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Abstract—We consider the fading broadcast channel from a in [8]-[10] for the case where the channel state information
secrecy point of view. In this channel, each user views the other (CS|) of both the legitimate receiver and the eavesdropper a
user as an eavesdropper, and wants to keep its information as available at all terminals, and the ergodic secrecy capisit
secret from the other user as possible. First, we consider a more . . ’ . . .
general channel model which consists of. independent sub- derived for this _Case_' The ergOO!'C secrecy CapaCIty.glveS th
channels, where in each sub-channel, one of the users’ channel@mount of confidential information that the transmitter can
is less noisy with respect to the other user. Since the user which send to the receiver, when the receiver can afford arlitrari
has the less noisy observation can be different in each sub-|ong delays, hence can average its secrecy rate over alhehan
channel, the overall channel is not less noisy for any one of the \aqjizations. The case where the transmitter has the CSilpf o

users. We establish the secrecy capacity region of this channel o . . 2
for the case where the transmitter sends a common message'[he legitimate receiver (but not the eavesdropper) is stlid

to both users and an individual confidential message to each [10]-[12] from the ergodic secrecy perspective. In [10]lcas
user. This channel model encompasses the sub-class of channpeldading channel is considered and the ergodic secrecy dgpaci
where in each sub-channel, one of the users’ observation isis found. The fast-fading case is investigated in [11], [12]
degraded with respect to the other user. The parallel Gaussian where achievable rates are given.

broadcast channel belongs to this sub-class. In the Gaussian eas Another inf tion th i for fadi h |
we identify the optimum input distribution, which is Gaussian, nother information theoreuc measure for fading channels

and the optimum power allocation corresponding to each point IS the outage capacity, i.e., delay-limited capacity, Wiefers
on the boundary of the secrecy capacity region. Finally, noting to the the amount of information that can be transmitted
that the fading Gaussian broadcast channel is equivalent to a within a certain time, i.e., when the receiver is delay-iatant
parallel Gaussian broadcast channel from an ergodic capacity 1151 The concept of outage capacity is used in the context
perspective, we explicitly evaluate the ergodic secrecy capacity f fadi iret h s in 191 [13] [14 h th
region of the fading broadcast channel. ol Tading ere'gp _C anhes in [9], [13], [14], V\./.ere e
outage probability is derived. The outage probability can b
. INTRODUCTION interpreted as the fraction of time that the legitimate nexre

The field of information theoretic secrecy was initiated bgalr; n?r:igf/t/:rlf rs\;:pf;fé?:etratrg;;ﬁg r?gugactg.nﬁ dentiality
the ploneering works of Wyner [.1] and Csiszar and Korner.[zc]f the messages of a two-user fading broadcast channel (BC).
on the wiretap channel. In a wiretap channel, the transm|tt|e ; . .
: . o : - n this channel model, each receiver views the other one

wants to have confidential communication with the receiver, N :
. L as an eavesdropper and wants to keep its information as

the presence of a passive eavesdropper, by hiding its messa(gn : : . .
) .“confidential as possible. Hence, our work can be considered
as much as possible from the eavesdropper. Recently, sedtiu - B .
. : .as a generalization of [8]-[10] where only one of the reasive
versions of the secrecy problem have been studied for \ariqu

. ; . requires confidential communication, while the other ona is
multiuser channel models [3]-[7]. The main motivation foe t ) . .

. i . . pure eavesdropper, to a symmetric setting where both merseiv
multiuser extension of the wiretap channel comes from wiré-

want to have confidential communication with the receiver.

less communlcathn network fippllcatlons, where _the In1rtereSimilar to [8], [9], we assume that the fading coefficients ar
openness of the wireless medium allows all users in the rsyste

. o o . ergodic and stationary over time, and are known to all partie

to over-hear all ongoing communications, raising the issue . . .

. o . . the transmitter and both receivers) perfectly and instant
confidentiality and multiuser secrecy. However, in order t . :

X : . neously. Generally speaking, the assumption of the avktijab
model the multiuser wireless channel more appropriataly, t X : :
. : : f the eavesdropper’'s CSl at the transmitter may be viewed as

other most important aspect of wireless medium needs to be

considered, which is fading. Fading refers to the randame-i E;{Silsélfc t[r?i’ E)E]l;/:grimally g||_\|/ en the m_aI|C|ous ar:jdslslaeh
varying fluctuations in the channel gains. ) PPeT. HOWEVer, In our model, where
Fading channels have been considered from a secrecy p&%tth users are actlvg part|C|pants of the network, and poth
of view in [8]-[14]. The fading wiretap channel is studie ish to receive confidential messages from the transmitter,
' he availability of their CSI at the transmitter (which, urm,

This work was supported by NSF Grants CCF 04-47613, CCF @aa4 Can broadcast this information back to the receivers, atigw
CNS 07-16311 and CCF 07-29127. all receivers to know the CSils also) is more realistic.



