
Ergodic Secrecy Capacity Region of the Fading
Broadcast Channel
Ersen Ekrem Sennur Ulukus

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

ersen@umd.edu ulukus@umd.edu

Abstract— We consider the fading broadcast channel from a
secrecy point of view. In this channel, each user views the other
user as an eavesdropper, and wants to keep its information as
secret from the other user as possible. First, we consider a more
general channel model which consists ofL independent sub-
channels, where in each sub-channel, one of the users’ channel
is less noisy with respect to the other user. Since the user which
has the less noisy observation can be different in each sub-
channel, the overall channel is not less noisy for any one of the
users. We establish the secrecy capacity region of this channel
for the case where the transmitter sends a common message
to both users and an individual confidential message to each
user. This channel model encompasses the sub-class of channels,
where in each sub-channel, one of the users’ observation is
degraded with respect to the other user. The parallel Gaussian
broadcast channel belongs to this sub-class. In the Gaussian case,
we identify the optimum input distribution, which is Gaussian,
and the optimum power allocation corresponding to each point
on the boundary of the secrecy capacity region. Finally, noting
that the fading Gaussian broadcast channel is equivalent to a
parallel Gaussian broadcast channel from an ergodic capacity
perspective, we explicitly evaluate the ergodic secrecy capacity
region of the fading broadcast channel.

I. I NTRODUCTION

The field of information theoretic secrecy was initiated by
the pioneering works of Wyner [1] and Csiszar and Korner [2]
on the wiretap channel. In a wiretap channel, the transmitter
wants to have confidential communication with the receiver,in
the presence of a passive eavesdropper, by hiding its message
as much as possible from the eavesdropper. Recently, multiuser
versions of the secrecy problem have been studied for various
multiuser channel models [3]–[7]. The main motivation for the
multiuser extension of the wiretap channel comes from wire-
less communication network applications, where the inherent
openness of the wireless medium allows all users in the system
to over-hear all ongoing communications, raising the issueof
confidentiality and multiuser secrecy. However, in order to
model the multiuser wireless channel more appropriately, the
other most important aspect of wireless medium needs to be
considered, which is fading. Fading refers to the random, time-
varying fluctuations in the channel gains.

Fading channels have been considered from a secrecy point
of view in [8]–[14]. The fading wiretap channel is studied
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in [8]–[10] for the case where the channel state information
(CSI) of both the legitimate receiver and the eavesdropper are
available at all terminals, and the ergodic secrecy capacity is
derived for this case. The ergodic secrecy capacity gives the
amount of confidential information that the transmitter can
send to the receiver, when the receiver can afford arbitrarily
long delays, hence can average its secrecy rate over all channel
realizations. The case where the transmitter has the CSI of only
the legitimate receiver (but not the eavesdropper) is studied in
[10]–[12] from the ergodic secrecy perspective. In [10], a slow-
fading channel is considered and the ergodic secrecy capacity
is found. The fast-fading case is investigated in [11], [12],
where achievable rates are given.

Another information theoretic measure for fading channels
is the outage capacity, i.e., delay-limited capacity, which refers
to the the amount of information that can be transmitted
within a certain time, i.e., when the receiver is delay-intolerant
[15]. The concept of outage capacity is used in the context
of fading wiretap channels in [9], [13], [14], where the
outage probability is derived. The outage probability can be
interpreted as the fraction of time that the legitimate receiver
cannot get a pre-specified target secrecy rate.

In this work, we consider thesimultaneous confidentiality
of the messages of a two-user fading broadcast channel (BC).
In this channel model, each receiver views the other one
as an eavesdropper and wants to keep its information as
confidential as possible. Hence, our work can be considered
as a generalization of [8]–[10] where only one of the receivers
requires confidential communication, while the other one isa
pure eavesdropper, to a symmetric setting where both receivers
want to have confidential communication with the receiver.
Similar to [8], [9], we assume that the fading coefficients are
ergodic and stationary over time, and are known to all parties
(the transmitter and both receivers) perfectly and instanta-
neously. Generally speaking, the assumption of the availability
of the eavesdropper’s CSI at the transmitter may be viewed as
unrealistic [8], [9], especially given the malicious and passive
nature of the eavesdropper. However, in our model, where
both users are active participants of the network, and both
wish to receive confidential messages from the transmitter,
the availability of their CSI at the transmitter (which, in turn,
can broadcast this information back to the receivers, allowing
all receivers to know the CSIs also) is more realistic.



