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Ergodic Randomized Algorithms and Dynamics
over Networks

Chiara Ravazzi, Paolo Frasca, Roberto Tempo and Hideaki Ishii

Abstract—Algorithms and dynamics over networks often in-
volve randomization, and randomization may result in oscillating
dynamics which fail to converge in a deterministic sense. Inthis
paper, we observe this undesired feature in three applications, in
which the dynamics is the randomized asynchronous counterpart
of a well-behaved synchronous one. These three applications
are network localization, PageRank computation, and opinion
dynamics. Motivated by their formal similarity, we show the
following general fact, under the assumptions of independence
across time and linearities of the updates: if the expected
dynamics is stable and converges to the same limit of the original
synchronous dynamics, then the oscillations are ergodic and the
desired limit can be locally recovered via time-averaging.

I. I NTRODUCTION

Randomization has proved to be a useful ingredient for
effective algorithms in control and optimization, as reviewed
in [1]. In network dynamics, randomization is specially natu-
ral, either by the uncertain nature of the network at hand, or
by design aimed at improving performance and robustness.

In this work, we focus on a class of randomized affine
dynamics which do not possess equilibria, but are stable on
average. This stability property ensures that the dynamics,
although it features persistent random oscillations, has an
ergodic behavior. This ergodicity result, which we prove by
classical facts of probability theory, can be readily applied
to several network-based algorithms, in which randomization
apparently prevents convergence. As a consequence, the de-
sired convergence property –holding in expectation– can be
recovered by each node through a process of time-averaging,
which can be performed locally and, in some cases, without
even access to a common clock.

In the examples considered in this paper, nodes interact in
randomly chosen pairs, following a “gossip” approach which
has been popularized in the field of control by [2] and has been
followed in several papers. There has been a wide range of
applications since then. Indeed, many network algorithms can
be randomized in such a way that the randomized dynamics
converges (almost surely) to the same limit of the synchronous
dynamics. Notable examples include consensus algorithms,
studied in many papers as [3], [4], and other algorithms for
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estimation and classification [5] and for optimal deployment
of robotic networks [6]. Nevertheless, examples of randomized
algorithms which do not converge also have recently appeared
in the literature. Such algorithms require some sort of ad-
ditional “smoothing” operation in order to converge: in our
approach, this goal is achieved by time-averaging.

A prime example we consider involves the problem of
distributed estimation from relative measurements, whichhas
applications from self-localization in robotic networks to syn-
chronization in networks of clocks and to phase estimation
in power grids. This problem was first introduced in a least-
squares formulation in the context of clock synchronization [7]
and then studied in much detail in [8], [9], [10], [11],
[12], where both fundamental performance limitations and
distributed algorithms have been presented. More recently,
randomized algorithms for its solution have been proposed
by several researchers [13], [14]. Regarding this problem,our
contribution includes a randomized asynchronous algorithm,
in which nodes update in pairs in agossipfashion: its novelty
is further discussed in Section III-A. A related but different
randomized algorithm for least-squares estimation has been
recently proposed in [15].

A second example is PageRank computation, which has
attracted much attention in recent years for the importanceof
its applications [16], [17], [18] and for its similarities with
the consensus problem, as illustrated in [19]. Randomized
algorithms for PageRank computation have been studied in
a series of papers, including [19], [20], [21], [22]. Other
recent references on PageRank are listed in [23], [24], [25].
Our contribution provides a general convergence result for
randomized algorithms, which we apply to a novel pair-wise
gossipalgorithm in Section III-B.

A third example comes from social sciences, where there
has been long-time interest in the mechanisms of opinion
evolutions. It comes out that opinion dynamics models, where
agents have some degree of obstinacy and interactions are
randomized, gives rise to ergodic oscillations. This observation
has first been made in [26] and here we extend it in connection
with the Friedkin and Johnsen’s model [27] from social sci-
ences. We propose in Section III-C agossipmechanism of up-
date for the opinions, which allows us to interpret the classical
opinion dynamics –which makes simplistic assumptions on the
communication process among individuals– as the “average”
evolution of our randomized model. This observation answers
an open question on modeling the communication process
which was raised in the original paper [27].

Preliminary versions of part of our results have been re-
ported in the proceedings of technical conferences as [28],
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[29], regarding relative localization, and as [30], regarding
opinion dynamics. The current presentation incorporates and
builds upon the previous ones. Additionally, it includes the
case study of PageRank computation, and most importantly
embeds them into a comprehensive framework which is suit-
able for the study of other applications.

A. Paper outline

In Section II we study deterministic synchronous dynamics,
presenting the three examples of relative localization, PageR-
ank computation, and opinion dynamics. These dynamics are
then translated into corresponding randomized asynchronous
dynamics in Section III. Additional remarks and research
outlooks are given in a concise Section IV, and an Appendix
contains the technical derivation of our main result.

B. Notation and preliminaries

Throughout this paper, we use the following notation. Real
and nonnegative integer numbers are denoted byR andZ≥0,
respectively. The symbol| · | denotes either the cardinality of a
set or the absolute value of a real number. The symbolei is the
vector with thei-th entry equal to 1 and all the other elements
equal to0, and we write1 for the vector with all entries equal
to 1. A vectorx is stochastic if its entries are nonnegative and∑

i xi = 1. A matrix A is row-stochastic (column-stochastic)
when its entries are nonnegative andM1 = 1 (M⊤

1 = 1). A
matrix is doubly stochastic when it is both row and column-
stochastic. A matrixP is said to be Schur stable if the absolute
value of all its eigenvalues is smaller than 1. A graph is a pair
G = (V , E), whereV is the set of nodes andE ⊆ V × V is the
set of edges. To avoid trivialities, we implicitly assume that
graphs have at least three nodes, i.e.,|V| > 2. A graphG is
called strongly connected if there is a path from each vertexin
the graph to every other vertex. To any matrixP ∈ R

V×V with
non-negative entries, we can associate a graphGP = (V , EP )
by putting (i, j) ∈ EP if and only if Pij > 0. The matrixP
is said to be adapted to graphG if GP ⊆ G.