We first consider the class of discrete two-user BCs with. PARALLEL LESSNOISY BROADCAST CHANNELS WITH
L sub-channels, where in each sub-channel, one of the users’ CONFIDENTIAL MESSAGES
observation is less noisy with respect to the other user.-How
ever, since the user which has the less noisy observation calive consider the class of two-user parallel BCs witlsub-
be different in each sub-channel, the overall channel idasst channels, where in each sub-channel, one user’s channel is
noisy for any one of the users. We obtain the secrecy capadigs noisy with respect to the other user. However, the vera
region of this channel for the case where the transmittedsserchannel is not less noisy for any one of the users, as dis-
a common message to both users and an individual confidentiassed earlier. The transmitter sends an individual contiigle
message to each user. Since degradedness implies less moéssage to each user that needs to be kept hidden from the
iness [2], this model encompasses the sub-class of channether user, in addition to a common message that needs to be
where in each sub-channel, one of the users’ observationdigivered to both users.
degraded with respect to the other user. Similar to the lessThis channel consists of one input alphabet =

noisy case, since the user which has the degraded observaig, | . . . ,xp) € X = X x ... x Xy, and two output alphabets
can be different in each sub-channel, the overall channelyijs = (Yj1,--,yjz) €YV; = Vi1 % ... x Vjr,j = 1,2,
not degraded for any one of the users. The parallel Gaussigere z,,¢ = 1,...,L, is the input to the/th sub-channel

BC, where each sub-channel is a Gaussian BC, belongsaty yie,j = 1,2,0 € {1,...,L}, is the output of thejth
this sub-class. Using the secrecy capacity region we foand {iser’s ¢/th sub-channel. The channel transition probability is
the discrete case, we explicitly evaluate the secrecy é@pagiven by

region of the parallel Gaussian BC by finding the optimal inpu

distribution and the optimal power allocation that achgeve Pyt Y21, - YL YzLlat, - 2r) =

each point on the boundary of the secrecy capacity regios. Th L

result is instrumental in finding the secrecy capacity ne@d H Hp(yu,i, Y2u,i|e,i) (1)
the fading BC. £=1i=1

which implies that the sub-channels are all independent and
We then focus on the ergodic secrecy capacity region each sub-channel is memoryless. Furthermore, in each sub-
the fading BC, where we assume that there are no deladyannel, one user’'s channel is less noisy with respect to the
constraints, in that, each receiver can wait arbitrarilygldo other user, i.e., for any random variablé satisfying the
decode its message; this allows the transmitted codewordMarkov chainU — X, — (Y1, Ya,), we have [2]
experience all possible channel realizations, and coreseiyy
the achievable rate becomes an average of the rates adeievab I(U;Y1e) > 1(Us Yae), L€ S @
at all channel states. Since for a given realization of the I(U;Ya) > I(U; Y1), L€Sy 3)
channel gain coefficients, the fading channel is a Gaussian Bvhere s

S; #{1,...,L}, j = 1,2, the overall channel is not less

of the channel gains. Thus, the secrecy capacity we find fr%isy for any one of the users.

v pale caissan 5 opis 0 e g . ) (15T 55 e o s el cons
9 y capacily reg of three message set®y, = {1,...,2"%}, W, =

BC_ explicitly. We finally pr_esent some numerical result 1 ...,2”Rﬂ'},j ~ 1.2, one encoderf : Wp x W, x
which demonstrate that fading enables both users to h n N
b — A x ... x X7 and two decoders, one at each

g(;s&t;\é(iaaie;rgcy rates which is impossible for scalar ramhinig receiver,g, : Vi x ... V% — Wo x Wy.j = 1.2. The
' probability of error for thejth user is defined ad$’’'; =