We first consider the class of discrete two-user BCs with
L sub-channels, where in each sub-channel, one of the users’
observation is less noisy with respect to the other user. How-
ever, since the user which has the less noisy observation can
be different in each sub-channel, the overall channel is notless
noisy for any one of the users. We obtain the secrecy capacity
region of this channel for the case where the transmitter sends
a common message to both users and an individual confidential
message to each user. Since degradedness implies less nois-
iness [2], this model encompasses the sub-class of channels,
where in each sub-channel, one of the users’ observation is
degraded with respect to the other user. Similar to the less
noisy case, since the user which has the degraded observation
can be different in each sub-channel, the overall channel is
not degraded for any one of the users. The parallel Gaussian
BC, where each sub-channel is a Gaussian BC, belongs to
this sub-class. Using the secrecy capacity region we found for
the discrete case, we explicitly evaluate the secrecy capacity
region of the parallel Gaussian BC by finding the optimal input
distribution and the optimal power allocation that achieves
each point on the boundary of the secrecy capacity region. This
result is instrumental in finding the secrecy capacity region of
the fading BC.

We then focus on the ergodic secrecy capacity region of
the fading BC, where we assume that there are no delay
constraints, in that, each receiver can wait arbitrarily long to
decode its message; this allows the transmitted codeword to
experience all possible channel realizations, and consequently,
the achievable rate becomes an average of the rates achievable
at all channel states. Since for a given realization of the
channel gain coefficients, the fading channel is a Gaussian BC,
the overall channel can be viewed as a parallel Gaussian BC
where each sub-channel corresponds to a particular realization
of the channel gains. Thus, the secrecy capacity we find for
the parallel Gaussian BC applies to the fading BC, letting
us establish the ergodic secrecy capacity region of the fading
BC explicitly. We finally present some numerical results
which demonstrate that fading enables both users to have
positive secrecy rates which is impossible for scalar non-fading
Gaussian BC.

After the inclusion of this paper into the conference pro-
gram, we encountered a related work in [16]. Although the
main emphasis of [16] is to analyze the secrecy and stability
jointly, it obtains the secrecy capacity region of the fading BC
as a side result; see Theorem 1 of [16]. The proof in [16]
is quite different than ours in the sense that, our proof is
obtained by using the single-letter capacity region of a generic
channel model, whereas [16] uses a Sato-type outer bound
for the converse, while its achievability follows from [1],[2].
Besides these differences in the proof techniques, we also
provide the secrecy capacity region of a more general channel
model, which may be useful in the analysis of the secrecy of
the BC with memory, and the multiple-input multiple-output
(MIMO) BC [17].

II. PARALLEL LESSNOISY BROADCAST CHANNELS WITH

CONFIDENTIAL MESSAGES

We consider the class of two-user parallel BCs withL sub-
channels, where in each sub-channel, one user’s channel is
less noisy with respect to the other user. However, the overall
channel is not less noisy for any one of the users, as dis-
cussed earlier. The transmitter sends an individual confidential
message to each user that needs to be kept hidden from the
other user, in addition to a common message that needs to be
delivered to both users.

This channel consists of one input alphabetx =
(x1, . . . , xL) ∈ X = X1 × . . .×XL and two output alphabets
yj = (yj1, . . . , yjL) ∈ Yj = Yj1 × . . . × YjL, j = 1, 2,
where xℓ, ℓ = 1, . . . , L, is the input to theℓth sub-channel
and yjℓ, j = 1, 2, ℓ ∈ {1, . . . , L}, is the output of thejth
user’s ℓth sub-channel. The channel transition probability is
given by

p(yn
11, y

n
21, . . . , y

n
1L,yn

2L|x
n
1 , . . . , xn

L) =
L

∏

ℓ=1

n
∏

i=1

p(y1ℓ,i, y2ℓ,i|xℓ,i) (1)

which implies that the sub-channels are all independent and
each sub-channel is memoryless. Furthermore, in each sub-
channel, one user’s channel is less noisy with respect to the
other user, i.e., for any random variableU satisfying the
Markov chainU → Xℓ → (Y1ℓ, Y2ℓ), we have [2]

