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Abstract. The conditions for ergodicity of semigroups of epimorphisms of compact
groups are studied. In certain cases ergodic semigroups are shown to contain small
ergodic subsemigroups. Properties related to ergodicity, such as that of admitting no
infinite closed invariant proper subset of the group, are discussed for semigroups of
epimorphisms and of affine transformations.

1. Introduction. Dynamical systems are generally studied in two different setups.
One is that of ergodic theory, where the underlying space is a probability space on
which a group or semigroup of measure-preserving transformations is acting. The
other is that of topological dynamics, concerned with semigroups of continuous
transformations of compact spaces. The two theories merge most naturally when
dealing with continuous epimorphisms, or more generally affine transformations, of
compact groups.

One-parameter semigroups play a key role in both theories; such semigroups,
particularly of epimorphisms, have been thoroughly investigated. Nevertheless, the
study of more general actions is also needed for many problems. In this paper we
deal with general semigroups of affine transformations, focusing on ergodicity and
related properties.

In §2 the definitions of ergodicity in the measure-theoretic and the topological
setups are introduced. The two notions turn out to coincide for semigroups of
epimorphisms. We also give a characterization of ergodicity for such a semigroup in
terms of the dual action on the dual object of the group. §3 is concerned with
semigroups of affine transformations. The ergodicity of such a semigroup is shown
to follow from that of the lying below semigroup of epimorphisms.

The rest of the paper deals mostly with compact abelian connected finite-dimen-
sional groups. In §4 it is shown that an ergodic semigroup of epimorphisms of such a
group contains a finitely-generated ergodic subsemigroup. A sharper result is proved
in §5 under the additional assumption that the semigroup is commutative. We also
establish a mean ergodic theorem for semigroups. §6 studies the connection between
ergodicity and the property that every finite invariant set consists of torsion
elements.
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394 DANIEL BEREND

§7 is concerned with semigroups of affine transformations possessing the property
that the only infinite closed invariant set is the whole group. It turns out that, under
fairly mild conditions, if a semigroup of epimorphisms satisfies the property in
question (or even a weaker one), then any semigroup of affine transformations lying
above it satisfies this property as well.

I would like to thank E. Effros for valuable discussions on this topic.

2. Ergodic semigroups of epimorphisms of compact groups. A process is a quadru-
ple (fi, 38, p, 5), where (fi, 38, /j,) is a probability space and 5 is a semigroup of
measure-preserving transformations thereof. A flow is a pair (fi, 5), where fi is a
compact Hausdorff space and 5 is a semigroup of continuous transformations of fi.
It will be convenient to assume that the identity transformation / belongs to 5.

Definition 2.1. (1) A process (fi, 38, p, 5) is ergodic if any 5-invariant A ^ 38
satisfies ¡i(A) = 0 or ß(A) = 1.

(2) A flow (fi, 5) is ergodic if any closed 5-invariant proper subset of fi is nowhere
dense.

Let us mention several properties related to ergodicity. A process (fi, 38, u, 5) is
ergodic iff it admits no nonconstant 5-invariant function. Now consider a flow
(fi, 5). If the flow is ergodic then any continuous 5-invariant function is constant,
but the converse is in general false. If the set of all points whose 5-orbit is not dense
in fi is of the first category, then the now is ergodic. The converse is valid provided
that fi satisfies the second axiom of countability. If 5 is a one-parameter semigroup,
i.e., if it consists of the set of powers of a single transformation, then the existence of
a single dense orbit implies ergodicity. For general semigroups this is not the case. In
fact, one can construct a countable nonergodic semigroup of homeomorphisms of
[0,1] having dense orbits.

