arXiv:1309.1349v2 [cs.SY] 16 Dec 2013

Ergodic Randomized Algorithms and Dynamics
over Networks

Chiara Ravazzi, Paolo Frasca, Roberto Tempo and Hideaiki Ish

Abstract—Algorithms and dynamics over networks often in- estimation and classification|[5] and for optimal deployinen
volve randomization, and randomization may result in oscilating  of robotic networks [6]. Nevertheless, examples of randeahi
dynamics which fail to converge in a deterministic sense. Itthis algorithms which do not converge also have recently appeare

paper, we observe this undesired feature in three applicatns, in . the literat Such algorith . t of ad
which the dynamics is the randomized asynchronous countegrt In the literature. such algorithms require some sort ot ad-

of a well-behaved synchronous one. These three application ditional “smoothing” operation in order to converge: in our
are network localization, PageRank computation, and opirin approach, this goal is achieved by time-averaging.
dynamics. Motivated by their formal similarity, we show the A prime example we consider involves the problem of
following general fact, under the assumptions of independ&e iqirihted estimation from relative measurements, whiab
across time and linearities of the updates: if the expected . L .
dynamics is stable and converges to the same limit of the oiiigal appllc.atlo_ns from self-localization in robotic networksstyn- .
synchronous dynamics, then the oscillations are ergodic anthe Chronization in networks of clocks and to phase estimation
desired limit can be locally recovered via time-averaging. in power grids. This problem was first introduced in a least-
squares formulation in the context of clock synchronizafic
and then studied in much detail inl[8]. ][9], _[10]._[11],

|. INTRODUCTION [12], where both fundamental performance limitations and

Randomization has proved to be a useful ingredient féistributed algorithms have been presented. More recently
effective algorithms in control and optimization, as rewéel randomized algorithms for its solution have been proposed
in [1]. In network dynamics, randomization is speciallywat by several researchers [13], [14]. Regarding this problzum,
ral, either by the uncertain nature of the network at hand, eentribution includes a randomized asynchronous alguith
by design aimed at improving performance and robustnessin Which nodes update in pairs ingwssipfashion: its novelty

In this work, we focus on a class of randomized affinis further discussed in Sectin IIItA. A related but diffete
dynamics which do not possess equilibria, but are stable gndomized algorithm for least-squares estimation has bee
average. This stability property ensures that the dynamigcently proposed iri [15].
although it features persistent random oscillations, has a A second example is PageRank computation, which has
ergodic behavior. This ergodicity result, which we prove b9ttracted much attention in recent years for the importarice
classical facts of probability theory, can be readily apgli 'ts applications([16],[[17],[[18] and for its similaritiesith
to several network-based algorithms, in which randonuzati the consensus problem, as illustrated [inl [19]. Randomized
apparently prevents convergence. As a consequence, the &@orithms for PageRank computation have been studied in
sired convergence property —holding in expectation— can Beseries of papers, including [19], [20], _[21]. [22]. Other
recovered by each node through a process of time-averagitggent references on PageRank are listed in [23], [24].. [25]
which can be performed locally and, in some cases, withogelr contribution provides a general convergence result for
even access to a common clock. randomized algorithms, which we apply to a novel pair-wise

In the examples considered in this paper, nodes interactdfpssipalgorithm in Sectiof I-B. _
randomly chosen pairs, following a “gossip” approach which A third example comes from social sciences, where there
has been popularized in the field of control by [2] and has beBfS been long-time interest in the mechanisms of opinion
followed in several papers. There has been a wide range€ypPlutions. It comes out that opinion dynamics models, eher
applications since then. Indeed, many network algorithars c2gents have some degree of obstinacy and interactions are
be randomized in such a way that the randomized dynam[@domized, gives rise to ergodic oscillations. This oesion
converges (almost surely) to the same limit of the synchusndhas first been made in [26] and here we extend it in connection
dynamics. Notable examples include consensus algorithiiéth the Friedkin and Johnsen's model [27] from social sci-

studied in many papers as| [3[J] [4], and other algorithms f&nCces. We propose in Section I1l-Qassipmechanism of up-
date for the opinions, which allows us to interpret the étzds
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[29], regarding relative localization, and &s [[30], regagd and
opinion dynamics. The current presentation incorporates a . ¢ 1
builds upon the previous ones. Additionally, it includeg th k&“;ozp y=>-P)"u

case study of PageRank computation, and most importantI% o =1 L

embeds them into a comprehensive framework which is sufffese limits imply that:* is the convergence value. =

able for the study of other applications. More specifically, in this paper we study affine dynamics
over a certain network, described by a graphk- (V, £) with

_ n nodes, that is, such thdte matrix P is adapted to the graph
A. Paper outline G. In the rest of this section, we review the three applications

In Sectior D) we study deterministic synchronous dynamic8f affine dynamics over networks which we have mentioned
presenting the three examples of relative localizatiomeRa in the introduction. Even though these applications are¢equi
ank computation, and opinion dynamics. These dynamics &liwerse, we show that the algorithms for their solutions can
then translated into corresponding randomized asynclimon®® represented by the affine dynamics (1), provided suitable
dynamics in Sectiori Jll. Additional remarks and researchanipulations are performed.
outlooks are given in a concise Sectlod IV, and an Appendix
contains the technical derivation of our main result. A. Sensor localization in wireless networks