I(U ;Y1ℓ) > I(U ;Y2ℓ), ℓ ∈ S1 (2)

I(U ;Y2ℓ) > I(U ;Y1ℓ), ℓ ∈ S2 (3)

whereSj , j = 1, 2, is the set of the sub-channel indices in
which userj’s channel is less noisy. We remark that as long
asSj 6= {1, . . . , L}, j = 1, 2, the overall channel is not less
noisy for any one of the users.

An (n, 2nR0 , 2nR1 , 2nR2) code for this channel consists
of three message setsW0 =

{

1, . . . , 2nR0

}

, Wj =
{

1, . . . , 2nRj

}

, j = 1, 2, one encoderf : W0 × W1 ×
W2 → Xn

1 × . . . × Xn
L and two decoders, one at each

receiver, gj : Yn
j1 × . . .Yn

jL → W0 × Wj , j = 1, 2. The
probability of error for thejth user is defined asPn

e,j =

Pr
[

(Ŵ0, Ŵj) 6= (W0,Wj)
]

, j = 1, 2, where (Ŵ0, Ŵj) is
the output of thejth user’s decoder. The secrecy of the
code is measured through equivocation rates which are
1

n
H(W1|Y

n
2 ), 1

n
H(W2|Y

n
1 ).

A rate tuple(R0, R1, R2) is said to be achievable if there
exist codes such thatlimn→∞ Pn

e,j = 0, j = 1, 2, and

lim
n→∞

1

n
H(W1|Y

n
2 ) ≥ R1, lim

n→∞

1

n
H(W2|Y

n
1 ) ≥ R2 (4)

Thus, our focus will be on the perfect secrecy rates.
The secrecy capacity region of this channel is given by the

following theorem.
Theorem 1: The secrecy capacity region of the parallel less

noisy BC is given by the union of the rate tuples(R0, R1, R2)
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satisfying

R0 ≤ min

[

L
∑

ℓ=1

I(Uℓ;Y1ℓ),

L
∑

ℓ=1

I(Uℓ;Y2ℓ)

]

(5)

R1 ≤
∑

ℓ∈S1

[

I(Xℓ;Y1ℓ|Uℓ) − I(Xℓ;Y2ℓ|Uℓ)
]

(6)

R2 ≤
∑

ℓ∈S2

[

I(Xℓ;Y2ℓ|Uℓ) − I(Xℓ;Y1ℓ|Uℓ)
]

(7)

where the union is over all distributions of the form
∏L

ℓ=1
p(uℓ, xℓ).

The proof of this theorem and the proofs of all other
forthcoming results are omitted here due to space limitations.

Remark 1: The capacity achieving scheme uses all of the
sub-channels to transmit the common message on which, of
course, no secrecy constraint is imposed. The confidential
messages of userj are sent over the sub-channels where user
j has a less noisy observation with respect to the other user,
i.e., over sub-channels inSj .

Remark 2: The region given in Theorem 1 remains un-
changed if we let arbitrary correlation among{uℓ, xℓ}

L

ℓ=1

because all of the expressions in Theorem 1 depend on one of
the distributions{p(uℓ, xℓ, y1ℓ, y2ℓ)}

L

ℓ=1
, but not on any joint

distributions across sub-channels. Thus, the use of independent
inputs for each sub-channel is capacity achieving.

We now consider a special instance of this channel, where in
each sub-channel, one of the users’ channel is degraded with
respect to the other user. For this so-called parallel degraded
BC, we have,

Xℓ → Y1ℓ → Y2ℓ, ℓ ∈ S1 (8)

Xℓ → Y2ℓ → Y1ℓ, ℓ ∈ S2 (9)

We note that the channels satisfying (8)-(9) satisfy (2)-(3). We
also note that since the user which has degraded channel can
be different in each sub-channel, the overall channel is not
degraded for any one of the users. In other words, as long as
Sj 6= {1, . . . , L}, j = 1, 2, the overall channel is not degraded.
The secrecy capacity region of the parallel degraded BC is
given as follows.