II. SYNCHRONOUS AFFINE DYNAMICS OVER NETWORKS

Consider the affine dynamics representing a time-invariant
discrete-time dynamical system with statex(k) ∈ R

V ,
k ∈ Z≥0

x(k + 1) = Px(k) + u (1)

with P ∈ R
V×V and constant inputu ∈ R

V .

Proposition 1. If P is Schur stable, then the dynamics in(1)
converges to

x⋆ = (I − P )−1u

for any initial conditionsx(0) = x0.

Proof: Equation (1) implies thatx(k) = P kx(0) +∑k−1
ℓ=0 P ℓu. Since all the eigenvalues ofP lie in the open

unit disk, we have
lim
k→∞

P k = 0

and

lim
k→∞

k−1∑

ℓ=1

P ℓy = (I − P )−1u.

These limits imply thatx⋆ is the convergence value.
More specifically, in this paper we study affine dynamics

over a certain network, described by a graphG = (V , E) with
n nodes, that is, such thatthe matrixP is adapted to the graph
G. In the rest of this section, we review the three applications
of affine dynamics over networks which we have mentioned
in the introduction. Even though these applications are quite
diverse, we show that the algorithms for their solutions can
be represented by the affine dynamics (1), provided suitable
manipulations are performed.

A. Sensor localization in wireless networks

In sensor localization in wireless networks, we seek to
estimate the relative position of sensors using noisy relative
measurements. We formulate the problem using an oriented
graph1 G = (V , E). Each nodei in V has to estimate its
own variablesi, knowing only noisy measurements of some
difference with neighboring edges

bi,j = si − sj + ηi,j if (i, j) ∈ E or (j, i) ∈ E

whereηi,j is additive noise. The graph topology is encoded
in the incidence matrixA ∈ {0,±1}E×V defined by

Aei =






+1 if e = (i, j)

−1 if e = (j, i)

0 otherwise

for every e ∈ E . We can collect all the measurements and
variables in vectorsb ∈ R

E ands ∈ R
V , so that

b = As+ η,

where η ∈ R
E . A least-squares approach can be used to

determine the best estimate of the states based on the
measurementsb. That is, we define the unconstrained quadratic
optimization problem

min
z
‖Az − b‖22 (2)

where‖ · ‖2 denotes the Euclidean norm. The solution of this
problem is summarized in the following standard result.

Lemma 1 (Least-squares localization). Given a weakly con-
nected oriented graphG with incidence matrixA, letX be the
set of solutions of(2) and letL := A⊤A be the Laplacian.
The following facts hold:

1) x ∈ X if and only ifA⊤Ax = A⊤b;
2) there exists a unique minimizerx⋆

loc ∈ X such that
‖x⋆

loc‖2 = minz∈X ‖z‖2;
3) x⋆

loc = L†A⊤b, whereL† is the pseudoinverse matrix.

We note that the optimal least-squares solutionx⋆
loc is

the minimum-norm element of the affine space of solutions

1 An oriented graphG = (V , E) is a graph such that(i, j) ∈ E only if
i < j. G is said to be weakly connected if the graphG′ = (V , E ′) where
E ′ = {(h, k) ∈ V ×V : either (h, k) ∈ E or (k, h) ∈ E} has a path which
connects every pair of nodes.
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of (2) and Ax⋆
loc = A(x⋆

loc + c1) for any scalarc. As
shown in Lemma 1, the solution to the least-squares relative
localization problem (2) is explicitly known. Furthermore, it
can be easily computed by an iterative gradient algorithm.
Given a parameterτ > 0 and the initial conditionx(0) = 0,
we let

x(k + 1) = (I − τL)x(k) + τA⊤b (3)

where the matrixI− τL is doubly stochastic. For this reason,
it holds true that

1
⊤x(k + 1) = 1

⊤(I − τL)x(k) + τ1⊤A⊤b = 1
⊤x(k)

for all k ∈ Z≥0. Defining Ω = I − 11
⊤/n, we have that

Ωx(k) = x(k + 1) − 1
n
1
⊤x(k)1 = x(k) becausex(0) = 0

and moreover

Ωx(k + 1) = (I − τL)Ωx(k) + τA⊤b

becauseΩ(I − τL) = (I − τL)Ω andΩA⊤b = A⊤b. Then,
equation (3) can be rewritten as

x(k + 1) = (I − τL)Ωx(k) + τA⊤b

and falls in the class of affine dynamics (1) taking

P = (I − τL)Ω and u = τA⊤b. (4)

The convergence properties of this algorithm are summarized
in the following simple result (also available as [12, Proposi-
tion 1]), where we letdmax be the maximum degree given by
dmax = maxi |{(i, j) ∈ E} ∪ {(j, i) ∈ E}|.

Proposition 2 (Convergence of gradient descent algorithm).
Assume that the graphG is weakly connected. Then, the
gradient descent algorithm in(3) with x(0) = 0 converges
to the optimal least-squares solutionx⋆

loc if τ < 1/dmax.

Proof: By Gershgorin Circle Theorem and [31, Theo-
rem 1.37], the eigenvalues ofL satisfy 0 = λ1 < λi ≤
λi+1 ≤ λn ≤ 2dmax. Then, it is clear that the spectral
radius of (I − τL)Ω is equal tomax{1 − τλ1,−1 + τλn}.
By the assumption onτ , we thus conclude that(I − τL)Ω
is Schur stable, and convergence to the least-squares solution
immediately follows by Proposition 1 and Lemma 1.

B. PageRank computation in Google

In this application, we study a network consisting of web
pages [16]. This network can be represented by a graphG =
(V , E), where the set of vertices correspond to the web pages
and edges represent the links between the pages, i.e., the edge
(i, j) ∈ E , if pagei has an outgoing link to pagej, or in other
words, pagej has an incoming link from pagei.

The goal of the PageRank algorithm is to provide a measure
of relevance of each web page: the PageRank value of a page
is a real number in[0, 1], which is defined next. Let us denote
Ni = {h ∈ V : (i, h) ∈ E} andni = |Ni|, for each node
i ∈ V , andA the matrix such that

Aij =

{
1/nj if j ∈ Ni

0 otherwise.