In sensor localization in wireless networks, we seek to
estimate the relative position of sensors using noisy ivelat
) ) ) measurements. We formulate the problem using an oriented
Throughout this paper, we use the following notation. Regfapff ¢ = (V,£). Each nodei in V has to estimate its

and nopnegative integer numbers are denotemlgpd Z>0, own variables;, knowing only noisy measurements of some
respectively. The symbol| denotes either the cardinality of agjfference with neighboring edges

set or the absolute value of a real number. The symbislthe

vector with thei-th entry equal to 1 and all the other elements bij = si— sj +1i; if (i,j) e€or(j,i) €&

equal to0, and we writel for the vector with all entries equal wheren, ; is additive noise. The graph topology is encoded
to 1. A vectorz is stochastic if its entries are nonnegative ang, ine incidence matrixd ¢ {0, £1}%V defined by

>, i = 1. A matrix A is row-stochastic (column-stochastic)

k—1

B. Notation and preliminaries

when its entries are nonnegative ahfll =1 (M "1 =1). A +1 if e=(i,5)
matrix is doubly stochastic when it is both row and column- Aei =< =1 if e=(j,1)
stochastic. A matrix? is said to be Schur stable if the absolute 0 otherwise

value of all its eigenvalues is smaller than 1. A graph is & pai

G = (V,€), whereV is the set of nodes aniC V x V is the for everye € £. We can collect all the measurements and
set of edges. To avoid trivialities, we implicitly assumetth Variables in vectors € R® ands € RY, so that

graphs have at least thre_e nodes_, ig],> 2. A graphg _is b= As+1,

called strongly connected if there is a path from each ventex c

the graph to every other vertex. To any matfbe RV*Y with Wheren € R®. A least-squares approach can be used to
non_negative entrieS, we can associate a g@lph: (V,gp) determine the best estimate of the statebased on the
by putting (i, ) € £p if and only if P;; > 0. The matrixp ~Measurements That is, we define the unconstrained quadratic

is said to be adapted to graghif G» C G. optimization problem
min || Az — b||3 (2)
Il. SYNCHRONOUS AFFINE DYNAMICS OVER NETWORKS -

where|| - ||» denotes the Euclidean norm. The solution of this

Consider the affine dynamics representing a time-invarigsfoblem is summarized in the following standard result.
discrete-time dynamical system with statgk) < RV, o i
k€ Zso Lemma 1 (Least-squares localizatianziven a weakly con-

. nected oriented grap§ with incidence matrix4, let X’ be the
ok +1) = Pa(k) +u (3) set of solutions off2) and let L := AT A be the Laplacian.
with P € RY*Y and constant input € RY. The following facts hold:

1) re X ifand only if AT Az = ATb;

2) there exists a unique minimizety, € X such that
lioellz = min ez 2|12

3) .= LTATb, where L' is the pseudoinverse matrix.

for any initial conditionsz(0) = =o. We note that the optimal least-squares solutigy), is
Proof: Equation [1) implies thate(k) — P*a(0) + the minimum-norm element of the affine space of solutions

k—1 . . ..
=0 P'u. Since all the eigenvalues dP lie in the open 1 an oriented graphg = (V,€) is a graph such thati, j) € £ only if
unit disk, we have i < j. G is said to be weakly connected if the gragh = (V,£’) where
lim P¥ =0 & ={(h,k) e VxV : either(h,k) € £ or (k,h) € £} has a path which
k;“;o - connects every pair of nodes.

Proposition 1. If P is Schur stable, then the dynamics(i)
converges to

¥ =(I—-P) tu



of (@) and Az, = A(zf, + c1) for any scalarc. As Letm € (0,1) and recalln = |V|, and define

shown in Lemmad]l, the solution to the least-squares relative m, T

localization problem[{2) is explicitly known. Furthermoiie M=(1-mA+ 511 ‘ ®)
can be easily computed by an iterative gradient algorith
Given a parameter > 0 and the initial conditionz(0) = 0,
we let

Phe PageRank of the graph is the vectorzyy, such that
Mzpy = x5 and ), Tpgr; = 1.

Given the initial condition such that"z(0) = 1 (i.e., it
z(k+1)= T —7L)z(k) +TA"b (3) s a stochastic vector), the PageRank vector can be computed

. . ) ) through the recursion
where the matrixX — 7L is doubly stochastic. For this reason,

it holds true that w(k+1) = Ma(k) = (1 —m)Az(k) + —1.  (6)
n

1T2(k+1)=1"(I —7L)x(k) + 71" ATb = 1T 2(k) In this case, we observe that the PageRank vector can be

for all k € Zso. DefiningQ — I — 117 /n, we have that represented in terms of the affine dynamids (1) simply taking

Qu(k) = x(k+1) — L172(k)1 = z(k) becauser(0) = 0 P=(1-m)A and u= 1. @)
and moreover n
- Before showing the convergence of this recursion, which is
Qu(k+1) = (I = 7L)Qx(k) +7A'b studied in Propositionl3, we present a simple technical lamm
because(I — 7L) = (I — 7L)Q andQATH = ATb. Then, Although thg result has already been used in the literatige (
equation[(B) can be rewritten as in [26]), we include a short proof for completeness. We recal
that a matrix is said to be substochastic if it is nonnegative
z(k+1)= T —7L0)Qx(k)+7A"b and the entries on each of its rows (or columns) sum up to
no more than one. Moreover, every node corresponding to a
row (or column) which sums to less than one is said to be a

P=(I-7L)Q and uw=7ATb. (4) deficiencynode.