Corollary 1: The secrecy capacity region of the parallel de-
graded BC is given by the union of the rate tuples(R0, R1, R2)
satisfying

R0 ≤ min

[

L
∑

ℓ=1

I(Uℓ;Y1ℓ),
L

∑

ℓ=1

I(Uℓ;Y2ℓ)

]

(10)

R1 ≤
∑

ℓ∈S1

I(Xℓ;Y1ℓ|Uℓ, Y2ℓ) (11)

R2 ≤
∑

ℓ∈S2

I(Xℓ;Y2ℓ|Uℓ, Y1ℓ) (12)

where the union is over all distributions of the form
∏L

ℓ=1
p(uℓ, xℓ).

We now specialize the result in Corollary 1 to the case
where there is no common message to be transmitted.

Corollary 2: The secrecy capacity region of the parallel

degraded BC without a common message is given by the union
of the rate pairs(R1, R2) satisfying

R1 ≤
∑

ℓ∈S1

I(Xℓ;Y1ℓ|Y2ℓ) (13)

R2 ≤
∑

ℓ∈S2

I(Xℓ;Y2ℓ|Y1ℓ) (14)

where the union is over all distributions of the form
∏L

ℓ=1
p(xℓ).

III. PARALLEL GAUSSIAN BROADCAST CHANNELS

We now consider the two-user parallel Gaussian BC with
L independent sub-channels. Theℓth, ℓ ∈ {1, . . . , L}, sub-
channel is described by

Y1ℓ,i = h1ℓXℓ,i + N1ℓ,i (15)

Y2ℓ,i = h2ℓXℓ,i + N2ℓ,i (16)

where for any givenℓ ∈ {1, . . . , L} and j = 1, 2, the noise
process{Njℓ,i}

n
i=1 has components which are i.i.d. Gaussian

with zero-mean and unit-variance. Moreover, the noise pro-
cesses of different sub-channels are independent implyingthe
independence of the sub-channels. We have an average power
constraint on the input signal as

1

n

n
∑

i=1

L
∑

ℓ=1

x2
ℓ,i ≤ P (17)

We want to obtain the secrecy capacity region of this
channel. To this end, we first show that the parallel Gaussian
BC is an instance of the parallel degraded BC described in
the previous section in Corollaries 1 and 2. To see this point,
we argue that the secrecy capacity region of the parallel Gaus-
sian BC is invariant with respect to the correlation between
N1ℓ,i and N2ℓ,i. Since each user decodes its own message
and gets information about the other user’s message only
through its own observation, the only probability distribution
that matters is the marginal distribution of the channel, i.e.,
p(y1ℓ,i|xℓ,i) and p(y2ℓ,i|xℓ,i), but not the joint distribution
p(y1ℓ,i, y2ℓ,i|xℓ,i). Hence, the correlation betweenN1ℓ,i and
N2ℓ,i for any givenℓ has no effect on the secrecy capacity
region of the parallel Gaussian BC [9]. Therefore, we can
introduce an equivalent Gaussian channel which is defined for
ℓ ∈ S1 by

Y1ℓ,i = h1ℓXℓ,i + N1ℓ,i, Ỹ2ℓ,i =
h2ℓ

h1ℓ

Y1ℓ,i + Ñ2ℓ,i (18)

and forℓ ∈ S2 by

Y2ℓ,i = h2ℓXℓ,i + N2ℓ,i Ỹ1ℓ,i =
h1ℓ

h2ℓ

Y2ℓ,i + Ñ1ℓ,i (19)

where the setsS1 andS2 are given by

S1 = {ℓ : h1ℓ > h2ℓ} , S2 = {ℓ : h2ℓ > h1ℓ} (20)

and Ñ1ℓ,i, Ñ2ℓ,i are Gaussian with zero-mean and variances
1 − (h1ℓ/h2ℓ)

2, 1 − (h2ℓ/h1ℓ)
2, respectively, and they are

independent of each other and the rest of the random variables.
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Since the channel described by (18)-(19) satisfies the degrad-
edness conditions in (8)-(9), it is a parallel degraded BC. Thus,
the secrecy capacity region of the parallel Gaussian BC is
given by Corollaries 1 and 2. Moreover, since the channels
described by (15)-(16) and (18)-(19) have the same marginal
distributions, they have the same secrecy capacity region.

