k-< m. If (b, t) satisfies (4.7), then one has

Ak(b, t)=(Akq(d t))-l(Akd(O, t))(Akq(qb)).
Hence the cocycles AkxI and Ak are cohomologous. Therefore AkxIt and Ak have
the same Lyapunov exponents.

For I k m let Ord (k, m) denote the collection of all strictly monotone mappings
: {1,. ., k} {1,. ., m}. We will use the lexicographic ordering on Ord (k, m); thus
< z, where , zOrd (k, m), provided there is a j, ljk such that (i)= z(i) for
1 j 1 and (j) < z(j). If { el," ", e } is any basis forR, then {e: Ord (k, m)}
is a basis for AkR where

(9.4) e e A. A ek.

Fuhermore if T is an upper-triangular (m x m) matrix (with respect to the basis
{e,..., e}), then AkT is an upper-triangular matrix with respect to the basis e,

Ord (k, m). Also the diagonal entry t (in the th position on the diagonal) is
given by the product

t t(1)(1) (k)(k)"

If, in addition, one has t, > 0 for 1 m, then t > 0 for all Ord (k, m).
Let us return to the triangular cocycle (, t). It follows from the last paragraph

that if (0, U) is fixed and if the diagonal entries of(, t) satisfy (6.6), then the
diagonal entry ofAk satisfies

lim log I(, t)[ T(1)+’’" + T(k),(9.5)
1,1

where Ord (k, m) and 2km. The collection of numbers given by (9.5), where
varies over Ord (k, m), represents the Lyapunov exponents of Ak. This analysis

applies for every H, where H is given by Lemma 6.4. For H(p) we shall
rewrite the growth rates in the form (2.8) where

(9.6)

It then follows from (9.5) that the largest growth rate forA is

v=+,-() +’’’ + Vm()
and the smallest is

Vl()+’’’ + ().
The argument in the first paragraph in this section now applies toA, which completes
the proof of Theorem 2.4.

Remark 9.1. One can give a precise description ofthe measurable bundles W)()
corresponding to A. Fix e H(p), where the growth rates of satisfy (9.6), and
let e,(O),..., em() be a basis in R that satisfies a(e,(O), )= ,(), lim. For
r e Ord (< m) we define

>()= 1)()+’’" + v)(O).
Then one has

(9.7) W)() span {e.:
where e is defined by (9.4) for e Ord (k, m). We will omit the proof of (9.7), which
is a simple application of the techniques developed in } 6.
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10. Applications and illustrations. In this section we collect several illustrative
examples of the theory described above. Included here is a discussion of spiral systems,
products of "random" matrices, conservative second-order Schr/Sdinger equations with
almost periodic potentials, and linear stochastic differential equations with bounded
measurable coefficients.

(A) Spiral systems. The theory above applies to every compact invariant set N in
M. In this case the dynamical spectrum dyn X(N) depends on N. Next we want to
study the case where N is a single orbit together with its to-limit set, i.e. a spiral system.
More precisely let M be a compact Hausdorff space with a flow 0. t. Let 00 be a given
point in M and define

N H/(0o) closure ( 0o" t: -> 0}.

Then N is positively invariant and the to-limit set 1)= fq_>-o H+(Oo" r) is a compact
invariant set. We are interested in the case where 0o f. Thus the positive trajectory
00" forms a spiral. See Fig. 1.

0o

FIG. 1. N: A spiral system.

Let (0, t) be a cocycle defined on M. Then the theory described above applied
directly to the restriction of to the to-limit set f/. The problem we wish to study here
is the limiting behavior (as s, -- +oo) of the cocycles Ak(0o. s, t), 1--< k-< m, along
the spiral trajectory 0o. In particular we want to show that this limiting behavior can
be used to evaluate the measurable spectrum of the to-limit set

Before doing the analysis it should be noted that this study addresses a basic
question which arises naturally when one is doing a numerical evaluation of the
measurable (or dynamical) spectrum. The initial point 0o in M is determined by the
code or program. If by good fortune it happens to lie in the set M, (Theorem 2.1),
then Theorem 2.4 explains how to compute the spectrum. With our present understand-
ing, one does not know whether or not we have had good fortune. However, what is
always true is that 00 does determine a spiral system.