Let m ∈ (0, 1) and recalln = |V|, and define

M = (1−m)A+
m

n
11

⊤. (5)

The PageRank of the graphG is the vectorx⋆
pgr such that

Mx⋆
pgr = x⋆

pgr and
∑

i x
⋆
pgri

= 1.
Given the initial condition such that1⊤x(0) = 1 (i.e., it

is a stochastic vector), the PageRank vector can be computed
through the recursion

x(k + 1) = Mx(k) = (1−m)Ax(k) +
m

n
1. (6)

In this case, we observe that the PageRank vector can be
represented in terms of the affine dynamics (1) simply taking

P = (1 −m)A and u =
m

n
1. (7)

Before showing the convergence of this recursion, which is
studied in Proposition 3, we present a simple technical lemma.
Although the result has already been used in the literature (e.g.
in [26]), we include a short proof for completeness. We recall
that a matrix is said to be substochastic if it is nonnegative
and the entries on each of its rows (or columns) sum up to
no more than one. Moreover, every node corresponding to a
row (or column) which sums to less than one is said to be a
deficiencynode.

Lemma 2. Consider a substochastic matrixQ ∈ R
V×V . If in

the graph associated toQ there is a path from every node to
a deficiency node, thenQ is Schur stable.

Proof: First note thatQk is substochastic for allk. More
precisely, if we letVk to be the set of deficiency nodes ofQk,
thenVk ⊆ Vk+1 for every positive integerk. Moreover, there
existsk⋆ such thatVk⋆ = V , that is all nodes forQk⋆

are
deficiency nodes. Stability then follows by Gershgorin Circle
Theorem.

Proposition 3 (Convergence of PageRank computation). For
any initial conditionx(0) ∈ R

V such that1⊤x(0) = 1, the
sequence in(6) converges tox⋆

pgr = (I − (1−m)A)−1 m
n
1.

Proof: Since A is column-stochastic andm ∈ (0, 1)
then P is a substochastic matrix and every node is a defi-
ciency node. From Lemma 2, the matrixP is Schur stable
and from Proposition 1 the dynamics in (6) converges to
x⋆ = (I − (1−m)A)−1 m

n
1. Moreover,x⋆

pgr = Mx⋆
pgr =

(1−m)Ax⋆
pgr+

m
n
11

⊤x⋆
pgr = (1−m)Ax⋆

pgr+
m
n
1, from which

we concludex⋆ = x⋆
pgr.

C. Opinion dynamics in social networks

In this application, we study a classical model introduced
in [27] to describe the effect of social influence and prejudices
in the evolution of opinions in a population in the presence of
the so-called stubborn agents. We briefly review and cast this
model into the general framework of affine dynamics defined
in (1).

We consider a finite populationV of interacting agents,
whosesocial networkof potential interactions is encoded by
a graphG = (V , E), endowed with a self-loop(i, i) at every
node. At timek ∈ Z≥0, each agenti ∈ V holds abelief or
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opinionabout an underlying state of the world. We denote the
vector of beliefs asx(k) ∈ R

V . An edge(i, j) ∈ E means that
agentj may directly influence the opinion of agenti.

Let W ∈ R
V×V be a nonnegative matrix which defines the

strength of the interactions (Wij = 0 if (i, j) 6∈ E) andΛ be a
diagonal matrix describing how sensitive each agent is to the
opinions of the others based on interpersonal influences. We
assume thatW is row-stochastic, i.e.,W1 = 1 and we set
Λ = I − diag(W ), wherediag(W ) collects the self-weights
given by the agents. The dynamics of opinionsx(k) proposed
in [27] is

x(k + 1) = ΛWx(k) + (I − Λ)v (8)

wherex(0) = v andv ∈ R
V . The vectorv, which corresponds

to the individuals’ preconceived opinions, also appears asan
input at every time step. This model falls under the class of
affine dynamics (1) simply taking

P = ΛW and u = (I − Λ)v. (9)

As a consequence of (8) and Proposition 1, the opinion profile
at timek is equal to

x(k) =
(
(ΛW )k +

k−1∑

h=0

(ΛW )h(I − Λ)
)
v.

The limit behavior of the opinions is described in the following
convergence result.

Proposition 4 (Convergence of opinion dynamics). Assume
that in the graph associated toW for any nodeℓ ∈ V there
exists a path fromℓ to a nodei such thatWii > 0. Then, the
opinions converge to

x⋆
opd := (I − ΛW )−1(I − Λ)v.

Proof: Due to the assumption,Λ is a substochastic matrix.
Then,ΛW is substochastic also, and Schur stable by Lemma 2.
Thus, the dynamics in (8) converges tox⋆

opd.
We remark that our assumption on the existence of the path

implies that each agent is influenced by at least one stubborn
agent. As shown in the proof, this is sufficient to guarantee the
stability of the opinion dynamics. In practice, it is reasonable
to think that most agents in a social network will have some
(positive) level of obstinacyWii > 0.

III. E RGODIC RANDOMIZED DYNAMICS OVER NETWORKS

In this section, we first present our main result about ergod-
icity properties of randomized dynamics over networks. Our
result regards suitable randomized versions of the dynamics
in (1). Subsequently, we show applications of this result to
localization of sensor networks, PageRank computation, and
opinion dynamics in social networks, according to the problem
statements made above.

We consider a sequence of independent identically dis-
tributed (i.i.d.) random variables{θ(k)}k∈Z≥0

taking values in
a finite setΘ. Given a realizationθ(k), k ∈ Z≥0, we associate
to it a matrixP (k) = P (θ(k)) ∈ R

V×V and an input vector

u(k) = u(θ(k)) ∈ R
V , obtaining a time-varying discrete-time

dynamical system of the form

x(k + 1) = P (k)x(k) + u(k) (10)

with initial condition x(0) ∈ R
V . We observe that the state

{x(k)}k∈Z≥0
is a Markov process because, given the current

position of the chain, the conditional distribution of the future
values does not depend on the past values.

It may happen that the dynamics (10) oscillates persistently
and fails to converge in a deterministic sense: this behavior is
apparent in the examples we are interested in. In view of this
fact, we want to give simple conditions which guarantee other
types of probabilistic convergence. To this end, we provide
some classical probabilistic convergence notions [32].