The convergence properties of this algorithm are summariZeemma 2. Consider a substochastic matrig € VY. If in
in the following simple result (also available as[12, Prsipo the graph associated t@ there is a path from every node to
tion 1]), where we letl,.x be the maximum degree given by2 deficiency node, the@ is Schur stable.

dmax = max; |{(i,5) € £} U{(j,4) € £}. Proof: First note that* is substochastic for alt. More

Proposition 2 (Convergence of gradient descent algorithmprecisely, if we letV;; to be the set of deficiency nodes@f,
Assume that the graply is weakly connected. Then, thdhe€nVi C Vi, for every positive integek. Moreovelrc,*there
gradient descent algorithm i3) with 2(0) = 0 converges €XiStsk” such thatVy. =V, that is all nodes foQ" are
to the optimal least-squares solutiag), if 7 < 1/dax. deficiency nodes. Stability then follows by Gershgorin @irc

o Theorem. [ |
Proof: By Gershgorin Circle Theorem and [31, Theo-

rem 1.37], the eigenvalues df satisfy 0 = \; < \; < Proposition 3 (Convergence of PageRank computatiofgr

Ait1 < An < 2dmax. Then, it is clear that the spectral@ initial conditionz(0) € R such that1"z(0) = 1, the

radius of (I — 7L)Q is equal tomax{1 — 7A;,—1 + 7\, }. Sequence irf6) converges targy = (I — (1 —m)A)~ 21

By the assumption omr, we thus conclude that/ — 7L) Proof: Since A is column-stochastic and € (0,1)

is Schur stable, and convergence to the least-squaresosolufnen p is a substochastic matrix and every node is a defi-

immediately follows by Propositionl 1 and Lemiia 1. ®  ¢jency node. From Lemm@ 2, the matrX is Schur stable
and from Propositiori]1 the dynamics ihl (6) converges to

B. PageRank computation in Google a* = (I-(1-m)A)~' 1. Moreover,ap, = Maj, =

In this application, we study a network consisting of weﬁl_m)Axggrt%lljxggr = (L=m)Azge+ 71, from which
pages|[16]. This network can be represented by a géaph we concluder™ = xgg. u
(V, €), where the set of vertices correspond to the web pages
and edges represent the links between the pages, i.e.,gbe &l Opinion dynamics in social networks

(i,j) € &, if pagei has an outgoing link to pagg or in other |y this application, we study a classical model introduced

words, page has an incoming link from page in [27] to describe the effect of social influence and prejesi
The goal of the PageRank algorithm is to provide a measyfethe evolution of opinions in a population in the presente o

of relevance of each web page: the PageRank value of a pgg€ so-called stubborn agents. We briefly review and cast thi

is a real number i0, 1], which is defined next. Let us denotemogdel into the general framework of affine dynamics defined
Ni ={h eV : (i,h) € £} andn; = |N;], for each node iy ().

and falls in the class of affine dynami¢s (1) taking

i €V, and A the matrix such that We consider a finite populatio of interacting agents,
{1/” if jeN; whosesocial networkof potential interactions is encoded by
A = ’ ! a graphG = (V, &), endowed with a self-loogi, i) at every
0 otherwise node. At timek € Zxo, each agent € V holds abelief or



opinionabout an underlying state of the world. We denote the(k) = u(6(k)) € RY, obtaining a time-varying discrete-time
vector of beliefs as:(k) € RY. An edge(i, j) € £ means that dynamical system of the form
agentj may directly influence the opinion of agent
Let W € RV*Y be a nonnegative matrix which defines the v(k+1) = P(k)a(k) + u(k) (10)
strength of the interactionsd¥(;; = 0 if (i, j) ¢ £) andA be a with initial condition 2(0) € RY. We observe that the state
diagonal matrix describing how sensitive each agent is ¢o thz(k)}rcz., is @ Markov process because, given the current
opinions of the others based on interpersonal influences. Ysition of the chain, the conditional distribution of thefre
assume that¥ is row-stochastic, i.e.)f’1 = 1 and we set values does not depend on the past values.
A = I — diag(W), wherediag(W) collects the self-weights It may happen that the dynami¢s]10) oscillates persistentl
given by the agents. The dynamics of opiniarig) proposed and fails to converge in a deterministic sense: this behasio
in [27] is apparent in the examples we are interested in. In view of this
fact, we want to give simple conditions which guarantee iothe
w(k+1) = AWa(k) + (I = Ao (8) types of probabilistic convergence. To this end, we provide
some classical probabilistic convergence notions [32].
The proces§z(k)}rez., is ergodicif there exists a random
}ﬁalriablegcoo € RY such that almost surely

wherez(0) = v andv € RY. The vectomw, which corresponds
to the individuals’ preconceived opinions, also appeararas
input at every time step. This model falls under the class

affine dynamics[{|1) simply taking iy
lim — Y 2(0) = Elze]. (11)
P=AW and u=(I—A). 9) k—oo k =

As a consequence dfl(8) and Proposifion 1, the opinion proﬁs[ge closely related definition ahean-square ergodicitin-

at timek is equal to ead requires
2

k—1 . 1 k—1 -
z(k) = (AW)* + };J(AW)h(I —A)). Jim E HE ;x(ﬁ) — E[zo] 1 0.

The time-average if_(11) is called Cesaro average or Polyak
average in some contexts [33]. In what follows, we mostly
focus on almost-sure ergodicity, although also mean-squar
Proposition 4 (Convergence of opinion dynamicsissume ergodicity is mentioned. Indeed, it is often possible touded

that in the graph associated td” for any nodel € V there mean-square convergence from almost sure convergence: for
exists a path fronf to a node; such thatiw;; > 0. Then, the instance, this implication is true for a uniformly bounded
opinions converge to sequence of random variables, by the Dominated Convergence
Theorem[[32]. Our main analysis tool is the following result

The limit behavior of the opinions is described in the foliog
convergence result.

