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Ergodic property of random diffusivity system with trapping events
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Brownian yet non-Gaussian phenomenon has recently been observed in many biological and active
matter systems. The main idea of explaining this phenomenon is to introduce a random diffusivity
for particles moving in inhomogeneous environment. This paper considers a Langevin system con-
taining a random diffusivity and an α-stable subordinator with α < 1. This model describes the
particle’s motion in complex media where both the long trapping events and random diffusivity ex-
ist. We derive the general expressions of ensemble- and time-averaged mean-squared displacements
which only contain the values of the inverse subordinator and diffusivity. Further taking specific
time-dependent diffusivity, we obtain the analytic expressions of ergodicity breaking parameter and
probability density function of the time-averaged mean-squared displacement. The results imply
the nonergodicity of the random diffusivity model for any kind of diffusivity, including the critical
case where the model presenting normal diffusion.

I. INTRODUCTION

In recent decades, it has been widely recognized that,
beyond the classical Brownian motion, anomalous dif-
fusion is a very general phenomenon in the natural
world, which is characterized by the nonlinear evolu-
tion of ensemble-averaged mean-squared displacement
(EAMSD) with respect to time, i.e.,

〈x2(t)〉 ≃ 2Dβt
β (1)

with β 6= 1 [1–3]. One of the common example of sub-
diffusion with β < 1 is the continuous-time random
walk (CTRW) with long trapping events characterized
by power-law-distributed waiting times [4, 5]. The sim-
ple models presenting superdiffusion with β > 1 include
Lévy flight with divergent second moment of jump length
[6, 7] and Lévy walk with heavy-tailed duration time of
each running event [8–11]. There are still many anoma-
lous diffusion processes, which present subdiffusion or su-
perdiffusion depending on the specific value of system
parameters, such as fractional Brownian motion [12–15],
scaled Brownian motion [16–18], and heterogenous dif-
fusion process [19–22]. In addition, a large number of
exotic and hybrid processes have been invented in recent
years, such as the diffusivity can be exponentially increas-
ing and decreasing in time or logarithmically increasing
[23], or depending on both the position and time [24],
or a combined model of heterogenous diffusion process
and fractional Brownian motion to describe the particle
dynamics in complex systems with position-dependent
diffusivity driven by fractional Gaussian noise [25].
A new class of diffusion dynamics has recently been

observed in a large range of complex systems, which
is named Brownian yet non-Gaussian process due to
the coexisting phenomenon of linear EAMSD and non-
Gaussian probability density function (PDF) [26–30].
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The PDF of this new class of stochastic processes is
characterized by an exponential distribution, rather than
the Gaussian one. The physical interpretation of the
non-Gaussian PDF was given by a superstatistical ap-
proach [31–33], in other words, each particle undergoes
the Brownian diffusion with its own diffusivity D which
does not change considerably in a short time less than the
characteristic time of correlation in a system. To explain
the crossover from exponential distribution to Gaussian
distribution of the Brownian non-Gaussian phenomena,
Chubynsky and Slater proposed a diffusing diffusivity
model with diffusivity undergoing a random walk [34],
and Chechkin et al. established a minimal model with
diffusing diffusivity under the framework of Langevin
equation [35]. To further describe the particle’s stochas-
tic motion in complex environments, the idea of ran-
dom diffusivity has been applied to generalized Langevin
equation [36], generalized grey Brownian motion [37], and
fractional Brownian motion [38, 39]. Besides, the expo-
nential tail is found to be universal for short-time dynam-
ics of the CTRW by using large deviation theory [40, 41].
In this paper, we consider a coupled Langevin system

with random diffusivity to describe the particle’s mo-
tion in complex media where both the trapping events
and random diffusivity exist. Instead of focusing on the
PDF of the particle’s trajectory, we pay more attention
to the (non)ergodic property of this coupled Langevin
system by comparing the EAMSD and time-averaged
mean-squared displacement (TAMSD) which is defined
as [5, 42]

δ2(∆) =
1

T −∆

∫ T−∆

0

[x(t+∆)− x(t)]2dt. (2)

It is usually assumed that the lag time ∆ is much smaller
than the total measurement time T for obtaining a good
statistical property. Based on the advance of single-
particle tracking techniques, scientists often evaluate the
recorded time series in terms of TAMSD to study the
diffusion behavior of particles in living cell [43–45]. A
process is called ergodic if the TAMSD and EAMSD are
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equivalent, i.e., δ2(∆) = 〈x2(∆)〉 as T → ∞, such as
Brownian motion and (tempered) fractional Brownian
motion [13, 15, 46]. The ergodic property of a random
diffusivity model has been partly discussed for some mod-
els, such as the model with local diffusivity fluctuating in
time [47], the one with a power-law correlated fractional
Gaussian noise [48], and the one with superstatistical,
uncorrelated or correlated diffusivity [49].
The scatter of the amplitude of TAMSD is also the

main quantity to be studied in this paper, which is de-
noted by φ(η) with the dimensionless random variable η
defined as [5, 42]

η :=
δ2(∆)

〈δ2(∆)〉
. (3)

The dimensionless amplitude η is the useful indicator to
classify numerous anomalous diffusion processes by ana-
lyzing its statistics, which include the PDF of η and the
variance of η, i.e., ergodicity breaking (EB) parameter.
These statistics for our random diffusivity model will be
explicitly derived by taking specific diffusivity and sub-
ordinator in this paper.
The structure of this paper is as follows. In Sec. II,

the random diffusivity model, together with the proper-
ties of the subordinator, are introduced. Based on this
model, we derive the general expressions of the EAMSD
and TAMSD in Sec. III. Further, by taking specific time-
dependent diffusivity, we obtain the explicit expressions
of the EAMSD and TAMSD in Sec. IV, and the corre-
sponding EB parameter together with the distribution of
TAMSD in Sec. V. Some discussions are provided in Sec.
VI. For convenience, we put the algorithm of simulations
and some mathematical details in Appendix.