The process{x(k)}k∈Z≥0
is ergodicif there exists a random

variablex∞ ∈ R
V such that almost surely

lim
k→∞

1

k

k−1∑

ℓ=0

x(ℓ) = E[x∞]. (11)

The closely related definition ofmean-square ergodicityin-
stead requires

lim
k→∞

E




∥∥∥∥∥
1

k

k−1∑

ℓ=0

x(ℓ)− E[x∞]

∥∥∥∥∥

2

2



 = 0.

The time-average in (11) is called Cesáro average or Polyak
average in some contexts [33]. In what follows, we mostly
focus on almost-sure ergodicity, although also mean-square
ergodicity is mentioned. Indeed, it is often possible to deduce
mean-square convergence from almost sure convergence: for
instance, this implication is true for a uniformly bounded
sequence of random variables, by the Dominated Convergence
Theorem [32]. Our main analysis tool is the following result.

Theorem 1 (Ergodicity of affine dynamics). Consider
the random process{x(k)}k∈Z≥0

defined in (10), where
{P (k)}k∈Z≥0

and {u(k)}k∈Z≥0
are i.i.d. and have finite first

moments. If there existsα ∈ (0, 1] such that

E[P (k)] = (1− α)I + αP, E[u(k)] = αu, (12)

whereP andu are given in Proposition 1, then

1) x(k) converges in distribution to a random variable
x∞, and the distribution ofx∞ is the unique invariant
distribution for (10);

2) the process isergodic;
3) the limit random variable satisfiesE[x∞] = x⋆.

The proof of Theorem 1 is technical and is postponed
to the Appendix. We instead make the following first-order
analysis of (10) under the assumptions of the Theorem. Since
P is Schur stable in Proposition 1, so isE[P (k)] under the
hypothesis (13), and the expected dynamics of the process (10)
can be interpreted as a “lazy” (slowed down) version of the
synchronous dynamics (1) associated to the matrixP . Indeed,

E[x(k + 1)] = E[P (k)]E[x(k)] + αE[u(k)]

= ((1− α)I + αP )E[x(k)] + αu,

from which limk→+∞ E[x(k)] = x⋆.
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The following refinement of Theorem 1 –proved in Ap-
pendix B– is specially useful to our purposes.

Corollary 1 (Ergodicity of affine dynamics on random subse-
quences). Consider the random process{x(k)}k∈Z≥0

defined
in (10), where{P (k)}k∈Z≥0

and {u(k)}k∈Z≥0
are i.i.d. and

have finite first moments. Let{ω(k)}k∈Z≥0
∈ {0, 1}Z≥0 be an

i.i.d. random sequence such that, for allk, ω(k) is independent
of P (ℓ) for all ℓ < k andω(k) 6= 0 with positive probability.
If there existsα ∈ (0, 1] such that

E[P (k)] = (1− α)I + αP, E[u(k)] = αu, (13)

whereP andu are given in Proposition 1, then almost surely

lim
k→+∞

1
∑k−1

i=0 ω(i)

k−1∑

ℓ=0

ω(ℓ)x(ℓ) = x⋆.

In the rest of this section, Theorem 1 and Corollary 1 will be
applied to specific dynamics in sensor localization, PageRank
computation, and opinion dynamics.

A. Sensor localization in wireless networks (cont’d)

This section is devoted to describe a randomized algorithm,
which was proposed in [28] to solve the sensor localization
problem. For each nodei ∈ V , the algorithm involves a
triple of states(xi, κi, x̃i), which depend on a discrete time
index k ∈ Z≥0. These three variables play the following
roles: xi(k) is the “raw” estimate ofsi obtained byi at
time k through communications with its neighbors,κi(k)
counts the number of updates performed byi up to time
k, and x̃i(k) is the “smoothed” estimate obtained through
time-averaging. The algorithm is defined by choosing a scalar
parameterγ ∈ (0, 1) and a sequence of random variables
{θ(k)}k∈Z≥0

taking values inE . The state variables are
initialized as (xi(0), κi(0), x̃i(0)) = (0, 0, 0) for all i, and
at each timek > 0, provided thatθ(k) = (i, j), the states are
updated according to the following recursions, namely the raw
estimates as

xi(k + 1) = (1− γ)xi(k) + γxj(k) + γb(i,j)

xj(k + 1) = (1− γ)xj(k) + γxi(k)− γb(i,j)

xℓ(k + 1) = xℓ(k) if ℓ /∈ {i, j};

(14a)

the local times as

κi(k + 1) = κi(k) + 1

κj(k + 1) = κj(k) + 1

κℓ(k + 1) = κℓ(k) if ℓ /∈ {i, j};

(14b)

and the time-averages as

x̃i(k + 1) =
1

κi(k + 1)

(
κi(k)x̃i(k) + xi(k + 1)

)

x̃j(k + 1) =
1

κj(k + 1)

(
κj(k)x̃j(k) + xj(k + 1)

)

x̃ℓ(k + 1) = x̃ℓ(k) if ℓ /∈ {i, j}.

(14c)

Next, we assume the sequence{θ(k)}k∈Z≥0
to be i.i.d., and

its probability distribution to beuniform, i.e.,

P[θ(k) = (i, j)] =
1

|E|
, ∀k ∈ Z≥0. (15)

Note that this choice is made for simplicity, but this approach
may easily accommodate other distributions if required by
specific applications.

Remark 1 (Local and global clocks). It should be noted that
the time indexk counts the number of updates which have
occurred in the network, whereas for eachi ∈ V the variable
κi(k) is the number of updates involvingi up to the current
time. Hence,κi is a local variable which is inherently known
to agent i, even in case a common clockk is unavailable.
Therefore, this algorithm is totally asynchronous and fully
distributed, in the sense that the updates, including the time-
averaging process, do not require the nodes to be aware of
a common clock. This feature is especially attractive if the
algorithm has to be applied to clock synchronization problems.
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Fig. 1. Dynamics (14) running on a complete graph with10 nodes, with
γ = 0.5.