Topa = (I = AW)7H(I = Ao. . : : :
Theorem 1 (Ergodicity of affine dynamics) Consider

Proof: Due to the assumptiomn, is a substochastic matrix.the random process{z(k)}rez., defined in [[(ID), where
Then, AW is substochastic also, and Schur stable by Lefdma{P (k) }rez., and {u(k)}rez., are i.i.d. and have finite first
Thus, the dynamics i {8) convergesig,. m moments. If there exists € (0, 1] such that

We remark that our assumption on the existence of the path
implies that each agent is influenced by at least one stubborn E[P(k)] = (L =)l +aP, Elu(k)] = ou, (12)
agent. As shown in the proof, this is sufficient to guaraniee twhere P and « are given in Propositiof]1, then
stability of the opinion dynamics. In practice, it is reasbf® 1) x(k) converges in distribution to a random variable
to think that most agents in a social network will have some ;. and the distribution of: is the unique invariant
(positive) level of obstinacyV;; > 0. distribution for (IQ);
2) the process igrgodic

-y . - o
I1l. ERGODIC RANDOMIZED DYNAMICS OVER NETWORKS 3) the limit random variable satisfieB[z] = z*.

In this section, we first present our main result about ergod- 1he proof of Theorenill is technical and is postponed
icity properties of randomized dynamics over networks. O(f the Appendix. We instead make the following first-order
result regards suitable randomized versions of the dyrmm@halysis of [(1D) under the assumptions of the Theorem. Since
in (T). Subsequently, we show applications of this result o 1S Schur stable in Propositidd 1, so5P (k)] under the
localization of sensor networks, PageRank computatiod, aRyPothesisi(I3), and the expected dynamics of the procps (1
opinion dynamics in social networks, according to the peabl €@n be interpreted as a “lazy” (slowed down) version of the
statements made above. synchronous dynamicE](1) associated to the mdtrisndeed,

_k\)Ne (;:(()_n_s(ijd)er adsequer_lcke)le(;(z;(;ependerﬁ identlically dis- E[z(k + 1)] = E[P(k)|E[z(k)] + oE[u(k)]
tributed (i.i.d.) random varia rez-, taking values in B
a finite set. Given a realizatiod(k), k € Z>,, we associate = (=)l + aP)E[z(k)] + ou,
to it a matrix P(k) = P(A(k)) € RY*Y and an input vector from which limy_, ;o E[z(k)] = z*.



The following refinement of Theorefn 1 —proved in Ap-Note that this choice is made for simplicity, but this apmtoa
pendix[B- is specially useful to our purposes. may easily accommodate other distributions if required by

Corollary 1 (Ergodicity of affine dynamics on random subse§peCIfIC applications.

guences) Consider the random procegs:(k)}rez., defined Remark 1 (Local and global clocks)lt should be noted that
in (@0), where{P(k)}rez., and {u(k)}rez., are i.i.d. and the time indexk counts the number of updates which have
have finite first moments. Léw(k)}rez-, € {0,1}%>° be an occurred in the network, whereas for eack V the variable
i.i.d. random sequence such that, for Ak (k) is independent «;(k) is the number of updates involvirigup to the current
of P(¢) for all £ < k andw(k) # 0 with positive probability. time. Henceg; is a local variable which is inherently known
If there existsa € (0,1] such that to agenti, even in case a common cloékis unavailable.
Therefore, this algorithm is totally asynchronous and yfull
E[P(k)] =1 -a)l +ab, Efu(k)] = ou, (13) " gistributed, in the sense that the updates, including theei
where P and v are given in Proposition]l, then almost surelyaveraging process, do not require the nodes to be aware of
b1 a common clock. This feature is especially attractive if the
lim 1 Z w(l)z(0) * algorithm has to be applied to clock synchronization profse

korbeo S50 w(i) 55
In the rest of this section, Theorémh 1 and Corol[dry 1 will be 25

applied to specific dynamics in sensor localization, Pag&Ra 2
computation, and opinion dynamics.

A. Sensor localization in wireless networks (cont'd)

This section is devoted to describe a randomized algorithm,
which was proposed ir_[28] to solve the sensor localization
problem. For each nodeé € V, the algorithm involves a
triple of states(x;, x;,Z;), which depend on a discrete time
index k& € Zso. These three variables play the following
roles: z;(k) is the “raw” estimate ofs; obtained by: at
time & through communications with its neighbors; (k)

counts the number of updates performed bwyp to time 2% 0 20 300 a0 5!% w0 700 @0 o0 1000
k, and z;(k) is the “smoothed” estimate obtained through .