II. RANDOM DIFFUSIVITY MODEL AND

SUBORDINATOR

We consider the following one-dimensional over-
damped Langevin equation coupled with a subordinator:

ẋ(s) =
√

2D(s)ξ(s), ṫ(s) = ζ(s), (4)

where x(s) denotes the particle’s trajectory over op-
erational time s, ξ(s) is a Gaussian white noise with
null mean 〈ξ(s)〉 = 0 and the correlation function
〈ξ(s1)ξ(s2)〉 = δ(s1 − s2), and ζ(s) is a fully skewed α-
stable Lévy noise with 0 < α < 1 [50] which is usually
regarded as the formal derivative of the α-stable subor-
dinator t(s) [51]. The dot over a one-variable function
denotes the first derivative of this function with respect
to this variable. In this random diffusivity model, the dif-
fusivityD(s) can be a time-dependent random variable or
a stochastic process [49]. A deterministic diffusivity D0

(i.e., D(s) ≡ D0) in Eq. (4) leads to the classical Brown-
ian motion coupled with a subordinator, which exhibits
subdiffusion behavior and presents a stretched-Gaussian
PDF [3].

The Langevin equation can describe the particle’s tra-
jectory at any time, and it has the correspondence to
another common physical model, CTRW. The α-stable
subordinator t(s) with 0 < α < 1 in this Langevin sys-
tem corresponds to the CTRW where the particle gets
immobilised for a trapping time drawn from the power-
law-distributed waiting time with exponent α. Note that
the diffusivity is D(s) in the first equation of Eq. (4),
rather than D(t(s)). It means that the diffusivity also
remains unchanged when the particle gets immobilised
for a trapping time.
The object process considered in model Eq. (4) is

x(t) := x(s(t)), where s(t) is named inverse subordinator
being a one-to-one correspondence to the subordinator
t(s) [52, 53]. The explicit mathematical definition of the
inverse subordinator is

s(t) = inf
s>0

{s : t(s) > t}. (5)

The object process x(t) here is also called subordinated
process, compared with the original process x(s). The
subordinated process x(t) is actually a recombination
process of the original process x(s) and the inverse sub-
ordinator s(t). Therefore, the properties of the subor-
dinated process x(t) are determined by both x(s) and
s(t).
The α-stable subordinator t(s) is a non-decreasing

Lévy process with stationary and independent incre-
ments [51], and its characteristic function is

〈e−λt(s)〉 = e−sλα

. (6)

Based on the characteristic function and the property
of the subordinator, the PDF h(s, t) of the inverse α-
stable subordinator s(t) can be obtained, which is usually
expressed in Laplace domain (t → λ) as [54]

h(s, λ) =

∫

∞

0

e−λth(s, t)dt = λα−1e−sλα

. (7)

Denote the PDF of the subordinated process x(t) as
p(x, t) and the one of the original process x(s) as p0(x, s).
Due to the independence between the original process
x(s) and the inverse subordinator s(t), the PDF p(x, t)
can be written as [54–57]

p(x, t) =

∫

∞

0

p0(x, s)h(s, t)ds. (8)

Multiplying xn on both sides and performing the inte-
gral over x, we obtain the moments of the subordinated
process in the expression of that of the original process:

〈xn(t)〉 =

∫

∞

0

〈xn(s)〉h(s, t)ds, (9)

where 〈xn(s)〉 represents the moments of the original pro-
cess x(s) on operational time s. Similarly, the two-point
joint PDF p(x2, t2;x1, t1) of the subordinated process
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x(t) can be obtained through the two-point joint PDF
p0(x2, s2;x1, s1) of the original process x(s) and the two-
point joint PDF h(s2, t2; s1, t1) of the inverse subordina-
tor s(t),

p(x2, t2;x1, t1)

=

∫

∞

0

∫

∞

0

p0(x2, s2;x1, s1)h(s2, t2; s1, t1)ds2ds1.

(10)

Comparing with the explicit expression of h(s, t) in
Laplace domain in Eq. (7), the Laplace expression
(t1 → λ1, t2 → λ2) h(s2, λ2; s1, λ1) is a bit more com-
plicated [54], and not shown here. Fortunately, when
evaluating the autocorrelation function of model Eq. (4),
the two-point joint PDF h(s2, t2; s1, t1) can be reduced
to the single point one as Eq. (16) shows, i.e.,

∫

∞

0

h(s2, t2; s1, t1)ds2 = h(s1, t1), (11)

and the calculation gets simplified.