The dynamics in (14a) oscillates persistently and fails to
converge in a deterministic sense, as shown in Figure 1 for
a complete graph2. However, the oscillations asymptotically
concentrate around the solution of the least-squares problem,
as it is formally stated in the following result, which showsthat
the sample dynamics is well-represented by the average one.
This indicates that̃xi(k) is “the right variable” to approximate
the optimal estimatex⋆

loc because the processx(k) is ergodic.

2A complete graph is an graph in which every pair of distinct vertices is
connected by an edge.
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In the proof of the theorem, we show that the dynamics in
equation (14a) can be written in terms of the more general
process (10).

Theorem 2 (Ergodicity of sensor localization). The dy-
namics in (14) with uniform selection(15) is such that
limk→∞ x̃(k) = x⋆

loc almost surely.

Proof: We rewrite the dynamics of (14a) as

x(k + 1) = Q(k)x(k) + u(k) (16)

and, providedθ(k) = (i, j), we define

Q(k) = I − γ(ei − ej)(ei − ej)
⊤

and u(k) = bθ(k)(ei − ej), where the vectorei is defined
in the preliminaries. We note that for allk the matrixQ(k)
is doubly stochastic and the sum of the elements inu(k) is
zero: in particular, givenx(0) = 0, then1⊤x(k) = 0 for each
k ∈ Z≥0. These observations further imply that the dynamics
of x(k) is equivalently described by the iteration

x(k + 1) = Q(k)Ωx(k) + u(k), (17)

whereΩ = I− 1
n
11

⊤ as previously in Subsection II-A. Letting
P (k) = Q(k)Ω, the dynamics of the algorithm is cast in the
form of (10). Next, using the uniform distribution (15), we
compute

E[P (k)] =

(
I − γ

L

|E|

)
Ω,

E [u(k)] = γ
A⊤b

|E|
,

and observe thatE[P (k)] satisfies ergodicity condition in
Theorem 1 withP andu defined in (4),α = 1 andτ = γ/|E|.
If we define, for alli ∈ V and allk ∈ Z≥0,

ωi(k) =

{
1 if θ(k) = (i, j) or θ(k) = (j, i)

0 otherwise

thenκi(k + 1) = κi(k) + ωi(k) =
∑k

ℓ=0 ωi(ℓ) and

x̃i(k + 1) =
1

∑k

ℓ=0 ωi(ℓ)

k∑

ℓ=0

ωi(ℓ)xi(ℓ).

Being {ω(k)}k an i.i.d. random sequence, by Corollary 1 we
conclude our argument.

Remark 2 (Noise-free measurements). It is easy to see that
if measurements have no noise (σ2 = 0), then x(k) itself
converges to the exact solutionx⋆

loc, and moreover convergence
is exponentially fast. This fact is also proved in [13].

Remark 3 (Mean-square ergodicity). It is also true that̃x(k)
converges tox⋆

loc in the mean-square sense. A proof can be
obtained with similar arguments as in [28] and is not detailed
here.

B. PageRank computation in Google (cont’d)

We now describe a new example of an “edge-based” ran-
domized gossip algorithm. Its motivation comes from the
interest in reducing the communication effort required by the
network. Being only one edge activated at each time, such
effort is minimal.

Each nodei ∈ V holds a couple of states(xi, xi). For
every time stepk an edgeθ(k) is sampled from a uniform
distribution overE (note that sampling is independent at each
time k). Then, the states are updated as follows:

xi(k + 1) =(1− r)

(
1−

1

ni

)
xi(k) +

r

n
(18a)

xj(k + 1) =(1− r)

(
xj(k) +

1

ni

xi(k)

)
+

r

n
(18b)

xh(k + 1) =(1− r)xh(k) +
r

n
if h 6= i, j (18c)

and

xℓ(k + 1) =
kxℓ(k) + xℓ(k + 1)

k + 1
∀ ℓ ∈ V (19)

wherer ∈ (0, 1) is a design parameter to be determined. The
update in (18) can also be formally rewritten in vector-wise
form as

x(k + 1) = P (k)x(k) + u(k),

where

P (k) = (1 − r)A(k), u(k) =
r

n
1.

Here A(k) and P (k) are random matrices which are deter-
mined by the choice ofθ(k) = (i, j)

A(k) = I +
1

ni

(eje
⊤
i − eie

⊤
i ).

Then,A(k) is uniformly distributed over the set of matrices
{I + 1

ni
(eje

⊤
i − eie

⊤
i ) : (i, j) ∈ E}.

Remark 4 (Local and global clocks). We note that, opposed
to (14), algorithm (18) does require the nodes to access
the global time variablek. The reason for this synchrony
requirement comes from the need to preserve the stochasticity
of the vectorx(k), which is guaranteed by(18c). We believe
this is a reasonable assumption, because these algorithms are
to be implemented on webpages or domain servers which are
typically endowed with clocks.

In the next result, we state convergence of this algorithm.

Theorem 3 (Ergodic PageRank convergence). Let us consider
the dynamics(18)-(19) with

r =
m

m− |E|m+ |E|

where x(0) is a stochastic vector. Then, the sequence
{x(k)}Z≥0

is such thatlimk→∞ x(k) = x⋆
pgr almost surely.
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Proof: For eachk ∈ Z≥0, we have

E[A(k)] =
1

|E|

∑

(i,j)∈E

(
I +

1

ni

(eje
⊤
i − eie

⊤
i )

)

= I +
1

|E|

∑

(i,j)∈E

1

ni

eje
⊤
i −

1

|E|

∑

(i,j)∈E

1

ni

eie
⊤
i

= I +
1

|E|

∑

(i,j)∈E

1

ni

eje
⊤
i −

1

|E|

∑

i∈V

∑

j∈Ni

1

ni

eie
⊤
i

= I +
1

|E|

∑

(i,j)∈E

Ajieje
⊤
i −

1

|E|

∑

i∈V

ni

ni

eie
⊤
i

=

(
1−

1

|E|

)
I +

1

|E|
A.