In what follows, G will denote a compact Hausdorff group, 38 the a-algebra
generated by the open sets and p the Haar measure. A transformation of the form

it(x) = o(x)a,       x g G,

where a is a continuous epimorphism of G and a g G, is called an affine transforma-
tion. An affine transformation is measure-preserving, n = a a is an affine transfor-
mation lying above a, and a is the epimorphism lying below it. A similar terminology
will be used for a semigroup of affine transformations and the corresponding
semigroup of epimorphisms. These semigroups are our object of study throughout
this paper. To distinguish between the two notions of ergodicity, both of which
apply for semigroups of affine transformations, we shall say that the semigroup in
question, 5, is ergodic (resp. topologically ergodic) if the process (G, 38, \l, 5) (resp.
the flow (G, 5)) is ergodic. It will turn out that in our case these notions are
equivalent.

Let us fix some notation, fy is the set of all continuous irreducible unitary
representations of G. T is the dual object of G, i.e., the set of all equivalence classes
of representations in <2C(see, for example, [5]). / stands for the trivial element in both
<W and r. If t/ G y G T, then the dimension of the representation space of U is
denoted by du, by dy or simply by d if no confusion might arise. i/,.., 1 < i, j < dy,
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ERGODIC SEMIGROUPS OF EPIMORPHISMS 395

are the coordinate functions corresponding to U. An epimorphism a of G gives rise
to a dual one-to-one transformation of al¿, which induces in turn a transformation on
T. The dual of a will usually be denoted by a also. To avoid confusion we write a(x)
for the action of a on x G G and Ua or ya for its action on representations.

Theorem 2.1. Let ~2.be a semigroup of epimorphisms of G. The following conditions
are equivalent:

(1) 2 is ergodic.
(2) 2 is topologically ergodic.
(3) y 2 is infinite for every nontrivial y g T.

Proof. (1) => (2) This follows easily using the fact that the support of ju is G.
(2) => (3) Suppose that for some / =£ y G T the orbit y 2 is finite, say y 2 =

{yx, y2,... ,ys}. Given 8eT denote by \s ine character corresponding to any
representation U G 8. Consider the function/: G -> C given by/= Ej_iXY.- It is a
continuous 2-invariant nonconstant function. The existence of such a function
means that the now (G, 2) is nonergodic.

(3) => (1) Assume that y2 is infinite for every nontrivial y g T but the process
(G, 38, u, 2) is nonergodic. Let /be a nonconstant 2-invariant function in L2(G).
Take a nontrivial U g <% such that the projection of / on the subspace of L2(G)
spanned by the coordinate functions corresponding to U is nonzero. Our assump-
tions imply the existence of a sequence ax,a2,... in 2 for which the representations
U, Uax, Ua2,... belong to distinct equivalence classes. Take a maximal system ^"of
nonsimilar representations in ^ containing all these representations. According to
the Peter-Weyl theorem,/can be expanded in L2(G) as follows:

dy

/=   E      E   aV]kv;k.
ve-r j.k-i

For any epimorphism a we have

d

f°° = E   E ¿V,M{v°)jk,
Ker j.k-1

where (oa)Jk, 1 </, k < dv, are the coordinate functions corresponding to Va. The
uniqueness of the expansion, the orthogonality relations between nonsimilar repre-
sentations and the 2-invariance of/give us in particular:

aUa,.j.k = aU,j,k> ' = 1,2,3,....

Since a,j k =£ 0 for some pair (/, k) these equalities contradict the fact that
/ g L2(G). This completes the proof.

The following lemma will be used later. First we need
Definition 2.2. Let 5 be an arbitrary semigroup and 5' a subsemigroup. 5' is of

finite right (resp. left) index in 5 if there exists a decomposition 5 = U'_,5, and
í,.s, g S such that 5,î, ç 5' (resp. sfS¡ Q S') for all 1 </'</. 5' is of finite
index in 5 if it is of both finite right index and finite left index in 5.
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396 DANIEL BEREND

Lemma 2.1. A subsemigroup of finite right index in an ergodic semigroup of
epimorphisms is ergodic as well.

The proof is immediate using Theorem 2.1.

3. Ergodic semigroups of affine transformations. In this section we shall prove the
following two results concerning the ergodicity of semigroups of affine transforma-
tions.