III. EAMSD AND TAMSD

When the diffusivity D(s) returns to a constant, the
model Eq. (4) describes a Langevin system equivalent
to the continuum limit of the CTRW with power-law-
distributed waiting times, which has been discussed a lot
[58–63]. Therefore, we try to find out how the diffusivity
D(s) influences the diffusion behavior of the model Eq.
(4), and to establish the quantitative relation between
them.
For a time-dependent diffusivity D(s), we can directly

perform integral on the first equation in Eq. (4) to ob-
tain the expression of trajectory x(s) and further take
ensemble average to obtain the EAMSD of original pro-
cess x(s), i.e.,

〈x2(s)〉 = 2

∫ s

0

ds′1

∫ s

0

ds′2

〈

√

D(s′1)D(s′2)ξ(s
′

1)ξ(s
′

2)

〉

= 2

∫ s

0

ds′1

∫ s

0

ds′2

〈

√

D(s′1)D(s′2)

〉

δ(s′1 − s′2)

= 2

∫ s

0

〈D(s′)〉ds′,

(12)

where the independence between diffusivity D(s) and
white noise ξ(s), together with the δ-correlation function
of ξ(s) have been used in the second line of Eq. (12).
Substituting the 〈x2(s)〉 in Eq. (12) into Eq. (9) and

exchanging the order of integration between s′ and s
yields

〈x2(t)〉 = 2

∫

∞

0

∫ s

0

〈D(s′)〉h(s, t)ds′ds

= 2

∫

∞

0

∫

∞

s′
〈D(s′)〉h(s, t)dsds′.

(13)

Then performing Laplace transform (t → λ) on both
sides of Eq. (13), with the help of the expression of h(s, λ)
in Eq. (7), we obtain

Lt→λ〈x
2(t)〉 =

2

λ

∫

∞

0

〈D(s′)〉e−s′λα

ds′

=
2

λ
Ls→λα〈D(s)〉.

(14)

The Eq. (14) implies that the EAMSD only depends
on the mean value of diffusivity D(s). The subdiffusion
behavior 〈x2(t)〉 ∝ tα is recovered when diffusivity is a
time-independent random variable or the mean 〈D(s)〉
tends to a constant for long time. Otherwise, the diffu-
sion behavior of the random diffusivity model is closely
related to the trend of mean 〈D(s)〉. Due to the exis-
tence of subordinator, the effect of the diffusivity D(s)
on diffusion behavior works through the scaling factor λα

rather than λ in frequency domain, as Eq. (14) shows.
Now we turn to the TAMSD of the process described

by Langevin equation (4). As the definition of TAMSD
in Eq. (2) shows, the autocorrelation function of po-
sition 〈x(t1)x(t2)〉 is needed. Using the property of δ-
correlation of white noise ξ(s), the autocorrelation func-
tion of x(s) on operational time s satisfies

〈x(s1)x(s2)〉 = 〈x2(s1)〉 (15)

for s1 < s2. Then by use of the two-point PDF
h(s2, t2; s1, t1) of the inverse subordinator s(t) and Eqs.
(10) and (11), we obtain

〈x(t1)x(t2)〉 =

∫

∞

0

∫

∞

0

〈x(s1)x(s2)〉h(s2, t2; s1, t1)ds1ds2

=

∫

∞

0

〈x2(s1)〉h(s1, t1)ds1

= 〈x2(t1)〉

(16)

for t1 ≤ t2. For both the subordinated process x(t) in Eq.
(16) and the original process x(s) in Eq. (15), the equiv-
alence between autocorrelation function and EAMSD is
essentially resulted from the property of δ-correlation of
white noise ξ(s) in model Eq. (4).
Then we substitute Eq. (16) into the definition of

TAMSD in Eq. (2), and thus obtain the ensemble-
averaged TAMSD

〈δ2(∆)〉 =
1

T −∆

∫ T−∆

0

〈x2(t+∆)〉 − 〈x2(t)〉dt. (17)

It is not convenient to perform Laplace transform for
further calculations as Eq. (14). Instead, considering
that the EAMSD 〈x2(t)〉 is a function of t, the integrand
can be estimated by use of the priori condition ∆ ≪ t,
which implies

〈x2(t+∆)〉 − 〈x2(t)〉 ≃ ∆
d

dt
〈x2(t)〉. (18)
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Note that this special procedure is only valid for the
case where 〈x2(t+∆)〉 and 〈x2(t)〉 are separable. Other-
wise, the explicit autocorrelation function of position x(t)
in the overdamped case, or that of velocity v(t) in the
underdamped case, is needed to evaluate the ensemble-
averaged TAMSD. Therefore, Eq. (17) yields the result