For k= 1,. ., m we define

1
b k := lim sup- log IAkI)(Oo" S,

s,,r-- +oo

Also let X denote the dynamical spectrum of the linear skew-product flow
(A(O, t), O. t) over , and define

ak :__ max k.

We will now prove the following result:
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THEOREM 10.1. The following statements are valid:
(A) For k 1,..., m one has ak- b k.
(B) If the flow on f is uniquely ergodic (e.g. almost periodic) then meas E=

{ /1," ’/m} where y,,, b and

m-k--’bk+l--(m /" / ’m-k+l), l<-k<-m-1.

Proof. We will give the proof of (A) for k 1. The argument for k _-> 2 is the same.
Statement (B) is an immediate corollary of part (A) and Theorems 2.1, 2.3 and 2.4.

Let a and b denote a and b 1. For S_-> 0 and T->_ 0 we define

/3 (S, T) sup .1 log ](I)(Oo. s, z)l.
S<_s 7"
T<_,r

Then b=lims,T_+o3fl(S, T). Fix e>0 and choose S>_-0, T>_-0 so that fl(S, T)<-b+e.
For s / 7" one then has

I(0o" s, 7")1 I(0o, t)-’( Oo, s)l <= K eb+’-, 0 <= s <=
where K max {l(0o. s, r)l" 0_-< s _-< s, 0_-< z-<_ T}. It then follows directly, see Sacker
and Sell (1974, Thms. 2 and 5) and (1976a, Lemma 4) for example, that a-< b+ e for
every e > 0. Hence a <_- b.

If one has a < b, then we can replace (0, t) by the shifted flow eX’dP(O, t) where
3A 2a + b. This has the effect of shifting a and b to a- A and b-A, respectively.
Without any loss of generality, therefore, we can assume then that a < 0 < b and set
b 3a. Since a < 0, the linear skew-product flow ((0, t)x, O. t) has an exponential
dichotomy over fl with Ae Rm. This means that there is a constant K such that

I(0, t)-l(0, s)l _-< K e-<’-)

for all 0 ll, and s _-< t, s, T. In particular it follows from Sacker and Sell (1974,
p. 452) that {0} x II, R"x II and a//= {0} x II, where 3, 6e and are defined
to be those (x, 0) R"x fl that satisfy

sup[(0, t)x[<, lim [(0, t)xI=O and lim I(0, t)xI=O,
tT t+o3 t--o3

respectively.
Since b > 0 there are sequences s, --> +o, 7", --> +o such that

I <0o. -> e

Let e, be a vector with levi 1 and

I(0o s., z.)el >_- e-.
Fix tr, so that 0 <= tr, <= 7", and

I( Oo s., t)e.l <-I(Oo" s., r)e.I, 0 _-< _-<

Set :, (0o s,, o-,)e,. Then >- e-, and

., t)e.I <- 1, 0 <- <= r.
Since one has tr,-->+o. Also one has e,=(0,,-tr,):, where 0,=
0o" (s, + tr,). By choosing subsequences (if necessary) we can assume that 0, --> 0 fl
and I1-- e where lel- 1. it follows from Sacker and Sell (1976a, Lemma 4) that
(e, 0) o//, which contradicts the fact that q/= {0} x fl. We conclude that a b.
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Remark 10.1. The conclusions of Theorem 10.1 can be reformulated in another
manner. The numbers a k represent the "largest possible" Lyapunov exponents for the
cocycle Akt(0, t), where 0 f/and 1 _-< k_-< n. By the inequality (2.7) and Theorem 2.4
we see that there are ergodic measures/-/k on ’ with the property that a k is the largest
value in the measurable spectrum generated by Akt, 1-< k_<-n. Consequently if/z is
any invariant measure on f/ and Yl(O)<-... <-_ ym(O) are the growth rates satisfying
(9.6) for 0 f/,, then one has

m(0) +’’" - ’)/m-k+l(0) O
k

for all 0 e f,.
Remark 10.2. The ergodic measures tx referred to in the last paragraph need not

be the same. Let f be a minimal set in the flow 0. t, and assume that this flow is not
uniquely ergodic. Then there are ergodic measures/z and/z on 1 and a continuous
real-valued function g that satisfies g d/z g d/x:. Since g can be replaced by g + c

and/or ag, where c and a are constants with a 0, we can assume that/z,/z: and g
are chosen to satisfy

-1=/gdlz2<-fgdtz<-fgdlz,=3
for every ergodic measure/z. Now set h =-2g and consider the linear skew-product
flow on RE ’ generated by

x’- diag (g(O. t), h(O. t))x.