time-averaging. The algorithm is defined by choosing a scala

parametery € (0,1) and a sequence of random variables osr

{0(k)}rez-, taking values in&. The state variables are

initialized as (z;(0), x;(0),Z,;(0)) = (0,0,0) for all i, and

at each timek > 0, provided that)(k) = (i, j), the states are Mr
-

updated according to the following recursions, namely #ve r ~

estimates as T
zi(k +1) = (1 = y)zi(k) + vz, (k) + b, j) '
zi(k+1) = (1 =y)z;(k) + vz (k) — vbe ) (14a) 02 k
xo(k +1) = x4(k) if £¢ {i,j}; _ML
the local times as ; ‘ - - - ‘ ‘ ‘ ‘ ‘
Hz(k + 1) = K; (k) +1 o 10 20 0 40 5P 60 70 @0 90 1000
rj(k+1) = r;(k) +1 (14b) Fig. 1. Dynamics[(I4) running on a complete graph with nodes, with
k(b +1) = re(k)  if €& {i,j}; 5 =05,

and the time-averages as
The dynamics in[(I4a) oscillates persistently and fails to

zi(k+1) = ﬁ(ﬁi(k)ii(k) +zi(k +1)) converge in a deterministic sense, as shown in Figlire 1 for
! 1 a complete gra@n However, the oscillations asymptotically
Tij(k+1) = ————(rk;(k)T; (k) + z;(k + 1)) (140)  concentrate around the solution of the least-squares qurgbl
i (k + 1). as it is formally stated in the following result, which shothat
Te(k+1)=z,(k) if L& {ij}. the sample dynamics is well-represented by the average one.
Next, we assume the sequen@@k)}icz., to be iid., and This indicates that; (k) is “the right variable” to approximate
its probability distribution to beniform i.e., the optimal estimatey,. because the procesgk) is ergodic.

Vk € 7> (15) 2A complete graph is an graph in which every pair of distinattives is
20 connected by an edge.

PWM=@JH=%P



In the proof of the theorem, we show that the dynamics B. PageRank computation in Google (cont'd)

equation [(I4a) can be written in terms of the more general . . .,
process[(I0). We now describe a new example of an “edge-based” ran-

domized gossip algorithm. Its motivation comes from the
Theorem 2 (Ergodicity of sensor localization)The dy- interest in reducing the communication effort required hy t
namics in (I4) with uniform selection@3) is such that network. Being only one edge activated at each time, such
limy o0 (k) = zj;, @almost surely. effort is minimal.
Each nodei € V holds a couple of statege;, ;). For

every time stepk an edged(k) is sampled from a uniform

_ distribution over€ (note that sampling is independent at each
ok +1) = QR)a(k) +ulk) (16) time k). Then, the states are updated as follows:

Proof: We rewrite the dynamics of (I4a) as

and, provided(k) = (i, j), we define 1 .
zi(k+1)=1-r) (1 - —) zi(k) + — (18a)
Q(k) =T —(e; —ej)(ei—ej)’ i . "
r
(k+1)=(1- (k) + —x;(k — 18b
and u(k) = by()(e; — e;), where the vectoe; is defined 7k 1) =(1=r) (:c]( )+ ”z‘x ( )) " n .

in the preliminaries. We note that for all the matrix Q(k) an(k +1) =(1 — 1) zn(k) + r if b, (18¢)
is doubly stochastic and the sum of the elements(ih) is n

zero: in particular, giver:(0) = 0, then1 " x(k) = 0 for each

k € Z>o. These observations further imply that the dynamics

of z(k) is equivalently described by the iteration _ kxe(k) + ze(k+1)
Telk +1) = kot 1

VeleV (19)
z(k+1) = Q(k)Qux(k) + u(k), a7
wherer € (0,1) is a design parameter to be determined. The
whereQ) = I— 1117 as previously in Subsection TItA. Letting update in [IB) can also be formally rewritten in vector-wise
P(k) = Q(k)Q, the dynamics of the algorithm is cast in thdorm as

form of (I0). Next, using the uniform distributiof _{|15), we 2(k+1) = P(R)a(k) + u(k),

compute
I where
EPKk))=(I—-—7=)Q
o) = (1) P) = (L= 1)A®), u(k) = 21,
ATb "
E [u(k)] =~ E Here A(k) and P(k) are random matrices which are deter-
mined by the choice of (k) = (i, j)
and observe thaf[P(k)] satisfies ergodicity condition in
Theorentll withP andw defined in[#)a = 1 andT = ~/|£|. A L7 T
: k)y=1 ic; ).
If we define, for alli € V and allk € Z>,, (k) o n; (eje; —eiei)
; — (i (i Then, A(k) is uniformly distributed over the set of matrices
1 if 8(k) = (i,5) or8(k) = (4,
wi( ):{ ( ) (i) (k) =0:9) {I+ L(eje] —eiel) : (i,7) € E}.
0 otherwise i
Remark 4 (Local and global clocks)We note that, opposed
thens;(k + 1) = r;(k) + wi(k) = Z?:o w;(¢) and to (I4), algorithm (I8) does require the nodes to access
the global time variablek. The reason for this synchrony
N 1 k requirement comes from the need to preserve the stochwgstici
zi(k+1)= S o D wil@)a;(0). of the vectorz(k), which is guaranteed bI8d). We believe
=owi(l) (=5 this is a reasonable assumption, because these algoritiens a

to be implemented on webpages or domain servers which are

Being {w(k)}, an i.i.d. random sequence, by Corollady 1 W?yplcally endowed with clocks.

conclude our argument.

Remark 2 (Noise-free measurementsl) is easy to see that In the next result, we state convergence of this algorithm.

if measurements have no noise’(= 0), then z(k) itself Theorem 3 (Ergodic PageRank convergencegt us consider
converges to the exact solutiefi., and moreover convergencethe dynamicgI8)-(19) with

is exponentially fast. This fact is also proved lin][13]. -

Remark 3 (Mean-square ergodicity)t is also true thatz (k) [ |E]m + |€]

converges taz. in the mean-square sense. A proof can be

obtained with similar arguments as in [28] and is not detdilewhere 2(0) is a stochastic vector. Then the sequence

here. {Z(k)}z-, is such thatlimy ., T(k) = 4 almost surely.