Theorem 3.1. A semigroup of affine transformations is ergodic iff it is topologically
ergodic.

Theorem 3.2. A semigroup of affine transformations, lying above an ergodic
semigroup of epimorphisms, is ergodic as well.

Proof of Theorem 3.2. Let 2 be an ergodic semigroup of epimorphisms of G and
n a semigroup of affine transformations lying above 2. Assume that IT is non-
ergodic. Let/be a nonconstant n-invariant function in L2(G). Select a representa-
tion U g <%, epimorphisms a,, a2,... G 2 and a complete system >^of nonsimilar
representations as in the proof of Theorem 2.1. Expand/in L2(G):

d

/= E   E av.j.kvjk-
v&r j,k = i

For any affine transformation n = aa we have
d d d

/•» =   E     E  avjAvjk°*)=  E    E  <V,,-.*E(«<0;/«/*(«)
Ve,-T j,k-l Ve.yj,k-1 1=1

did \
=   E     E      E aVJMvlk(a) Uva),,.

Kef j.l-1 \k = \ I

Take a sequence irx = axax, ir2 = o2a2,... in n lying above a,, a2,..., respectively.
Comparison of the coefficients of the coordinate functions of Va„ in the expansions
of/and of f ° it„ yields, due to the n-in variance off,

a Ua„.j,l t—i  "U.j
k = l
E ö[/,,,*"/*(«„).       n g N,/,/= 1,2,. ..,d.

Denote by A (resp. A„) the d X d matrix (üyjjYj l=x (resp. (aUa ,y,/)y,/_i). The last
equality can be written in terms of matrices as

A„ = AUT(a„),       « = 1,2,3,....

(Here and elsewhere the letter T stands for transpose.) Denoting ||C|| = maxfjc,,!
|1 < i, / < d ) for a d X d matrix C = (c¡j)d _x we easily get

\\A„\\>\\A\\/d,       « = 1,2,3,....
Contradicting the fact that/ G L2(G), the last inequality completes the proof.

Proof of Theorem 3.1. Ergodicity obviously implies topological ergodicity so
that we have to prove only the converse implication. Let IT be a topologically

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ERGODIC SEMIGROUPS OF EPIMORPHISMS 397

ergodic semigroup of affine transformations. Assume IT to be nonergodic. Denote by
2 the lying below semigroup of epimorphisms. Take / and U as in the proof of
Theorem 3.2. Let y g T be the equivalence class of U. Examining the proof of
Theorem 3.2 we observe that y2 is necessarily finite.

Now we claim that for every 8 g T either 52 = y2 or 52 P y2 = 0. In fact,
assuming that 52 P y2 ^ 0, say 8ax = ya2, we are going to show that 52 = y2.
Since y2 is finite, ya2 = y for some k. Hence 8axa2kl = ya2 = y, which implies
52 2 y2. Now put a = oxo2~l. We have 8al+l = ya' = y for some /, so that
5a/+1 = 5a. Thus 8a' = 8, which in turn gives 5 = ya'"1. It follows that 52 ç y2,
and so finally 52 = y2.

Expand/in L2(G) as a series in the coordinate functions corresponding to some
complete system i^of irreducible nonsimilar unitary representations of G. From the
uniqueness of this expansion and the foregoing discussion we conclude that the
projection of / on the subspace of L2(G) spanned by the coordinate functions
corresponding to the representations in y2 forms a IT-invariant function also. This
function is continuous and nonconstant. The existence of such a function contradicts
the topological ergodicity of n. This proves the theorem.

Remark 3.1. From the proof of Theorem 3.1 we see that, unlike the situation for
general flows, a nonergodic semigroup of affine transformations admits a continuous
nonconstant invariant function. This fact also implies that if such a semigroup has a
single dense orbit, then it is ergodic.

4. Finitely-generated ergodic subsemigroups. In the following two sections we shall
study ergodic semigroups of epimorphisms and show that under various assumptions
such semigroups contain "small" ergodic subsemigroups.