After the inclusion of this paper into the conference proET [(Wij) # (WO7Wj)j| .J = 1,2, where (Wy, Wj) is
gram, we encountered a related work in [16]. Although thée output of thejth users decoder. The secrecy of the
main emphasis of [16] is to analyze the secrecy and stabilipde is measured through equivocation rates which are
jointly, it obtains the secrecy capacity region of the fapgBC L+ H(W1|Y3"), = H(Wa|Y7").
as a side result; see Theorem 1 of [16]. The proof in [16] A rate tuple(Ry, R1, R2) is said to be achievable if there
is quite different than ours in the sense that, our proof &xist codes such thdim,,_, P';=0,j=1,2, and
obtained by using the single-letter capacity region of aegien 1 1
channel model, whereas [16] uses a Sato-type outer boundlim —H(W1|Y5') > Ry, lim —H(Ws|Y{") > Re (4)
for the converse, while its achievability follows from [1P)]. noeen _ noeen
Besides these differences in the proof techniques, we al§aus. our focus will be on the perfect secrecy rates.
provide the secrecy capacity region of a more general cthanneThe secrecy capacity region of this channel is given by the
model, which may be useful in the analysis of the secrecy tfllowing theorem.
the BC with memory, and the multiple-input multiple-output Theorem 1: The secrecy capacity region of the parallel less
(MIMO) BC [17]. noisy BC is given by the union of the rate tuplggy, R1, R2)



satisfying degraded BC without a common message is given by the union
of the rate pair§ Ry, R,) satisfying

L L
Ro < min [Z I(UE§Y1E)>ZI(UZ;Y2Z) (5) R, < Z I(X55Y1£|Y2£) (13)
=1 =1
eSS
R, < Z {[(XZ;YMU@) -1 Xé;deUe)] (6) Ry < Z I(Xy; Yo Yie) (14)
LeSy
LES
Ry< ) {I(X&YMUE)—I(X€§Y1€|U€)] (7)  where the union is over all distributions of the form
LESy L
Hezl p(ze).
where the union is over all distributions of the form
H4L=1 p(ue, z¢). _ [1l. PARALLEL GAUSSIAN BROADCAST CHANNELS
The proof of this theorem and the proofs of all other we now consider the two-user parallel Gaussian BC with
forthcoming results are omitted here due to space limitatio 7, independent sub-channels. Then, ¢ {1,...,L}, sub-

Remark 1. The capacity achieving scheme uses all of théhannel is described by
sub-channels to transmit the common message on which, of
course, nNo secrecy constraint is imposed. The confidential Yiei = hieXei+ Nig (15)
messages of usgrare sent over the sub-channels where user Yori = hoeXg i + Nog s (16)

j has a less noisy observation with respect to the other USehore for any giver € {1,...,L} andj — 1,2, the noise

i.e., over sub-channels i§;. . L :
Remark 2: The region / iven in Theorem 1 remains unprocess{Njg,i}?zl has components which are i.i.d. Gaussian
emark <. gion g . I with zero-mean and unit-variance. Moreover, the noise pro-
changed if we let arbitrary correlation amorg,,z,}, ,

because all of the expressions in Theorem 1 depend on on pe?ses of different sub-channels are independent imptjiag
o P I P - ?n%ependence of the sub-channels. We have an average power

the distributions{p(ue, ¢, y1¢, y2¢) },_,, but not on any joint constraint on the input signal as

distributions across sub-channels. Thus, the use of imidkpe

inputs for each sub-channel is capacity achieving. 1K

We now consider a special instance of this channel, where in n Z Z x?z <P @)

each sub-channel, one of the users’ channel is degraded with i=1e=1

respect to the other user. For this so-called parallel degra We want to obtain the secrecy capacity region of this

BC, we have, channel. To this end, we first show that the parallel Gaussian

BC is an instance of the parallel degraded BC described in

Xe =Yy — Yy, €S ®)  the previous section in Corollaries 1 and 2. To see this point
Xe— Yo — Yy, (€8 (9) we argue that the secrecy capacity region of the parallesGau

We note that the channels satisfying (8)-(9) satisfy (2)\@e 2" BC is invariant with respect to the correlation between

also note that since the user which has degraded channel ]c}féﬁl and Ny;. Since each user decodes its own message

be different in each sub-channel, the overall channel is n gets information about the other users message only

through its own observation, the only probability disttiba
degraded for any one of the users. In other words, as long.as . T .
9 y f gt at matters is the marginal distribution of the channdg,, i.