In the notation introduced above one then has a 3, a2= 2, and a max meas E(/zi),
i- 1,2.

Remark 10.3. It may happen that all the limits

lim
1
log IAk(00, t)l c k, 1 <- k <- m,

exist. If so, then one has ck<--_ a k, 1 <-k<-_ m. By using the associated triangular flow
and the Krylov-Bogoliubov method described in 5, one can show that there is an
invariant measure /z on f/ with the property that meas E(/z)= {yl," "’, %,} where
2’1 <--" <-- T,, and

)’,.-k+l +" + Tm c k, 1 <-- k <-- m.

Remark 10.4. The conclusions of Theorem 10.1 and the above remarks are related
to results of Pelikan (1983) who has analyzed the structure of Bowen-Ruelle invariant
measures on certain attractors.

(B) Products of random matrices. In this example we show that the theory of
products of matrices considered in Furstenberg and Kesten (1960) is often im-
beddable in our theory. Let K denote a fixed compact subset of (m) and let
{X1, X2," "} be a given sequence of (m x m) matrices with values in K. For n 1, 2,.
form the product

Y. XnXn_ Xl.

We wish to study the limiting behavior of

1-loglY l
n
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as n oo. This will be done by imbedding this problem into a spiral system, where
Y, =(0o, n) for an appropriate cocycle , and using Theorem 10.1.

Let M := Kz denote the collection of all two-sided sequences

(10.1) 0 (..., A-E, A-I; Ao; al, A2,’" ")

with entries Ai s K, Z. (We will use semi-colons to designate the zeroth position of
0.) Then M is a compact metric space with the shift flow 0. n where

O" n (" An_E, An_l; An; An+l, An+E, ")

for n Z. Define F :M -> K by F(0) := Ao where 0 is given by (10.1). Then one constructs
a cocycle over M by defining (0, 0)= I

(0, n)= F(O. (n- 1)) F(O), n >- 1,

alp(O, n)-[F(O. (-1))... F(O. n)] -1, n_-<-l.

It is not difficult to see that the cocycle identity (2.1) is valid for t, s Z.
The distinguished sequence {X1, X2," "} is imbedded into this flow as a spiral,

i.e. let A be a fixed element in K and set

0o (..., A, A; Xl; X2, X3," "),

where every negative entry in 00 is A. Then 0oM and Yn (0o, n) for n >-1. By
Theorem 10.1 we see that

1 1
(10.2) lim sup log I( 0. n, rn)l lim sup log Ym+nY-I

m,n+oo m m,n+oo m

exists and this is the maximum value of the dynamical spectrum over f, the to-limit
set of 00.

When the distinguished sequence {X, X_,. .} is a stationary stochastic process,
then the expectation satisfies E(log/ Ix,I)< since X1 assumes values in the compact
set K. If, in addition, this stochastic process is metrically transitive (i.e. ergodic) then
Theorem 2.4 is applicable, and one concludes that

(10.3) lim
1

log Yol

exists with probability 1. Also the limits in (10.2) and (10.3) agree. We refer the reader
to Furstenberg and Kesten (1960) for more details.

Remark 10.5. Some interesting applications of products of random matrices to
problems in demographics can be found in Cohen (1979).

(C) Schridinger equation. In the study of the Schr/Sdinger equation

Ly --5+ q(t) y Ay,

where q(t) is real and Bohr almost periodic, it is of interest to compute the "Lyapunov
number" fl(A) as a function of A e R. fl(A) is defined as follows: First introduce the
hull M of q by

M closure { q, " R},

where q,(t) q(t + -), and the closure is in the uniform topology. ThenM is a compact
metric space with translation flow 0. r 0,. In fact M is a compact topological group,
and the normalized Haar measure /x is the unique invariant measure on M. Define
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Q(0)= 0(0), and consider the operators Lo=-(d2/dtZ)+Q(O. t) and the associated
equations

-A+Q(0. t)
x, x= y,

Since the trace ofthe coefficient matrix is zero, one obtains from Liouville’s formula that

meas E(tz)= {-/3 (A),/3(h)}

where /3(h)->0. This defines fl(h). Also, as noted in Remark 8.2, one has
boundary dyn E meas E(/x).