Theorem 4.1. An ergodic semigroup of epimorphisms of a compact connected
metrizable group contains a countable ergodic subsemigroup.

We defer the proof to the next section. This section will be devoted to the proof of

Theorem 4.2. An ergodic semigroup of epimorphisms of a compact abelian connected
finite-dimensional group contains a finitely-generated ergodic subsemigroup. This sub-
semigroup can be chosen so that its number of generators does not exceed the dimension
of the group.

First we shall provide a brief description of the class of groups dealt with in the
theorem and their epimorphisms. If G is an r-dimensional compact abelian con-
nected group, then its dual T is a discrete abelian torsion-free group of rank r (see,
for example, [4, Chapters 23-24]). We may assume accordingly that Z'cTcQ'
(all endowed with discrete topology). Hence G is a quotient group of Qr. Let a be an
endomorphism of G. Its dual â can therefore be represented by an r X r matrix with
rational entries, â obviously admits a unique extension to an endomorphism of Qr,
and so by duality a admits a unique lifting to an endomorphism of Qr. Employing
the duals we see that this lifting of a, to be denoted by &, is epic iff a is.
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398 DANIEL BEREND

Now let 2 be a semigroup of epimorphisms of G and 2 the semigroup consisting
of their liftings to Qr. An immediate consequence of Theorem 2.1 is

Lemma 4.1. 2 is ergodic iff?, is.

Let us introduce several notations. Given a prime p we denote by Qp the field of
/j-adic numbers and by Zp its subring of />-adic integers. The same notations apply to
the additive groups of these rings. | • | is the/>adic valuation. Q(/J) is the ring of all
rationals whose denominator is prime to p. Z[l/a] is the ring obtained from Z by
adjoining 1/a to it, a being a positive integer. M„(R) denotes the ring of « X «
matrices with entries in the ring R. Given a ring R with a unit element, R* is the
multiplicative group of all invertible elements in R.

Lemma 4.2. Let S be a subsemigroup of GL(r,Q) and assume that, for a certain
prime q, A g Mr(Q(q)) and |det A\q = 1 for every A G 5. 77ze«, for any positive
integer k, the set 5<A) consisting of all matrices in S which are congruent to I modulo qk
forms a subsemigroup of finite index in 5.

In fact, examine the natural homomorphism of Mr(Qiq)) onto Mr(Z/qkZ). Our
assumptions imply that the image of any A g 5 under this homomorphism is
invertible. Taking the inverse images in 5 of all the elements of GL(r,Z/qkZ) we
obtain therefore a decomposition of 5 which satisfies the conditions of Definition
2.2.

Lemma 4.3. Let S be a subgroup of GL(r,Q) in which every element is of finite
order. Then S is finite.

Proof. Assume first that for an appropriately chosen prime q we have 5 ç
Mr(Q([/)). Take a positive integer / with q' > 2r. In view of the preceding lemma it is
sufficient to show that the subgroup 5', consisting of all those matrices in 5 which
are congruent to / modulo ql, is finite. We shall show that actually 5' = {/}. In
fact, let A g S. Consider the number txA. Being the sum of the eigenvalues of A, all
of which are roots of unity, trA is an integer. The definition of 5' gives tr A = r +
q'a/b, where q + b. We also have -r ^ tr A ^ r. The choice of / implies therefore
tr A = r. Consequently the number 1 is the only eigenvalue of A. Since A is of finite
order it is diagonalizable. Hence A = I. Thus 5 is finite.

Now to the general case. Let (/>„)"_, be the sequence of all primes, ordered
according to increasing magnitude. Put 5'"1 = S P Mr(Z[l/pxp2 ■ ■ ■ p„]). In view
of the first part of the proof, (5('");f=1 is an ascending sequence of finite subgroups
of 5. Since 5 = U"_15('" it only remains to show that the sequence (|S(n)D"_, is
eventually constant.

To this end we first show that if q is a sufficiently large prime, then q 1 |5<n,| for
all «. If A g S, then all the eigenvalues of A are roots of unity of degrees not
exceeding r over Q. Hence there exists an upper bound for the possible orders of
these roots of unity. Every prime divisor of |5(n>| cannot exceed this bound.