S; #{1,...,L},j = 1,2, the overall channel is not degraded. - L
The secrecy capacity region of the parallel degraded BCH%M’JW”) and p(yze,s|z¢;), but not the joint distribution
given as follows. p(Y1e,i, y20,ilze,:). Hence, the correlation betwee¥,,; and

Corollary 1: The secrecy capacity region of the parallel de]—v%i for any givent has no effect on the secrecy capacity

T ; region of the parallel Gaussian BC [9]. Therefore, we can
g;%i?;jinzc is given by the union of the rate tup(és, /2, 2) introduce an equivalent Gaussian channel which is defined fo

{e Sy by
L L h
Ry < min ZI(UZ;YM), ZHUK; Ya0) (10) Yiei=hweXei+ Ny, Yor; = h—%Yuzq + Nog;  (18)
(=1 =1 14
Ry <) I(X4; Yae|Us, Yar) (11) andforfe S, by
i Yari = hooXei+ Nogs Vivi = 2%, 4 Nyps  (19)
20,1 = N2eXy; 20,4 10 = 77— Y205 10,3
Ry < Y I(Xe; YarlUs, Yie) (12) hae
L€y where the set$; and S, are given by

WhLere the union is over all distributions of the form Si={0:hi>hagd, So={l:haw>hu} (20)
[Te= plue, zo). _ ~
We now specialize the result in Corollary 1 to the casand Ny, ,;, Ny, are Gaussian with zero-mean and variances
where there is no common message to be transmitted. 1 — (hw/h%)Q, 1- (hgg/hlg)Q, respectively, and they are
Corollary 2: The secrecy capacity region of the parallehdependent of each other and the rest of the random vasiable



Since the channel described by (18)-(19) satisfies the degra V. ERGODIC SECRECY CAPACITY REGION OF THE
edness conditions in (8)-(9), it is a parallel degraded Bi@sT FADING BROADCAST CHANNEL

the secrecy capacity region of the parallel Gaussian BC iswe now consider the fading BC which is given by
given by Corollaries 1 and 2. Moreover, since the channels

described by (15)-(16) and (18)-(19) have the same marginal Yi;=h1;Xi+ Nig (27)
distributions, they have the same secrecy capacity region. Yo, =heX;+ Naj (28)

Theorem 2: The secrecy capacity region of the paralle\fvhere {Nji}iey, J = 1,2, is an iid. Gaussian random
Gaussian BC is given by the union of the rate paifs, Ro) sequence with zero-mean and unit-variance. We assume that
satisfying the fading processe$h;;}i—,, j = 1,2, are ergodic and

) stationary. We have the power constraint on the channetinpu
n 5 L . -
R < - log(1 + aigh?,) —log(1 + ayh?,)| (21) aS (1/n)>> 7 < P. The joint cumulative probability
P2 Z; [ e e } distribution of (hy ;, ho ;) is denoted byF (h).
We want to obtain the secrecy capacity region of this fading

1
Ry <3 > {bg(l + aryehy) — log(1 + azeh%e)} (22) BC. We assume that CSI of both usdts = (hy i, ha ;) is
€Sy instantaneously known by all parties. We further assume tha
where the union is over aft € [0,1], and{c,} j=1,2, none of the users has a delay constraint on the transmission,
JESees; ’ . . . .
are defined by thus the notion of ergodic capacity can be used. To find the cor
1/ 1 1 responding secrecy capacity region, we invoke the equicale
= [__ <_2 4 _2> of the fading BC channel with the parallel Gaussian BC which
hip  h3 was studied in Section lll. Thus, we use the secrecy capacity
1 1 1\2 op 1 17 region of the parallel Gaussian BC given in Theorem 2 to
+ = <—2 — —2) + — < 5 —2) (23) obtain the ergodic secrecy capacity of the fading BC.
2 hip iy ANy by Corollary 3: The ergodic secrecy capacity region of the
1/ 1 1 ) fading BC is given by the union of the rate paifR;, R2)
Qg = [ P (h_ﬂ h_§[> satisfying
4+ 1
1\/< 1 1 )2 2P( 1 1 ) . Ry < 5/H [log (14 ai(h)h?) —1og(1+a1(h)h§)}dF(h)
+ — —_— — — — | = — —= 1
h%e h%e A2 h%e h%e (29)
- 1
where (z)* = max(0,z), and\;, A, are selected to satisfy 2= 3 /H [10g (14 az(h)h3) —log (1 + Oéz(h)h%)}dF(h)
2
SNaw=8P, Y ax=01-5P (25 (30)
Les LESy where the union is over alf € [0, 1], and the region${;, H2

are defined b
Remark 3: If we set one of the users’ secrecy rate to zero y

we can recover the secrecy capacity of the parallel Gaussmn Hi={h:hy >hs}, Ho={h:hy>h} (31)

wiretap channel found in [8], [3] Here, {a;(h)}3_, are also given by (23)-(24) anki;, \, are