〈δ2(∆)〉 ≃
∆

T
〈x2(T )〉, (19)

which presents a normal diffusion with respect to lag
time ∆. This phenomenon makes the TAMSD deviate
from the EAMSD which is anomalous when αγ 6= 1,
and thus implies the weak ergodicity breaking. For the
critical case αγ = 1, although both the EAMSD and
ensemble-averaged TAMSD present the same normal dif-
fusion behavior, the TAMSD is not self-averaged due to
the scale-free property of subordinator with α < 1, i.e.,
δ2(∆) 6= 〈δ2(∆)〉 as T → ∞. The critical case with
αγ = 1 will also be discussed in Sec. V. Therefore, the
random diffusivity model Eq. (4) is weakly nonergodic
for any α < 1.
In general, the TAMSD is a stochastic process due to

the randomness of the integrand [x(t + ∆) − x(t)]2 in
Eq. (2). The ensemble average on TAMSD miss the
information of randomness of TAMSD. Therefore, as a
more detailed quantity, the scatter of TAMSD is a use-
ful indicator to distinguish various anomalous diffusion
processes.
For subdiffusive CTRW with power-law-distributed

waiting time, it can be observed quite often for a wide
range of t that no jump event happens between time t
and t+∆, which leads to [x(t+∆)−x(t)]2 = 0 for many
different values of t. By contrast, the jump occurs at any
small time interval with respect to the operational time
s for the random diffusivity model Eq. (4). A constant
diffusivity D of classical Brownian motion indicates that
the magnitude of jumps at each step are of the same size,
whereas the random diffusivity D(s) resembles the inho-
mogeneous magnitude of different jumps. From another
point of view, the discrepant magnitude of jumps can
be regarded as varying numbers of jumps with the same
magnitude and the variance of each jump is a finite con-
stant. In this sense, the number of jumps between time
t and t+∆ can be written as

2

∫ s(t+∆)

s(t)

D(s′)ds′, (20)

which is random due to the randomness of both diffu-
sivity D(s) and inverse subordinator s(t). Combining it
with the definition of TAMSD in Eq. (2), we find that
the TAMSD behaves as

δ2(∆) ≃ C

∫ T−∆

0

∫ s(t+∆)

s(t)

D(s′)ds′dt, (21)

where C is a constant independent of diffusivity D and it
will be determined by taking ensemble average on both

sides later. We firstly consider the condition ∆ ≪ T and
the long time limit of T . Similar to Eq. (18), the inner
integral can be approximated by

∫ s(t+∆)

s(t)

D(s′)ds′ ≃ ∆ṡ(t)D(s(t)) (22)

for ∆ ≪ t. So we further obtain

δ2(∆) ≃ C∆

∫ s(T )

0

D(s′)ds′. (23)

Performing ensemble average on both sides of Eq. (23)
leads to

〈δ2(∆)〉 ≃ C∆

∫

∞

0

∫ s

0

D(s′)ds′h(s, T )ds. (24)

Compared it with Eqs. (13) and (19), we find that C =
2/T . Therefore, the asymptotic behavior of TAMSD is

δ2(∆) ≃
2∆

T

∫ s(T )

0

D(s′)ds′. (25)

There are two random factors in Eq. (25), the inverse
subordinator s(T ) and diffusivity D(s′). The s(T ) here
can be regarded as the number of jumps happening in
physical time (0, T ) for a particle. If the diffusivity re-

turns to the constant D, then δ2(∆) ≃ 2D∆s(T )
T , consis-

tent to the result in Ref. [4], where the number of jumps
is denoted by N . On the other hand, if the subordinator

vanishes, i.e., s(T ) = T , then δ2(∆) ≃ 2∆
T

∫ T

0 D(s′)ds′

proportional to the time average of diffusivity D(s),
which is consistent to the result in Ref. [49].

IV. TIME-DEPENDENT DIFFUSIVITY

From the discussions above, we find that the EAMSD
and ensemble-averaged TAMSD are only determined by
the mean diffusivity 〈D(s)〉. For convenience, let us as-
sume that the diffusivity has the asymptotic behavior

〈D(s)〉 ≃ γsγ−1 (γ > 0) (26)

for long time. In fact, the D(s) in random diffusivity
model can be a random variable or a stochastic process,
and the D(s) at different times can be correlated or un-
correlated [49]. Here, it does not matter which type the
diffusivity D(s) is, it matters how the mean diffusivity
〈D(s)〉 behaves at long time.
Now we calculate the EAMSD and ensemble averaged

TAMSD by use of the mean diffusivity 〈D(s)〉. Substi-
tuting Eq. (26) into Eq. (14), we get

Lt→λ〈x
2(t)〉 = 2Γ(γ + 1)λ−αγ−1. (27)

Performing the inverse Laplace transform yields

〈x2(t)〉 ≃
2Γ(γ + 1)

Γ(αγ + 1)
tαγ . (28)
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While the inverse subordinator with α < 1 slows down
the diffusion behavior of particles, the time-dependent
diffusivity D(t) with γ > 0 can both suppress and
enhance the diffusion. The random diffusivity model
presents subdiffusion when αγ < 1, and superdiffusion
when αγ > 1. The normal diffusion 〈x2(t)〉 = 2Γ(γ + 1)t
is recovered at αγ = 1. Similarly, the ensemble-averaged
TAMSD in Eq. (19) is

〈δ2(∆)〉 ≃
2Γ(γ + 1)

Γ(αγ + 1)

∆

T 1−αγ
, (29)

being normal for any α and γ. The ratio between
ensemble-averaged TAMSD and EAMSD is

〈δ2(∆)〉

〈x2(∆)〉
≃

(

∆

T

)1−αγ

, (30)

which is not equal to 1 and implies the weak ergodicity
breaking if αγ 6= 1. When αγ = 1, it holds that

〈x2(∆)〉 ≃ 〈δ2(∆)〉 ≃ 2Γ(γ + 1)∆ (31)

for long time. But the TAMSD cannot converge to its
ensemble average, which can be proved in the next sec-
tion. Therefore, the random diffusivity model Eq. (4) is
weakly nonergodic for any α < 1 and γ > 0. We sim-
ulate the EAMSD and ensemble-averaged TAMSD with
four kinds of parameters (α, γ) in Fig. 1. The EAMSD
can present both subdiffusion, superdiffusion and normal
diffusion, while the ensemble-averaged TAMSD is normal
for any parameter. The simulation results fit to the the-
oretical results perfectly.