Proof: For eachk € Z>, we have where the matrice$l” and A are those in[{8) and; = |{h :

1 1 (i,h) € £}. Recall thatd; > 1 by the presence of self-loops.
E[A(k)] = 5 Z <I+ ;(ejej - eiej)) It is immediate to observe that (&) € [0, 1] for all i € V; (b)
(i,4)€€ ‘ T" is adapted to the gragh (c) I" is row-stochastic; and (d) at
B 1 1+ 1 1+ all times the opinions of the agents are convex combinations
=1+ 1€] (z):g AT (z):g ;G of their initial prejudices.
%,7)€ ©,J)€

We now study the convergence properties of the gossip

=J 4+ 1 Z iejeiT 1 Z Z ieie;r opinion dynamics and we show that the opinions converge
€] (jee €] eV jen; M to the same valueg,, given in Propositiofi 4. In the proof of
_, 1 Aol 1 ni ¢ thg reSL_JIt, we show that the dynamics in equation (20) can be
=1+ €] Z ji€j€; €| Z o, CiCi written in terms of the more general process| (10).
ij)€E iev ! _ . . :
1( & 1 Theorem 4 (Ergodic opinion dynamics)Assume that in the
= (1 — ?) I+ ?A. graph associated to W for any node € V there exists
€] €] a path from/ to a node: such thatW;; > 0. Then, the
It should be noted that, setting= (m —m|€| + |£|)~* and dynamics20) is almost surely and mean-square ergodic, and
P andw as in [7), the time-averaged opinions defined(@d) converge targ,.
E[P(k)] = (1 — r)E[A(k)] Proof: Provided the edgé(k) = (i, ) is chosen at time
=(1-a)I+a(l-m)A k, the dynamics[{20) can be rewritten in vector form as
=(1-a)l+aP, z(k+1) =(I — e;e; (I — H)) (I +Ty (eiejT —eie] ) z(k)
and E[u(k)] = a1 = au. From Theorenill we conclude +eze] (I — H)v.
convergence almost surely. ]

; . If we define the matrices
This result can also be proved by techniques from StOChaS{IC

approximation. Such techniques have already been efédgtiv P9 =(I —eje] (I — H)) (I +Tyj(eie] —ee]))
applied to specific algorithms for PageRank computatioi. [22 U =eze] (I — H)v,

Remark 5 (Mean-square ergodicity)Sincex(k) are stochas- ihan the dynamics is(k + 1) = P¥z(k) +u. Note that the

tic vectors, they are uniformly bounded and by the Dominat"ésj(pressions in(21) and(22) imply
Convergence Theorem we conclude the convergence in the

mean-square sense. Mean-square ergodicity of randomized D(I-H)=1-A
PageRank was already proved in_[34] under assumptions DI-H)+H(I-T)=I-AW
which are equivalent to those in Theoréin 1. .
where H = diag{h1, h2,...,h,} and D =
C. Opinion dynamics in social networks (cont'd) diag{d1, dy, ..., dn}. Consequently, one can compute
) ) ) ) the generic entries of the expected matiiXP(k)] =
In this subsection, we introduce a randomized model of the pim EIP(EV.: = LhT. — LW if
T . . in al Z(z,m)es as E[P( )]ZJ = JEttta = gt !
communication process among the agents in the Friedkin 3 j. and
Johnsen’s model presented above. As a result, we obtain a new”’ 1
class of randomized opinion dynamics. E[P(k)]i =1 — = (di(1 — hy) + k(1 = T;))
The problem is now described. Each agert) possesses €]
an initial beliefz;(0) = v; € R, as in the model{8). At each _ (1 _ i) 4 i)\iwii-
time k € Zso a link is randomly sampled from a uniform €] €]

distribution ovel€. If the edge(i, j) is selected attime, agent rrom these formulas, we conclude tEiP (k)] = (1—%)I+
1 meets agent and updates its belief to a convex combinatiorLAW andE[u(k)] = L (I — A)v. Then, using[(d) tr|1e‘ claim
of its previous belief, the belief of, and its initial belief. #é‘lows by Theoren[ll‘galnd Prop(')sitidﬁh P =

Namely,
B Remark 6 (Mean-square ergodicity)Since the opinions are
zi(k+1) = hi((1 = Tiy)z(k) + ri-jxj(k)) +(=hivi niformly bounded, by the Dominated Convergence Theorem
zo(k+1)=z,(k) VL€ V\{i}, (20) we also conclude the convergence in the mean-square sense.

where the weighting coefficients, andT';; are defined as Mean-square ergodicity is also proved in_[30] under assump-
tions which are equivalent to those in Theorgim 1.
- {1_(1_Ai)/di if di #1
‘o

(21) The ergodicity of the opinion dynamics is illustrated by the
simulations in Figuré]2, which plots the staték) and the
di # 1 corresponding time-averages, respectively.

otherwise

di(1=hi)+hi—(1=X\;Wy;)

if i = j,

Wi hi i g1 We notice that the dynamicE(20) assume the edges to be
I, = hi ' Z 7 j.’ P # (22) chosen for the update according to a uniform distributidrisT
' 1 if i=j, di=1 choice is made for simplicity, but our analysis can easily be

0 ifi#£j di=1 extended to consider more general or different distrimgio
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trivial and must be done carefully in order to reconstruct,
on average, the desired synchronous dynamics. From a so-
ciological perspective[(21) and (22) postulate a speaifimnf
ol ; , of interaction for individuals in pairwise meetings, which
reflected on average by Friedkin and Johnsen’s dynamics.
Since by [2I)h; > \;;, we observe that individuals display a
lower obstinacy during pairwise interaction.