It should be noted that, settingα = (m−m|E|+ |E|)−1 and
P andu as in (7),

E[P (k)] = (1− r)E[A(k)]

= (1− α) I + α(1 −m)A

= (1− α) I + αP,

and E[u(k)] = αm
n
1 = αu. From Theorem 1 we conclude

convergence almost surely.
This result can also be proved by techniques from stochastic

approximation. Such techniques have already been effectively
applied to specific algorithms for PageRank computation [22].

Remark 5 (Mean-square ergodicity). Sincex(k) are stochas-
tic vectors, they are uniformly bounded and by the Dominated
Convergence Theorem we conclude the convergence in the
mean-square sense. Mean-square ergodicity of randomized
PageRank was already proved in [34] under assumptions
which are equivalent to those in Theorem 1.

C. Opinion dynamics in social networks (cont’d)

In this subsection, we introduce a randomized model of the
communication process among the agents in the Friedkin and
Johnsen’s model presented above. As a result, we obtain a new
class of randomized opinion dynamics.

The problem is now described. Each agenti ∈ V possesses
an initial beliefxi(0) = vi ∈ R, as in the model (8). At each
time k ∈ Z≥0 a link is randomly sampled from a uniform
distribution overE . If the edge(i, j) is selected at timek, agent
i meets agentj and updates its belief to a convex combination
of its previous belief, the belief ofj, and its initial belief.
Namely,

xi(k + 1) = hi

(
(1 − Γij)xi(k) + Γijxj(k)

)
+ (1− hi)vi

xℓ(k + 1) = xℓ(k) ∀ℓ ∈ V \ {i}, (20)

where the weighting coefficientshi andΓij are defined as

hi =

{
1− (1− λi)/di if di 6= 1

0 otherwise
(21)

Γij =






di(1−hi)+hi−(1−λiWii)
hi

if i = j, di 6= 1
λiWij

hi
if i 6= j, di 6= 1

1 if i = j, di = 1

0 if i 6= j, di = 1

(22)

where the matricesW andΛ are those in (8) anddi = |{h :
(i, h) ∈ E}. Recall thatdi ≥ 1 by the presence of self-loops.
It is immediate to observe that (a)hi ∈ [0, 1] for all i ∈ V ; (b)
Γ is adapted to the graphG; (c) Γ is row-stochastic; and (d) at
all times the opinions of the agents are convex combinations
of their initial prejudices.

We now study the convergence properties of the gossip
opinion dynamics and we show that the opinions converge
to the same valuex⋆

opd given in Proposition 4. In the proof of
the result, we show that the dynamics in equation (20) can be
written in terms of the more general process (10).

Theorem 4 (Ergodic opinion dynamics). Assume that in the
graph associated to W for any nodeℓ ∈ V there exists
a path from ℓ to a nodei such thatWii > 0. Then, the
dynamics(20) is almost surely and mean-square ergodic, and
the time-averaged opinions defined in(11) converge tox⋆

opd.

Proof: Provided the edgeθ(k) = (i, j) is chosen at time
k, the dynamics (20) can be rewritten in vector form as

x(k + 1) =(I − eie
⊤
i (I −H))

(
I + Γij(eie

⊤
j − eie

⊤
i )
)
x(k)

+ eie
⊤
i (I −H)v.

If we define the matrices

P ij =(I − eie
⊤
i (I −H))

(
I + Γij(eie

⊤
j − eie

⊤
i )
)

uij = eie
⊤
i (I −H)v,

then the dynamics isx(k+1) = P ijx(k)+uij . Note that the
expressions in (21) and (22) imply

D(I −H) = I − Λ

D(I −H) +H(I − Γ) = I − ΛW

where H = diag{h1, h2, . . . , hn} and D =
diag{d1, d2, . . . , dn}. Consequently, one can compute
the generic entries of the expected matrixE[P (k)] =
1
|E|

∑
(ℓ,m)∈E P

ℓm as E[P (k)]ij = 1
|E|hiΓij = 1

|E|λiWij if
i 6= j, and

E[P (k)]ii = 1−
1

|E|

(
di(1 − hi) + hi(1 − Γii)

)

=
(
1−

1

|E|

)
+

1

|E|
λiWii.

From these formulas, we conclude thatE[P (k)] = (1− 1
|E|)I+

1
|E|ΛW andE[u(k)] = 1

|E|(I −Λ)v. Then, using (9) the claim
follows by Theorem 1 and Proposition 4.

Remark 6 (Mean-square ergodicity). Since the opinions are
uniformly bounded, by the Dominated Convergence Theorem
we also conclude the convergence in the mean-square sense.
Mean-square ergodicity is also proved in [30] under assump-
tions which are equivalent to those in Theorem 1.

The ergodicity of the opinion dynamics is illustrated by the
simulations in Figure 2, which plots the statex(k) and the
corresponding time-averages, respectively.

We notice that the dynamics (20) assume the edges to be
chosen for the update according to a uniform distribution. This
choice is made for simplicity, but our analysis can easily be
extended to consider more general or different distributions.
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Fig. 2. Four-nodes social network from [27]. The opinion processx (top
plot) oscillates persistently. As the belief process is ergodic, the time-averages
x̄ (bottom plot) converge, when time goes to infinity, tox⋆

opd (marked by blue
circles).

We now discuss the interpretation of our convergence the-
orem in the context of opinion dynamics. The original model
by Friedkin and Johnsen abstracts from a precise analysis of
the communication process among the agents, and postulates
synchronous rounds of interaction. In fact, the lack of a more
precise model for inter-agent interactions is acknowledged
in [27] by saying that “it is obvious that interpersonal influ-
ences do not occur in the simultaneous way that is assumed”.
Our gossip dynamics introduces a more realistic model of the
communication process among the agents: indeed the agents
were allowed to discuss asynchronously and in pairs in the
experiments reported in [27]. We believe that the relation-
ship between the randomized and the synchronous dynamics
provides an additional justification and a new perspective on
the model originally proposed by Friedkin and Johnsen: an
example of social network derived from their experiments is
analysed in detail in [30].