V. EB PARAMETER AND PDF OF TAMSD

For ergodic Brownian motion, its TAMSD converges
to a constant for long time. However, the TAMSDs of
many anomalous diffusion processes are random variables
and present pronounced trajectory-to-trajectory varia-
tions, such as Lévy walk [64–66], Lévy flight [7, 65, 67],
quenched models [68, 69], heterogeneous diffusion pro-
cesses [19, 21, 22, 70] and so on. The stochasticity of
TAMSD can be measured by the scatter of the dimen-
sionless random variable η, which in our model is

η ≃
2
∫ s(T )

0
D(s′)ds′

〈x2(T )〉
(32)

for large T . This result is obtained by substituting Eqs.
(19) and (25) into Eq. (3). The mean of the dimension-
less random variable η is independent of lag time ∆ and
satisfies 〈η〉 = 1. The result in Eq (32) is universal for
the random diffusivity model Eq. (4) with any kind of
subordinator and diffusivity.
It holds that φ(η) = δ(η − 1) for an ergodic process,

while a nonergodic process shows a broad distribution of
η. A measure of the scatter of TAMSD is the variance
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(d) =0.8, =1.25

FIG. 1. (Color online) EAMSD 〈x2(t)〉 and ensemble-

averaged TAMSD 〈δ2(∆)〉 for random diffusivity model Eq.

(4). The theoretical results for 〈x2(t)〉 in Eq. (28) and 〈δ2(∆)〉
in Eq. (29) are shown by black solid lines. The blue circles
and red squares denote the simulated EAMSD and ensemble-
averaged TAMSD, respectively. They fit to the theoretical
lines perfectly in four pictures with different α and γ. Other
parameters: the measurement time is T = 102, and the num-
ber of trajectories used for ensemble is 104.

of dimensionless random variable η, which is also named
EB parameter:

EB = 〈η2〉 − 1. (33)

The EB parameter of the ergodic Brownian process scales
as ∆/T , and tends to zero as T → ∞. In contrast, the EB
parameter converges to a nonzero constant for nonergodic
process. Here for the random diffusivity model Eq. (4)
with η in Eq. (32), it holds that

〈η2〉 =
4I(T )

〈x2(T )〉2
, (34)

where

I(T ) =

∫

∞

0

∫ s

0

∫ s

0

〈D(s′1)D(s′2)〉ds
′

1ds
′

2h(s, T )ds. (35)

For convenience, we only consider that the diffusivity
is uncorrelated at different times, i.e.,

〈D(s1)D(s2)〉 = 〈D(s1)〉〈D(s2)〉 (36)

for s1 6= s2. In this case, the EB parameter can be ex-
plicitly obtained as

EB ≃
Γ(1 + 2γ)Γ2(1 + αγ)

Γ(1 + 2αγ)Γ2(1 + γ)
− 1, (37)
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FIG. 2. (Color online) EB parameters with four kinds of
parameters (α, γ). The markers (circle, square, positive and
inverted triangles) denote the simulation results, while the
four black solid lines represent the theoretical results in Eq.
(37). The total measurement time is T = 105 and the lag time
is ∆ = 1. The number of trajectories used for ensemble is 104.
The simulation markers tend to the corresponding theoretical
lines as T → ∞.

TABLE I. The EAMSD, ensemble-averaged TAMSD, and EB
parameter as T → ∞ for three specific nonergodic cases.

Cases 〈x2(t)〉 〈δ2(∆)〉 EB

α = 1, γ 6= 1 2tγ 2∆
T1−γ

0

α 6= 1, γ = 1 2
Γ(α+1)

tα 2
Γ(α+1)

∆
T1−α

2Γ2(1+α)
Γ(1+2α)

− 1

αγ = 1 2Γ(γ + 1)t 2Γ(γ + 1)∆ Γ(1+2γ)

2Γ2(1+γ)
− 1

where the detailed calculations are presented in Ap-
pendix B. The simulations of the EB parameters are
shown in Fig. 2, where four kinds of α and γ are cho-
sen. Whether αγ is equal to 1 or not, the EB parameter
converges to a constant at large T , consistent to the the-
oretical result in Eq. (37).

Only when α = γ = 1, the EB parameter in Eq. (37)
tends to zero and the random diffusivity process in Eq.
(4) recovers the ergodic process. More precisely, α = 1
means that the power-law-distributed waiting times re-
turn to the exponential distribution, i.e., the long trap-
ping events vanish, and γ = 1 implies that the mean dif-
fusivity keeps being a constant. In the case of α = γ = 1,
the assumption of diffusivity being uncorrelated at dif-
ferent times makes the model converge to the classical
Brownian motion. More discussions about uncorrelated
and correlated diffusivity can be found in Ref. [49].