Theorem 2: The secrecy capacity region of the parallel
Gaussian BC is given by the union of the rate pairs(R1, R2)
satisfying

R1 ≤
1

2

∑

ℓ∈S1

[

log(1 + α1ℓh
2
1ℓ) − log(1 + α1ℓh

2
2ℓ)

]

(21)

R2 ≤
1

2

∑

ℓ∈S2

[

log(1 + α2ℓh
2
2ℓ) − log(1 + α2ℓh

2
1ℓ)

]

(22)

where the union is over allβ ∈ [0, 1], and{αjℓ}ℓ∈Sj
, j = 1, 2,

are defined by

α1ℓ =

[

−
1

2

(

1

h2
1ℓ

+
1

h2
2ℓ

)

+
1

2

√

(

1

h2
1ℓ

−
1

h2
2ℓ

)2

+
2P

λ1

(

1

h2
2ℓ

−
1

h2
1ℓ

)





+

(23)

α2ℓ =

[

−
1

2

(

1

h2
1ℓ

+
1

h2
2ℓ

)

+
1

2

√

(

1

h2
1ℓ

−
1

h2
2ℓ

)2

+
2P

λ2

(

1

h2
1ℓ

−
1

h2
2ℓ

)





+

(24)

where(x)+ = max(0, x), andλ1, λ2 are selected to satisfy
∑

ℓ∈S1

α1ℓ = βP,
∑

ℓ∈S2

α2ℓ = (1 − β)P (25)

Remark 3: If we set one of the users’ secrecy rate to zero,
we can recover the secrecy capacity of the parallel Gaussian
wiretap channel found in [8], [9].

The proof of this theorem consists of two steps. In the
first step, we identify the input distribution maximizing the
terms in Corollary 2, which is Gaussian [18]. Secondly, we
compute the optimal power allocation to obtain the boundary
of the capacity region. The resulting optimal power allocation
scheme is reminiscent of the water-filling solution, however,
here we use the difference of the noise levels in each sub-
channel, as the “base of the tank” on which we water-fill.
More precisely, the water-filling solution here considers the
difference

∣

∣

∣

∣

1

h2
1ℓ

−
1

h2
2ℓ

∣

∣

∣

∣

(26)

which can be viewed as the difference between the effective
noise levels of the two users in sub-channelℓ, becauseh2

jℓ is
the signal-to-noise ratio of thejth user in theℓth sub-channel.
Consequently, if this difference is sufficiently large, then the
corresponding sub-channel is used, otherwise it is not used.

IV. ERGODIC SECRECYCAPACITY REGION OF THE

FADING BROADCAST CHANNEL

We now consider the fading BC which is given by

Y1,i = h1,iXi + N1,i (27)

Y2,i = h2,iXi + N2,i (28)

where {Nj,i}
n
i=1, j = 1, 2, is an i.i.d. Gaussian random

sequence with zero-mean and unit-variance. We assume that
the fading processes{hj,i}

n
i=1, j = 1, 2, are ergodic and

stationary. We have the power constraint on the channel input
as (1/n)

∑n

i=1
x2

i ≤ P . The joint cumulative probability
distribution of (h1,i, h2,i) is denoted byF (h).

We want to obtain the secrecy capacity region of this fading
BC. We assume that CSI of both usershi = (h1,i, h2,i) is
instantaneously known by all parties. We further assume that
none of the users has a delay constraint on the transmission,
thus the notion of ergodic capacity can be used. To find the cor-
responding secrecy capacity region, we invoke the equivalence
of the fading BC channel with the parallel Gaussian BC which
was studied in Section III. Thus, we use the secrecy capacity
region of the parallel Gaussian BC given in Theorem 2 to
obtain the ergodic secrecy capacity of the fading BC.