The forms of (21) and (22) may seem complicated at first
sight. However, this is not surprising if we think of other ex-
amples of randomized dynamics over networks. For instance,
in problems of consensus [3], localization (see Section III-A),
and PageRank computation (see Section III-B), the definition
of the update matrices of the randomized dynamics is not

trivial and must be done carefully in order to reconstruct,
on average, the desired synchronous dynamics. From a so-
ciological perspective, (21) and (22) postulate a specific form
of interaction for individuals in pairwise meetings, whichis
reflected on average by Friedkin and Johnsen’s dynamics.
Since by (21)hi > λii, we observe that individuals display a
lower obstinacy during pairwise interaction.

IV. CONCLUDING REMARKS

In this work, we have proposed time-averaging as a tool
for smoothing oscillations in randomized network systems.
Other authors have proposed different solutions, which damp
the inputs to the dynamics in the long run: this goal is
achieved through “under-relaxations”, that is, by using gains
(or equivalently step-sizes) which decrease with time. The
analysis of the resulting dynamics is often based on tools from
stochastic approximation [35] or semi-martingale theory [36,
Ch 2]. Notably, also the choice of decreasing gains can be
performed asynchronously and without coordination, albeit at
the price of a more complex analysis [35, Ch. 7] [37].

Our method of time-averaging, together with its analysis
based on ergodicity, has three advantages: (i) it is simple to
apply as it requires minimal assumptions, (ii) it allows for
a unified treatment of different algorithms, and (iii) it gives
a qualitative insight into the stochastic processes of interest.
However, the use of time-averaging is not itself free from
drawbacks. Indeed, rate of convergence of time-averages is
not exponential, as for the original synchronous dynamics,but
polynomial (O(1/k)). This fact can be observed by inspecting
the proof of Theorem 1 or from a mean-square convergence
analysis, as we did in [19] and [28]. This drawback, which
is shared by over-relaxation approaches, stimulates research
towards exponentially-fast algorithms. Likely, effective algo-
rithms can be constructed by endowing the nodes with some
memory capabilities: an example is provided in [14] for the
localization problem. More generally, their design may be
based on the so-called asynchronous iteration method from
numerical analysis [38, Section 6.2]: for instance, the appli-
cation of this method to PageRank computation is discussed
in [19, Section VII].

Finally, we expect that the approach presented here can be
applied to a wide range of problems in network systems, be-
sides the three examples detailed here. Venues for application
include gossip algorithms to solve problems of simultaneous
estimation and classification in sensor networks [39], convex
optimization [37], and optimization in power networks [40].
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APPENDIX A
PROOF OFTHEOREM 1

In this appendix, we provide the proof of our main result
regarding randomized dynamics defined in (10). The proof is
based on techniques for iterated random functions, which we
recall from [41]. These techniques require, in order to study
the random process (10), to consider the associatedbackward
process←−x (k), which we define below.

For any time instantk, consider the random matricesP (k)
andu(k) and define the matrix product

−→
P (ℓ,m) := P (m)P (m− 1) · · ·P (ℓ + 1)P (ℓ) (23)

with ℓ ∈ {0, . . . ,m}. Then, the iterated affine system in (17)
can be rewritten as

x(k + 1) =
−→
P (0, k)x(0) +

∑

0≤ℓ≤k

−→
P (ℓ+ 1, k)u(ℓ). (24)

The correspondingbackward processis defined by

←−x (k + 1) =
←−
P (0, k)x(0) +

∑

0≤ℓ≤k

←−
P (0, ℓ− 1)u(ℓ), (25)

where
←−
P (ℓ,m) := P (ℓ)P (ℓ+ 1) · · ·P (m− 1)P (m) (26)

with ℓ ∈ {0, . . . ,m}. Crucially, the backward process←−x (k)
has at every timek ∈ Z≥0 the same probability distribution
asx(k). The main tool to study the backward process is the
following result. Let‖ · ‖ denote any norm.

Lemma 3 (Theorem 2.1 in [41]). Let us consider the Markov
process{x(k)}k∈Z≥0

defined by

x(k + 1) = P (k)x(k) + u(k) k ∈ Z≥0

where P (k) ∈ R
V×V and u(k) ∈ R

V are i.i.d. random
variables. Let us assume that

E[log ‖P (k)‖] <∞ E[log ‖u(k)‖] <∞. (27)

The corresponding backward random process←−x (k) converges
almost surely to a finite limitx∞ if and only if

inf
k>0

1

k
E [log ‖P (1) . . . P (k)‖] < 0. (28)

If (28) holds, then the distribution ofx∞ is the unique
invariant distribution for the Markov processx(k).

This result provides conditions for the backward process
to converge to a limit. Although the forward process has a
different behavior compared to the backward process, the for-
ward and backward processes have the same distribution. This
fact allows us to determine, by studying the backward process
←−x (k), whether the sequence of random variables{x(k)}k∈Z≥0

converges in distribution to the invariant distribution ofthe
Markov process in (10). This analysis is done in the following
result.

Lemma 4. Consider the random processx(k) defined in(10),
whereP (k) and u(k) are i.i.d. and have finite first moments
E[P (k)] and E[u(k)]. If there existsα ∈ (0, 1] such that
E[P (k)] = (1 − α)I + αP whereP is Schur stable, then,

←−x (k) converges almost surely to a finite limitx∞, and the
distribution ofx∞ is the unique invariant distribution forx(k).

Proof: In order to apply Lemma 3, let us compute

inf
k∈N

1

k
E

[
log ‖
←−
P (0, k − 1)‖1

]

≤ inf
k∈N

1

k
logE

[
‖
←−
P (0, k − 1)‖1

]

= inf
k∈N

1

k
logE

[
max
j∈V

∑

i∈V

(
←−
P (0, k − 1))ij

]

≤ inf
k∈N

1

k
logE



∑

j∈V

∑

i∈V

(
←−
P (0, k − 1))ij




≤ inf
k∈N

1

k
log
∑

j∈V

∑

i∈V

E

[←−
P (0, k − 1)ij

]

≤ inf
k∈N

1

k
log
(
n
∥∥∥E
[←−
P (0, k − 1)

]∥∥∥
∞

)

= inf
k∈N

1

k
log

(
n

∥∥∥∥∥

k−1∏

h=0

E [P (h)]

∥∥∥∥∥
∞

)
.