On the contrast, the random diffusivity model is non-

ergodic once one of α and γ is not equal to 1. There
are three specific nonergodic cases, which are listed in
Table I. The first nonergodic case is α = 1, γ 6= 1, where
the EAMSD is anomalous but the ensemble-averaged
TAMSD is normal with respect to ∆. However, it is
worth noting that the EB parameter tends to zero as
the measurement time T → ∞. It means that the
TAMSD converges to a constant for long time. In other
words, the TAMSD has the property of self-averaging,
i.e., δ2(∆) ≃ 〈δ2(∆)〉 as T → ∞. This property is re-
sulted from α = 1 and the assumption of uncorrelated
diffusivity.
The second nonergodic case is α 6= 1, γ = 1, where the

EAMSD presents subdiffusion but the ensemble-averaged
TAMSD is normal with respect to ∆. In contrast to
the first case, the EB parameter tends to a nonzero con-
stant here, which implies a more significant nonergod-
icity than the first case. Moreover, the EAMSD, the
ensemble-averaged TAMSD, and the EB parameter are
consistent to the subdiffusive CTRW model in Ref. [4]
with the same exponent α < 1 of power-law-distributed
waiting time. The essential reason is that the uncorre-
lated random diffusivity acts as a deterministic one when
we perform the time averaging. For γ = 1, the random
diffusivity model actually converges to the one with con-
stant diffusivity in the sense of evaluating the TAMSD.
The last nonergodic case is αγ = 1 (α < 1, γ > 1),

where both the EAMSD and ensemble-averaged TAMSD
exhibit the normal diffusion with αγ = 1 as mentioned
below Eq. (19). In the prior condition of α < 1, however,
the EB parameter is

EB ≃
Γ(1 + 2γ)

2Γ2(1 + γ)
− 1, (38)

which increases monotonously with respect to γ when
γ > 0. Therefore, it is positive for γ > 1 and implies the
nonergodic behavior for the case αγ = 1 with α < 1.
Another quantity, the PDF of TAMSD φ(η), can mea-

sure the scatter of TAMSD directly. For an ergodic
process, such as Brownian motion, the TAMSD is self-
averaged and converge to a deterministic variable, which
is embodied by the EB parameter tending to zero and
the PDF φ(η) converging to δ(η − 1). By contrast, for
the subdiffusive CTRW with the power-law-distributed
waiting times characterizing the long trapping events, the
corresponding limiting distribution φ(η) as measurement
time T → ∞ is the Mittag-Leffler distribution:

lim
T→∞

φ(η) =
Γ1/α(1 + α)

αη1+1/α
Lα

[

Γ1/α(1 + α)

η1/α

]

, (39)

which has been discussed in many references [4, 22, 70,
71]. Here, α is the exponent of power-law distribution,
and Lα(1) is the one-sided Lévy stable distribution whose
Laplace pair is exp(−λα) [55, 72]. For the φ(η) in Eq.
(39), the corresponding EB parameter is [4]

EB =
2Γ2(1 + α)

Γ(1 + 2α)
− 1, (40)
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the same as the second nonergodic case in Table I.
Similar to the discussion of EB parameter, we also as-

sume that the diffusivity is uncorrelated at different times
when evaluating the PDF φ(η) of TAMSD of model Eq.
(4). From the discussion of EB parameter above, we
find that the uncorrelated random diffusivity acts as a
deterministic one when we perform the time averaging.
Therefore, according to the general expression of TAMSD
in Eq. (25), it can be evaluated as

δ2(∆) ≃ 〈δ2(∆)〉D :=
2∆

T

∫ s(T )

0

〈D(s′)〉ds′, (41)

where the symbol 〈·〉D denotes the ensemble average over
diffusivity D(s). Substituting Eq. (26) into Eq. (41)
yields

δ2(∆) ≃
2∆

T
sγ(T ), (42)

where s(T ) is random and denotes the value of the inverse
subordinator s(t) at time t = T . Thus, the dimensionless
random variable in Eq. (32) can be denoted as

η ≃
sγ(T )

〈sγ(T )〉
, (43)

the PDF of which is

φ(η) =
Γ1/αγ(αγ + 1)

αγΓ1/αγ(γ + 1)η1+1/αγ
Lα

[

Γ1/αγ(αγ + 1)

Γ1/αγ(γ + 1)η1/αγ

]

,

(44)
with the detailed calculations presenting in Appendix C.
Compared with the subdiffusive CTRW, the diffusivity
makes the EAMSD change from tα to tαγ in Eq. (27).
However, the PDF φ(η) in Eq. (44) cannot be obtained
by simply replacing α by αγ in Eq. (39). The corre-
sponding simulations of φ(η) are present in Fig. 3 with
four groups of parameters (α, γ). Consider the condition
∆ ≪ T for evaluating TAMSD, we take three different
lag time ∆ = 1, 10, 100 for comparison. The simulations
with smaller ∆ are more consistent to the theoretical lines
in Fig. 3.
The Eq. (44) returns to Eq. (39) when γ = 1, which

is consistent to the discussions about the EB parameter
that the second case α 6= 1, γ = 1 in Table I converges
to the subdiffusive CTRW for sufficiently large T . For
the first case α = 1, γ 6= 1, the PDF of η is φ(η) =
δ(η − 1), which cannot be directly obtained from Eq.
(44) since α should be less than 1 in Lévy distribution.
Instead, we can consider this case from the beginning of
the calculations in Appendix C, i.e., the PDF h(s, t) of
the inverse subordinator s(t). The characteristic function
in Eq. (7) at α = 1 is e−sλ, implying that h(s, t) =
δ(t − s). Thus, the PDF φ(η) is also a δ-function based
on the derivations in Appendix C. As to the third case
αγ = 1 (α < 1, γ > 1), the corresponding PDF is