Spectral properties of the self-adjoint linear operators Lo on L2(-, c) are
reflected in the dynamics of (10.4). For example, h is in the resolvent set for Lo if and
only if (10.4) admits an exponential dichotomy, Johnson (1982). Also if/3(h) >0 for
all h in an interval/, then for/x-almost all 0, the (functional analytic) spectrum of Lo
has no absolutely continuous component in /, Pastur (1980), Ishii (1973). Moreover
if/3(h) 0 for all h in/, then I is in the purely absolutely continuous spectrum of Lo
for/x-almost all 0, Kotani (1982).

The numerical computation of/3(h) when q(t)= cos + cos rt, for example, is a
challenging problem. An investigation of this problem is described in Perry (1986).
The basic idea is to use Theorem 2.4 to estimate/3 (h). Also special properties of second
order linear equations, as described in Johnson (1980a) and Johnson and Moser (1982),
can be exploited to help determine whether or not (10.4) admits an exponential
dichotomy for h 0. This, in turn, leads to a resolution of the question of whether or
not one has dyn E meas E(tz).

Another method for computing/3(h), which was suggested by R. Helleman, is to
use the theory of Johnson and Moser (1982). In this setting one extends h to the
complex plane so that for Im > 0,/3() is the real part of a holomorphic function
w(h), called the Floquet exponent of (10.4). When Im h > 0, (10.4) has an exponential
dichotomy. One can compute/3(h) for real by a limiting formula:

/3(,X) lim_,o+/3()t + it/).

(D) Linear stochastic differential equations. An interesting variation of the
Schr6dinger equation occurs when the potential q(t) is a stochastic variable. More
generally consider the m-dimensional case x’= A(t)x, x Rm, where the entries aij(t)
are stochastic variables in t. We will show how this can be imbedded in a linear
skew-product flow on Rmx M, where M is a compact space, under the assumption
that the coefficients aij(t) are bounded and measurable in t, i.e. a L(R). (See
Kurzweil (1957), Miller and Sell (1970) and Sacker and Sell (1974) for more infor-
mation.)

The set M is the hull of A and is defined by

M closure {A: z R},

where A(t)= A(’+ t) and the closure is taken in the "weak L-local topology. That
is, a generalized sequence {A,} converges to a limit B if for every z R and every
b L[ ’, "+ 1 one has

v+l I.rr+lA,( t)c( t) dt -> B( t)dp( t) dt.
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Since A(t) is bounded and measurable, the hull of A is a compact Hausdortt space.
If BM we let d(B,t) be the fundamental solution matrix for x’-B(t)x. Then
"M x R (m) is continuous and the associated linear skew-product flow is

7r(B, x, 7")= ((B, 7")x, B,).

When the coefficients a0 are stationary stochastic variables, it is not difficult to
show (by using the ideas of 5) that a given underlying invariant probability measure
/z lifts to an invariant measure , on M. If the coefficients are metrically transitive, i.e.
if/z is ergodic, then the lifted measure , can be chosen to be ergodic.

Appendix. Further geometric properties of cocycles. A projector is a continuous
mapping P(x, O)-(P(O)x, O) on R"xM where M is a compact Hausdorit space and
P(0) is a linear projection on R". A resolution of the identity on RmxM is a k-tuple
P-(P1,"" ",Pk), k>-l, satisfying: (i) each Pi is a projector, (ii) PP= when i#j
and (iii) I P /. + Pk. (Here we define (x, 0):- (0, 0).) Let P (P,. ., Pk) be
a k-tuple of projectors on RmxM and define

,:= Range (Pi) := {(x, 0)e R" xM: Pi(O)x=x},

Then P is a resolution of the identity if and only if Rmx M-1/’’" /k (as a
Whitney sum). A resolution ofthe identity P is said to be orthogonal if i+/-j whenever
# j, i.e. the Euclidean inner product (.,.) satisfies (x, y) 0 for all (x, 0) e, (y, 0) e)

when j. The latter is equivalent to saying that each Pi(0) is an orthogonal projection
on Rm.