Corollary 3: The ergodic secrecy capacity region of the
fading BC is given by the union of the rate pairs(R1, R2)
satisfying

R1 ≤
1

2

∫

H1

[

log
(

1 + α1(h)h2
1

)

− log
(

1 + α1(h)h2
2

)

]

dF (h)

(29)

R2 ≤
1

2

∫

H2

[

log
(

1 + α2(h)h2
2

)

− log
(

1 + α2(h)h2
1

)

]

dF (h)

(30)

where the union is over allβ ∈ [0, 1], and the regionsH1,H2

are defined by

H1 = {h : h1 > h2} , H2 = {h : h2 > h1} (31)

Here,{αj(h)}2
j=1 are also given by (23)-(24) andλ1, λ2 are

selected to satisfy
∫

H1

α1(h)dF (h) = βP,

∫

H2

α2(h)dF (h) = (1 − β)P (32)

Remark 4: If we set one of the users’ secrecy rate to zero,
we can recover the ergodic secrecy capacity of the fading
wiretap channel found in [8], [9].

Remark 5: We only assumed that the fading processes
{hj,i}

n
i=1, j = 1, 2, are ergodic and stationary, and did not

impose any restrictions on the correlation structure. Conse-
quently, Corollary 3 gives the secrecy capacity region for any
ergodic and stationary fading process.

This corollary is a direct consequence of Theorem 2. To
adopt the corresponding result, we need to identify the channel
states which are equivalent to the sub-channels of a parallel
Gaussian BC. Thus, we define the setsHj , j = 1, 2, which
are similar toSj , j = 1, 2. Consequently, when the first (resp.
second) user has a stronger channel in the sense thath1 > h2

(resp.h2 > h1), first (resp. second) user’s confidential message
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is transmitted. Moreover, using Theorem 2, we also obtain
the optimal power allocationsα1(h) andα2(h) that give the
boundary of the secrecy capacity region.

V. NUMERICAL RESULTS

We now present some numerical illustrations for the ergodic
secrecy capacity region. We selecth1, h2 to be independent
Rayleigh random variables. Consequently, the powers of the
channel gains, i.e.,h2

1 and h2
2, are exponential random vari-

ables with mean valuesσ1 andσ2, respectively. The difference
between these mean values can be viewed as a measure of
the relative strengths of the users’ channels on average. Thus,
we expect that the user that has a larger mean value would
have larger secrecy rates. In Figure 1, ergodic secrecy capacity
region is given for two different sets of{σ1, σ2}. For the first
set, we haveσ1 = σ2 = 1 which results in a symmetric
ergodic secrecy capacity region. For the second set, we select
σ1 = 1, σ2 = 0.5. Since user 2’s average signal-to-noise ratio
is lower in this case, the maximum secrecy rate of user 1 is
larger while the maximum secrecy rate of user 2 is lower.

To observe the effect of optimal power allocation, we
compute the achievable secrecy region obtained by using a
uniform power allocation, i.e.,α1(h) (resp.α2(h)) is selected
to be constant overH1 (resp.H2). The corresponding plot is
given in Figure 2. We note that the optimal power allocation
offers a significant advantage over the suboptimal uniform
power allocation. This also implies that the availability of the
CSI at the transmitter results in a noticeable secrecy rate gain.

VI. CONCLUSIONS

We considered the two-user fading BC from a secrecy point
of view. We first obtained the secrecy capacity region of a
general parallel channel, where in each one of theL sub-
channels, one of the users is less noisy with respect to the
other user. This model subsumes the sub-class of parallel BCs,
where in each sub-channel, one of the users has a degraded
channel with respect to the other user. The parallel Gaussian
BC belongs to this sub-class. For the parallel Gaussian BC,
we evaluated the secrecy capacity region. Finally, using the
similarity between the parallel Gaussian BC and the fading
BC, we established the ergodic secrecy capacity region of the
fading BC.
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