Let q be the number of distinct eigenvalues ofE[P (k)],
denoted as{λℓ}

q
ℓ=1, and consider the Jordan canonical decom-

position E [P (k)] = UJU−1. Then
∥∥∥
∏k−1

h=0 E [P (h)]
∥∥∥
∞
≤

‖U‖∞‖Jk‖∞‖U−1‖∞. Since thek-th power of the Jordan
block of sizes is



λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
...

0 · · · 0 λ 1
0 0 · · · λ




k

=




λk
(
k

1

)
λk−1

(
k

2

)
λk−2 · · ·

(
k

s−1

)
λk−s+1

0 λk
(
k
1

)
λk−1 · · ·

(
k

s−2

)
λk−s+2

...
. . .

...
0 · · · 0 λk

(
k

1

)
λk−1

0 0 · · · λk



,

we deduce that

‖Jk‖∞ = max
i∈V

∑

j∈V

(Jk)ij = max
ℓ=1,...,q

sℓ−1∑

m=0

λk−m
ℓ

(
k

m

)
,

wheresℓ is the size of the largest Jordan block corresponding
to λℓ. Then

‖Jk‖∞ ≤ max
ℓ=1,...,q

|λℓ|
k

sℓ−1∑

m=0

|λℓ|
−m

(
k

m

)

≤ max
ℓ=1,...,q

|λℓ|
kkn

sℓ−1∑

m=0

|λℓ|
−m

≤ χρkkn,

whereχ is a constant independent ofk andρ is the spectral
radius ofE[P (k)] = (1 − α)I + αP , which is known to be
smaller than 1 becauseP is Schur stable. We conclude that
there exists a constantC = ‖U‖∞‖U−1‖∞χ, independent
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of k, such thatE
[
log ‖
←−
P (0, k − 1)‖1

]
≤ log

(
nCρkkn

)
and,

consequently,

inf
k∈N

1

k
E

[
log ‖
←−
P (0, k − 1)‖1

]

≤ lim
k→∞

log(Cnknρk)

k
(29)

= log ρ < 0.

The claim then follows from Lemma 3.
As a consequence, we deduce that also the (forward) random

processx(k) converges in distribution to a limitx∞, and
the distribution ofx∞ is the unique invariant distribution for
x(k). We are now ready to verify the ergodicity ofx(k) under
the assumptions of Theorem 1. Letz(0) be a random vector
independent fromx(0) with the same distribution asx∞. Let
{z(k)}k∈Z≥0

be the sequence such that

z(k) =
−→
P (0, k − 1)z(0) +

∑

0≤ℓ≤k−1

−→
P (ℓ + 1, k − 1)u(ℓ)

where
−→
P (ℓ+1, k− 1) is defined as in (23). Since the process

z(k) is stationary and the invariant measure is unique we can
apply the Birkhoff Ergodic Theorem (see for instance [42,
Chapter 6] or [43, Chapter 5] for a simpler introduction) and
conclude that with probability one

lim
k→∞

1

k

k−1∑

ℓ=0

z(ℓ) = E[x∞].

On the other hand, we can compute

P
(
‖x(k)− z(k)‖1 ≥ εk

)

≤
E

[
‖
−→
P (0, k − 1)(z(0)− x(0))‖1

]

εk

≤
E

[
‖
−→
P (0, k − 1)‖1‖z(0)− x(0))‖1

]

εk

≤
E

[
‖
−→
P (0, k − 1)‖1

]
E [‖z(0)− x(0)‖1]

εk

≤
Cnknρk

εk
E [‖z(0)− x(0)‖1] , (30)

where we have used (29). If we chooseε ∈ (ρ, 1), then the
Borel-Cantelli Lemma [32, Theorem 1.4.2] implies that with
probability one‖x(k)− z(k)‖1 < εk for all but finitely many
values ofk. Therefore, almost surely1

k

∑k−1
ℓ=0 ‖x(ℓ)− z(ℓ)‖1

converges to zero ask goes to infinity, and

lim
k→∞

1

k

k−1∑

ℓ=0

x(ℓ) = E[x∞].

To complete the proof, we only need to observe thatE[x∞] =
limk→+∞ E[x(k)], which is equal tox⋆ as argued after the
statement of Theorem 1.

APPENDIX B
PROOF OFCOROLLARY 1

The argument follows the lines of [15, Theorem 4.1]. Let
us define for alli andk in Z≥0

ξki =

{
ω(i)/

∑k−1
ℓ=0 ω(ℓ) if i ≤ k

0 if i > k.

Since limk→+∞

∑k−1
ℓ=0 ω(ℓ) = +∞ almost surely,

{ξki}k,i∈Z≥0
forms a Toeplitz array with probability

one. Since by (30)limk→+∞ ‖x(k) − z(k)‖1 = 0, we can
apply Silverman-Toeplitz Theorem [44] to conclude that
almost surely

lim
k→+∞

+∞∑

i=0

ξki‖x(i)− z(i)‖1

= lim
k→+∞

1
∑k−1

ℓ=0 ω(ℓ)

k−1∑

i=0

ω(i)‖x(i)− z(i)‖1 = 0.

This equality implies that almost surely

lim
k→+∞

1
∑k−1

ℓ=0 ω(ℓ)

k−1∑

i=0

ω(i)x(i)

= lim
k→+∞

1
∑k−1

ℓ=0 ω(ℓ)

k−1∑

i=0

ω(i)(x(i)− z(i))

+ lim
k→+∞

k
∑k−1

ℓ=0 ω(ℓ)

1

k

k−1∑

i=0

ω(i)z(i)

=
1

E[ω(0)]
lim

k→+∞

1

k

k−1∑

i=0

ω(i)z(i),

where the last equality comes from the law of
large numbers. Again by Birkhoff Ergodic Theorem,
{(ω(k)⊤, z(k)⊤)⊤}k∈Z≥0

is a stationary and ergodic process
and we finally conclude

lim
k→+∞

1
∑k−1

ℓ=0 ω(ℓ)

k−1∑

i=0

ω(i)x(i) =
1

E[ω(0)]
E[ω(0)z(0)] = x⋆,

thanks to the independence betweenω(0) andz(0).
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