φ(η) =
1

Γ(γ + 1)η2
Lα

[

1

Γ(γ + 1)η

]

, (45)
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FIG. 3. (Color online) Amplitude scatter PDF φ(η) for four
kinds of parameters (α, γ). The markers (circle, square,
star) denote the simulations with different lag time ∆ (=
1, 10, 100), respectively. The solid lines are obtained from
the theoretical result in Eq. (45) with the detailed algorithm
presenting in Appendix A. Due to the condition ∆ ≪ T , the
circle markers (∆ = 1) are more consistent to the solid lines
than the star markers (∆ = 100). The dimensionless vari-
able η in four cases all present a broad distribution, implying
the nonergodic property. Other parameters: the measure-
ment time is T = 105, and the number of trajectories used for
ensemble is 105.

not a δ-function, which corresponds to the nonzero EB
parameter in Eq. (38). In Eq. (45), the exponent α
is the Lévy index controlling the shape of the distribu-
tion of the TAMSD, while γ is related to the scaling of
Lévy distribution determining the width of the distribu-
tion. Although both α and γ affect the diffusion behavior
of random diffusivity model Eq. (4), they play different
roles which can be shown concretely through the analyses
on TAMSD (especially the EB parameter and the distri-
bution of TAMSD), but cannot be clearly separated from
the calculations of EAMSD in Eq. (28).

VI. SUMMARY

Brownian yet non-Gaussian phenomena have been ob-
served in a large range of complex systems. Instead of the
constant diffusivity D of classical Brownian motion, the
random diffusivity D(t) becomes the key of many exist-
ing models which explains this phenomena theoretically.
On the other hand, the particle might undergo trapping
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events and get immobilised in complex media, which can
be described by an inverse subdinator s(t). Therefore,
this paper considers such a Langevin system with random
diffusivity D(s) coupled with a subordinator in Eq. (4).
The main purpose is to investigate the ergodic property
of this model by evaluating the EAMSD and TAMSD.
To explore the detailed features of TAMSD, we also an-
alytically derive the EB parameter and the distribution
φ(η) of TAMSD.

The EAMSD 〈x2(t)〉 and ensemble-averaged TAMSD

〈δ2(∆)〉 are obtained in Eqs. (14) and (19) for any kind
of diffusivity D(s). Both of them depend only on the
mean diffusivity 〈D(s)〉. Whether the EAMSD presents
normal diffusion or not, the ensemble-averaged TAMSD
is normal for any D(s). For further calculations, we as-
sume the diffusivity behaves as 〈D(s)〉 ≃ γsγ−1 and find
the EAMSD scales as tαγ in Eq. (28).

One interesting thing is that the EAMSD is equal
to the ensemble-averaged TAMSD for long time when
αγ = 1, i.e., 〈x2(∆)〉 ≃ 〈δ2(∆)〉, which seems present an
ergodic behavior. To detect the nonergodic behavior of
the random diffusivity model Eq. (4) for any 0 < α < 1
and observe more detailed information of TAMSD, we
evaluate the EB parameter and the distribution φ(η) of
TAMSD. The procedure contains the calculation of cor-
relation function of diffusivity 〈D(s1)D(s2)〉. For conve-
nience, we assume that the diffusivity is uncorrelated at
different time, and thus, obtain the explicit expressions
of the EB parameter in Eq. (37) and the PDF of dimen-
sionless random variable φ(η) in Eq. (44) for any α and γ.
Neither the former tends to zero nor the latter converges
to a δ-function as the measurement time T → ∞, which
proves the nonergodic behavior of the random diffusivity
model Eq. (4).

The assumption of the uncorrelated diffusivity is rea-
sonable to some extent. This kind of diffusivity has been
discussed in Refs. [47]. For more general diffusivity cor-
related at different time, the correlation usually strength-
ens the nonergodicity of random diffusivity model, which
has been studied explicitly in Ref. [49]. However, there is
one kind of diffusivity, the square of Ornstein-Uhlenbeck
process [35], which is correlated at different time but it
reaches the stationary for long time. In this case, the dif-
fusivity acts like the uncorrelated one at large measure-
ment time [49], and the Langevin system is also noner-
godic. In fact, by observing the expression of TAMSD in
Eq. (25), the nonergodicity of random diffusivity model
results from not only the random diffusivity D(s), but
also the inverse subordinator s(t). As long as α < 1,
the TAMSD is not reproductive and remains a random
variable as the measurement time T → ∞.