The proof of this theorem consists of two steps. In the gelected to satlsfy

first step, we identify the input distribution maximizingeth

terms in Corollary 2, which is Gaussian [18]. Secondly, we cr(h)dF(h) = 5P, az(h)dF(h) = (1 =8P (32)
compute the optimal power allocation to obtain the boundary Reémark 4 If we set onie Gf the users’ secrecy rate to zero,
of the capacity region. The resulting optimal power all@mat We can recover the ergodic secrecy capacity of the fading
scheme is reminiscent of the water-filling solution, howevewiretap channel found in [8], [9].

here we use the difference of the noise levels in each supRemark 5: We only assumed that the fading processes
channel, as the “base of the tank” on which we water-filf%,i}i=1, j = 1,2, are ergodic and stationary, and did not

More precisely, the water-filling solution here considene t impose any restrictions on the correlation structure. €ons
difference qguently, Corollary 3 gives the secrecy capacity region for a

1 1 ergodic and stationary fading process.

5 T (26) This corollary is a direct consequence of Theorem 2. To
iy ha adopt the corresponding result, we need to identify the mblan
which can be viewed as the difference between the effectismtes which are equivalent to the sub-channels of a plralle
noise levels of the two users in sub- chanﬁelbecauseh?[ is Gaussian BC. Thus, we define the sets,j = 1,2, which

the signal-to-noise ratio of thgth user in thefth sub- channel are similar toS;, j = 1,2. Consequently, when the flrst (resp.
Consequently, if this difference is sufficiently large, ihtae second) user has a stronger channel in the senséthatho
corresponding sub-channel is used, otherwise it is not.usedresp.hs > hq), first (resp. second) user’s confidential message

4



is transmitted. Moreover, using Theorem 2, we also obtain
the optimal power allocations; (h) and ax(h) that give the
boundary of the secrecy capacity region.

V. NUMERICAL RESULTS

We now present some numerical illustrations for the ergodic
secrecy capacity region. We seléct, ho to be independent
Rayleigh random variables. Consequently, the powers of the
channel gains, i.e4? and h3, are exponential random vari-
ables with mean values, ando,, respectively. The difference
between these mean values can be viewed as a measure (
the relative strengths of the users’ channels on averages, Th
we expect that the user that has a larger mean value would
have larger secrecy rates. In Figure 1, ergodic secrecycitppa
region is given for two different sets db, 02}. For the first
set, we haver; = o2 = 1 which results in a symmetric
ergodic secrecy capacity region. For the second set, wetsele
o1 = 1,00 = 0.5. Since user 2's average signal-to-noise ratio
is lower in this case, the maximum secrecy rate of user 1 is
larger while the maximum secrecy rate of user 2 is lower.

To observe the effect of optimal power allocation, we
compute the achievable secrecy region obtained by using a
uniform power allocation, i.eq; (h) (resp.az(h)) is selected
to be constant ovet; (resp.H:). The corresponding plot is
given in Figure 2. We note that the optimal power allocation
offers a significant advantage over the suboptimal uniform
power allocation. This also implies that the availabilitytioe
CSI at the transmitter results in a noticeable secrecy raite g

VI. CONCLUSIONS
We considered the two-user fading BC from a secrecy point

Fig. 1.
fading distribution. The average powd?, is 5 dB.
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of view. We first obtained the secrecy capacity region of ﬁg 2. Comparison of the ergodic secrecy capacity regionaanachievable

general parallel channel, where in each one of theub-

secrecy region obtained by using a uniform power allocatiime average

channels, one of the users is less noisy with respect to fewer, P, is 5 dB.

other user. This model subsumes the sub-class of parallel BC

where in each sub-channel, one of the users has a degraded

channel with respect to the other user. The parallel Gaussiéf’]
BC belongs to this sub-class. For the parallel Gaussian BC,
we evaluated the secrecy capacity region. Finally, usireg th9]
similarity between the parallel Gaussian BC and the fadirfrg)
BC, we established the ergodic secrecy capacity regioneof {

fading BC. [11]
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