80 B . 4

IV. CONCLUDING REMARKS

In this work, we have proposed time-averaging as a tool
for smoothing oscillations in randomized network systems.
Other authors have proposed different solutions, whichpdam
the inputs to the dynamics in the long run: this goal is

achieved through “under-relaxations”, that is, by usinghga
K ' ' (or equivalently step-sizes) which decrease with time. The
analysis of the resulting dynamics is often based on tools fr
stochastic approximation [85] or semi-martingale the@§, [
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ool Ch 2]. Notably, also the choice of decreasing gains can be
z performed asynchronously and without coordination, alaei
50 | the price of a more complex analysis [35, Ch. [7]I[37].

Our method of time-averaging, together with its analysis
based on ergodicity, has three advantages: (i) it is simple t
apply as it requires minimal assumptions, (ii) it allows for
a unified treatment of different algorithms, and (iii) it g&

a qualitative insight into the stochastic processes ofréste
However, the use of time-averaging is not itself free from

drawbacks. Indeed, rate of convergence of time-averages is
Fig. 2. Four-nodes social network from_[27]. The opinion qgassz (top

plot) oscillates persistently. As the belief process iodig, the time-averages not exponentlal, as for the orlglnal SynChronous dynanhms’

z (bottom plot) converge, when time goes to infinity,tfy,, (marked by blue polynomial O(1/k)). This fact can be observed by inspecting
circles). the proof of Theorenill or from a mean-square convergence

analysis, as we did in_[19] and_[28]. This drawback, which
is shared by over-relaxation approaches, stimulates nesea
towards exponentially-fast algorithms. Likely, effeetialgo-

We now discuss the interpretation of our convergence thethms can be constructed by endowing the nodes with some
orem in the context of opinion dynamics. The original modghemory capabilities: an example is provided [in][14] for the
by Friedkin and Johnsen abstracts from a precise analysis&falization problem. More generally, their design may be
the communication process among the agents, and postulgigsed on the so-called asynchronous iteration method from
synchronous rounds of interaction. In fact, the lack of aenohumerical analysis [38, Section 6.2]: for instance, theliapp
precise model for inter-agent interactions is acknowledgeation of this method to PageRank computation is discussed
in [27] by saying that “it is obvious that interpersonal influjn [19, Section VII].
ences do not occur in the simultaneous way that is assumed”,.:ina”y, we expect that the approach presented here can be
Our goss_ip Qynamics introduces a more reali_stic model of t%ﬁplied to a wide range of problems in network systems, be-
communication process among the agents: indeed the agefi§gs the three examples detailed here. Venues for applicat
were allowed to discuss asynchronously and in pairs in the.,de gossip algorithms to solve problems of simultaseou
experiments reported iri_[27]. We believe that the relat'oré'stimation and classification in sensor netwofke [39], eanv

ship between the randomized and the synchronous dynamiggimization [37], and optimization in power networks [40]
provides an additional justification and a new perspective o

the model originally proposed by Friedkin and Johnsen: an
example of social network derived from their experiments is ACKNOWLEDGEMENTS
analysed in detail in_[30].

The forms of [2l1) and (22) may seem complicated at first The authors are grateful to Noah E. Friedkin for posing
sight. However, this is not surprising if we think of other-exthe problem studied in Sectidn 1IIC and to Keyou You for
amples of randomized dynamics over networks. For instani@ding an error in a preliminary version of this paperl[29]
in problems of consensus|[3], localization (see Sedfio@)|l and for providing a copy of [15]. The authors would also like
and PageRank computation (see Sedfion ]1I-B), the definitito thank Francesco Bullo, Giacomo Como, and Fabio Fagnani
of the update matrices of the randomized dynamics is nfot interesting conversations on the topics of this paper.
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APPENDIXA % (k) converges almost surely to a finite limit., and the
PROOF OFTHEOREM[] distribution ofz . is the unique invariant distribution fae(%).

regarding randomized dynamics defined[in] (10). The proof is

based on techniques for iterated random functions, which we inf lE [1og ||<13(0, k— 1)||1}

recall from [41]. These techniques require, in order to wtud keN k 1 i

the random procesE ([10), to consider the associzaedward < inf ~ logE ||<13(0, k— 1)”1}

process’ (k), which we define below. keN k -
For any time instank, consider the random matricé¥ k) el = Iy

andu(k) and define the matrix product N zirelg 108 Fe (P(0k=1))y

L eV
P(t,m) = P(m)P(m —1)---P(t + )P(t)  (23) ) [
. , , < inf —logE | S S(P(0,k - 1)),
with ¢ € {0,...,m}. Then, the iterated affine system [n17) keN k Sy icy
can be rewritten as 1 N .
< inf —1 E|P(0,k—1);
sk +1) = PO, k)z(0)+ S PE+1ku(l). (24) = renk Og;; [Po.k-1)]
0<¢<k
S o1
The correspondingackward processs defined by = ;QfN % log (n ‘ E [?(O, k- 1)} HOO)
— R — k-1
7 (k+1) = P(0,k)z(0) + Z P(0,£—1)u(), (25) ~inf & log [ n H E[P(h)] .
0<t<k keN k he0
where

Let ¢ be the number of distinct eigenvalues BfP(k)],
?(47 m) = P({)P(L +1)---P(m — 1)P(m) (26) denoted ag\¢}7_,, and consider the Jordan canonical decom-