The TAMSD is linear with respect to the lag time ∆ in
our random diffusivity model as Eq. (25) shows, which is
different from the EAMSD. Beyond this paper, the devi-
ation of TAMSD from EAMSD is common for anomalous
diffusion processes and comes from many effects, such as
the initial condition. The time average is in some sense
an equilibrium measure, while the ensemble average is

not. Therefore, the form does not depend on the ini-
tial condition while the latter does [73, 74]. However, if
the system starts from equilibrium initial conditions, the
EAMSD and TAMSD would behave similarly with re-
spect to lag time [63, 75–77]. More connections between
the random diffusivity model and other anomalous diffu-
sion processes will be discussed in the future.
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Appendix A: Simulation algorithms

When generate the trajectories of the model Eq. (4),
we assume D(s) obeys the exponential distribution with
its mean in Eq. (26). Since the theoretical results of the
EB parameters in Eq. (37) and the PDF of TAMSD in
Eq. (44) are obtained in the condition that the diffusivity
D(s) is uncorrelated at different times, we generateD(si)
independently at different time nodes si, i = 1, · · · , N .
As the random diffusivity model Eq. (4) contains two

kinds of time variables, physical time t and operational
time s, we need to establish two sets of time lattices to
express the subordinator t(s) and the inverse subordina-
tor s(t). Based on the first Langevin equation in model
Eq. (4), we can generate the trajectories of the original
process x(s). Then combining it with the trajectories
of the inverse subordinator yields the trajectories of the
subordinated process x(s(ti)). The explicit numerical al-
gorithm of generating an inverse subordinator and a sub-
ordinated process for different Langevin systems can be
found in Refs. [76, 78–80].
To generate the theoretical lines in Fig. 3, we first gen-

erate a random variable X obeying the Lévy distribution
Lα(x) with α < 1 based on the algorithm in Ref. [81].
Then taking

Y =
Γ(αγ + 1)

Γ(γ + 1)
X−αγ , (A1)

the random variable Y obeys the distribution in Eq. (45),
i.e.,

pY (y) =
1

Γ(γ + 1)y2
Lα

[

1

Γ(γ + 1)y

]

. (A2)

By using the large samples of random variable Y , we can
make a bar chart to depict the distribution of Y , which
is the theoretical lines in Fig. 3.



9

Appendix B: EB parameter in Eq. (37)

Since the diffusivity is uncorrelated at different time,
substituting Eq. (36) into the I(T ) in Eq. (35), we obtain

I(T ) =

∫

∞

0

∫ s

0

∫ s

0

〈D(s′1)〉〈D(s′2)〉ds
′

1ds
′

2h(s, T )ds

≃

∫

∞

0

s2γh(s, T )ds,

(B1)

where we do not consider the case s′1 = s′2 in the first line
since the corresponding integral domain can be omitted
in the double integral. Then by using the expression
of the PDF h(s, T ) of inverse subordinator in Laplace
domain as Eq. (7) shows, we have

I(λ) ≃

∫

∞

0

s2γh(s, λ)ds

≃ Γ(2γ + 1)λ−1−2αγ .

(B2)

Performing the inverse Laplace transform gives

I(T ) ≃
Γ(2γ + 1)

Γ(2αγ + 1)
T 2αγ . (B3)

Substituting the I(T ) above and 〈x2(T )〉 in Eq. (28) into
Eq. (33), the EB parameter in Eq. (37) can be obtained.

Appendix C: PDF of TAMSD in Eq. (44)

The PDF of the inverse subordinator s(T ) can be ex-
pressed as [54]

h(s, T ) =
1

α

T

s1+1/α
Lα

(

T

s1/α

)

. (C1)

According to the quantitative relation between sγ(T ) and
s(T ), the PDF hγ(s, t) of s

γ(T ) can be expressed through
the one of s(T ), i.e.,

hγ(s, T ) =
1

γ
s−1+1/γh(s1/γ , T )

=
1

αγ

T

s1+1/αγ
Lα

(

T

s1/αγ

)

.

(C2)

Then we calculate the mean of s(T ) by use of the PDF
h(s, T ) in Laplace domain (T → λ) in Eq. (7), which in
detail, is

L{〈sγ(T )〉} =

∫

∞

0

sγh(s, λ)ds

= Γ(γ + 1)λ−1−αγ .

(C3)

Performing the inverse Laplace transform gives

〈sγ(T )〉 =
Γ(γ + 1)

Γ(αγ + 1)
Tαγ . (C4)

Then combining Eqs. (C2) and (C4), we can obtain the
distribution of random sγ(T )/〈sγ(T )〉, i.e., the distribu-
tion of η in Eq. (44).
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Area coverage of radial Lévy flights with periodic bound-

ary conditions, Phys. Rev. E 87, 042136 (2013).
[8] V. Tejedor and R. Metzler, Anomalous diffusion in cor-

related continuous time random walks, J. Phys. A 43,
082002 (2010).

[9] M. Magdziarz, R. Metzler, W. Szczotka, and P. Ze-
browski, Correlated continuous-time random walks in ex-
ternal force fields, Phys. Rev. E 85, 051103 (2012).

[10] V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks,
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Phys. Rev. E 87, 030104(R) (2013).

[65] D. Froemberg and E. Barkai, Random time averaged dif-
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