Now let be a cocycle on R xM and assume R" xM= V+...+ Vk as a
Whitney sum. Let P (P1,"" ", Pk) be the induced resolution of the identity where
Range (P) V, 1 <_- <_- k. Then the subbundles V are invariant under the linear skew
product flow induced by if and only if one has

(A.1) Pi(O" t)p(O, t)=(0, t)Pi(O), l<-_i<-k

for all 0 eM and T. We shall say that a resolution of the identity P (P1, , Pk)
is invariant if (A.1) is satisfied. It is not always the case that an invariant resolution
of the identity is orthogonal; however, the next lemma shows that one can replace
with a cohomologous flow in which the new invariant resolution of the identity is
orthogonal.

LEMMA A. Let d be a cocycle over a compact Hausdorff space M and let P-
(P1,’", Pk) be an invariant resolution of the identity. Then there is a continuous
self-adjoint mapping R’M- q(m) with the property that Q=(Q1,’", Qk) is an
orthogonal resolution of the identity, where

(A.2) Q,(0) R(O)P( 0)R-l(0), 1 _--< _--< k.

Furthermore Q is invariant under the cocycle

(A.3) (0, t)= R(O. t)d(O, t)R-l(O).

Proof. Define S(O) by
k

S(0):= Y’. P*(O)Pi(O)
i=1

where P* denotes the adjoint operation. Then S(0) is positive definite and self-adjoint,
so it has a unique positive definite, self-adjoint square root R(0), i.e. RE(0)"- S(0). If
Q(O) is defined by (A.2) and is given by (A.3) it is easy to verify that Q*(0) Q(O)
and (0, t)Q,(0) Q,(0. t)(0, t), 1 -<_ -< k. Q.E.D.
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Lemma 3.4 also gives information about the case where one has a linear skew-
product flow on a vector bundle ’ over a compact Hausdortt space M where
//’1 +"" +k is a Whitney sum of invariant subbundles. Each of these subbundles i
can be separately imbedded in a trivial bundle Rm’ M where m ml +"" + mk. The
construction of Lemma 3.4 shows that one can construct a cocycle on RmM so that
the given flow on is cohomologous to a flow on a subbundle of R"x M.

If 7r is a discrete flow on a vector bundle ’, i.e. if T Z, then Lemma 3.4 can be
extended to this case by first suspending the discrete flow to get an equivalent con-
tinuous-time flow on a new vector bundle. See Ellis and Johnson (1982) for the
suspension construction. One should note that even if the original bundle is trivial,
the suspended bundle may be nontrivial.

The triangularization technique can be used to put some cocycles into a block-
diagonal, upper-triangular form. Let be a cocycle on M and let P (P1,’", Pk)
be an invariant partition of unity of R"x M. Because of Lemma A we can assume P
to be orthogonal. For any point b- (0, U)H we define the P-partition of U to be
the partitioning of U into block matrices U U1, , Uk)p where the number mi of
column vectors in U is dim Range P(O), 1 <-i<-k. Let Hp denote the set of all
b (0, U) H with the property that the P-partition U U1," , Uk)p satisfies

(A.4) Pi O Uj tijUi l <--_ i, j <- k.

By using Lemma A one can easily verify the following:
LEMMA B. Hp is a compact invariant set in H in the flow b. t. Furthermore if

b O, U) Hp then the column vectors in ( O, t) Ui are orthogonal to those in ( O, t)U
when j.

For b-(0, U)Hp let T(d(O, t)U) be given by (4.5). The P-partition of U
prescribes an induced block partition of T((0, t)U) where the diagonal blocks are
square matrices of size (m x m), 1 <- _-< k. Since the off-diagonal blocks of T((0, t) U)
depend on the inner products of column vectors of (0, t)Ui and (0, t)U for i#j,
it follows from Lemma B that these off-diagonal blocks are zero. Hence (b, t)-
T((0, t)U) -1 is a block-diagonal, upper-triangular matrix.

The block-diagonalization of involves an "untwisting" ofthe spectral subbundles
of. A similar untwisting with additional useful structures appears in Ellis and Johnson
(1982). Also compare with Coppel (1967), Palmer (1980) and Vinograd et al. (1977).
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