. _ _1 k—1 <
with ¢ € {0,...,m}. Crucially, the backward process (k) p05|t|0nIE[P(k)]_l U‘H_J - Then HHh:OE[P(h)]HOO -
has at every time: € Z, the same probability distribution |Ul[ccl|-/*[|ccl|U™"[|sc. Since thek-th power of the Jordan
asz(k). The main tool to study the backward process is tHdock of sizes is

following result. Let|| - | denote any norm. XN 1 0 ... 01"
Lemma 3 (Theorem 2.1 in[[41]) Let us consider the Markov [0 A 1 -~ 0
process{z(k)}rez., defined by ; : :
w(k+1) = P(k)z(k) + u(k) k€ Zso 8 ” 0 A i
where P(k) € RY*Y and u(k) € RY are ii.d. random N (AL (A2 (R )y
variables. Let us assume that o Bk S ke aan
oA (O (Xt
Ellog[[P(k)[] <oo  Eflogu(k)[] <oo.  (27) - :
The corresponding backward random proc&&) converges 0 e 0 AR (’f))\k—l
almost surely to a finite limit, if and only if 0 0 Ak
inf 2Elog |[P(1).. P(R)]] < 0. (28) We deduce that
> sp—1
If (28) holds, then the distribution ofi., is the unique [7¥]l o = max » (J*)i; = max Y )\’Zm<k>,
invariant distribution for the Markov process(k). e jev =l i m

This result provides conditions for the backward proceggheres, is the size of the largest Jordan block corresponding
to converge to a limit. Although the forward process hast@ A¢. Then

different behavior compared to the backward process, the fo se—1 1
ward and backward processes have the same distributios. Thi [J¥]loo < max [Ag|* Z |/\¢|m< )
fact allows us to determine, by studying the backward pr&ces =1 m=0

%z (k), whether the sequence of random varialjleg:) }rcz-, se—1
converges in distribution to the invariant distribution thie <, Inax AR Al
Markov process il (10). This analysis is done in the follayvin Tt m=0

result. < xp"k",

Lemma 4. Consider the random processk) defined in(I0), wherey is a constant independent bfand p is the spectral
where P(k) and u(k) are i.i.d. and have finite first momentsradius of E[P(k)] = (1 — a)I 4+ aP, which is known to be
E[P(k)] and E[u(k)]. If there existsaw € (0,1] such that smaller than 1 becausB is Schur stable. We conclude that
E[P(k)] = (1 — a)I + oP where P is Schur stable, then, there exists a constarif = ||U||~||U !X, independent
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of k, such thatE [mg 1P 0,k — 1)”1} < log (nCp"k") and, APPENDIX B
consequently, PROOF OFCOROLLARY [1]
The argument follows the lines of [15, Theorem 4.1]. Let
inf lIE [log H?(o k— 1)||1} us define for alki andk in Z>q
keN k ’ k_
. log(Cnk™p*) w(i)/ Ze;ol wl) ifi<k
< —_— i = .
- klggo k (29) Sk 0 if i > k.
=logp < 0. 1
Since limpi00y , ow(l) = +4oo almost surely,
The claim then follows from Lemmi 3. m {&kitkiez., forms a Toeplitz array with probability

As a consequence, we deduce that also the (forward) rand@f§: Since by[(30)imy— +o0 [[2(k) — z(K)[1 = 0, we can
processz(k) converges in distribution to a limit.., and apply Silverman-Toeplitz Theorenm [44] to conclude that
the distribution ofz.. is the unique invariant distribution for 2most surely
x(k). We are now ready to verify the ergodicity ofk) under oo
the assumptions of Theordm 1. Let0) be a random vector kEToozgkinx(i) — 2(i)[11
independent from:(0) with the same distribution as... Let =0
{z(k)}rez., be the sequence such that . 1 k-1

Y w@)la(i) = ()] = 0.

i e
Hoo Y o wl) i

This equality implies that almost surely

A =POk=1)20+ S P+1k-1ul)

0<<k—1
1 k—1
where?(€+ 1,k—1) is defined as in(23). Since the procesglirn =) w(t)x(7)
z(k) is stationary and the invariant measure is unique we can 2o w(l) IS
apply the Birkhoff Ergodic Theorem (see for instante|[42, ) 1 k-1 , , ,
Chapter 6] or[[48, Chapter 5] for a simpler introduction) and = lim > w(@)((i) - 2(7))

conclude that with probability one

& =
b1 + lim = =Y w(i)z(i)
k—+o00 k
lim 1 2(0) = E[z o] T Lo WO i
k—oo k = 1 1 kol
B =—— lim —)» w(i)z(i),
On the other hand, we can compute Elw(0)] koo k i=0
where the last equality comes from the law of
P (||:z:(k) —z(k)||1 > ek) large numbers. Again by Birkhoff Ergodic Theorem,
- T T\T i i I
E ||?(O? k—1)(2(0) — :c(O))||1} {(w(k) ,g(k:) )" }rez, is a stationary and ergodic process
<L _ and we finally conclude
E[||B(0,k - 1>€H1Hz(0) - x(O))Ill} li ! kz_‘i (i) (i) ! E[w(0)2(0)] = z*
’ m —— w()X\1) = ———=Ljw z =T,
S — ok hotee ST w(0) Elw(0)]
E ||?(0, Lk — 1)H1} E [||2(0) — 2(0)]|1] thanks to the independence betwegi)) and z(0).
< L
= k
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