It remains to show that if q is any prime, then there exists some k for which
qk t 15""! for every «. We may restrict ourselves to integers « with p„ + x > 2r. Fix «
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momentarily and take any prime p > p„. Consider the natural homomorphism of
GL(r,Q{p)) onto GL(r,Z/pZ). Examining the first part of the proof we see that
the restriction of this homomorphism to 5<n) is one-to-one. Hence

|5<"»| | \GL(r,Z/pZ)\ = (// - l)(p' - p) ■ ■ • (// - pr-%M(pri - l)r.

Consequently, it is sufficient to establish the existence of a positive integer k and a
prime p > p„ such that qk \ p{'2\ p1' - l)r. For this we shall prove that qk + pr] - 1
for infinitely many primes p if k is sufficiently large. Suppose first that q is an odd
prime. Take k such that qk~1(q — 1) > r\. Being cyclic and of order > r\, the group
(Z/qkZ)* contains an element x with xr' =t 1. In other words, there exists a positive
integer a relatively prime to qk such that ar' * 1 (mod qk). According to Dirichlet's
theorem concerning the existence of primes in arithmetic progressions [6, Theorem
6-11] there are infinitely many primes/? of the form a + bqk, b a positive integer. If
p is such a prime, then qk i pr' — 1. The case q = 2 is essentially the same except for
the fact that, since (Z/2*Z)* is isomorphic with a direct sum of a cyclic group of
order 2A~2 and a cyclic group of order 2 for k > 3, we have to choose k so
2k~2 > r\. This proves the lemma.

Proof of Theorem 4.2. By Lemma 4.1 we may assume the underlying group to
be Q'. Our first step is proving that an ergodic group of epimorphisms of Q'
contains a finitely-generated ergodic subsemigroup. Assume, to the contrary, that 2
is an ergodic group of epimorphisms of Q' having no finitely-generated ergodic
subsemigroup. Given y g Qr and a g 2 denote by Oay the orbit of y under a. From
our assumption and Theorem 2.1 we conclude that

A = { y g Ql|Oay|< oo Va G 2}

is a nonzero subspace of Qr.
We claim that A is 2-invariant. For this it has to be shown that if y G A and

a, t g 2, then Ox(ya) is finite. Now ya-r' = y(aTa_1)'a for any /. The definition of A
implies y(aTa-1)' = y for some / G N, and so ya-r' = ya. It follows that \0T(ya)\ <
oo, whence A is 2-invariant.

Given any a g 2 we have a linear transformation a\A of A defined as the
restriction of a to A. Let 2|A = {a|A|a g 2}. 2|á is a group of linear transforma-
tions of A satisfying the conditions of Lemma 4.3 and hence y2 is finite for every
y g A. Contradicting the ergodicity of 2, this proves that 2 has a finitely-generated
ergodic subsemigroup.

Let us show now that the same holds for any ergodic semigroup 2. Since the
underlying group is Qr, 2 consists of automorphisms. Obviously, the group gener-
ated by 2, to be denoted by (2), is ergodic. According to the first part of the proof
(2) contains a finitely-generated subsemigroup. Suppose that this subsemigroup is
generated by ru r2,... ,ts, where

ri = a,u°n2°m°Í22 ■ ■ ■ c,Mia/«2.        ! <-«<*.

for some oljk g 2, 1 < / < s, 1 </ < m, 1 < k < 2. Let 2' be the subsemigroup
generated by {aiJk\ 1 < i < s, 1 <■/ < m, 1 < k < 2). The group (2') generated by
2' is known to be ergodic, and so 2' is also ergodic.
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We may now assume that 2 is finitely-generated. Hence a prime q can be found
for which a g Mr(Qiq)) and |det a\q = 1 for every a g 2. Let E be the finite set of
roots of unity whose degree over Q are < r excluding the number 1. Put K = Q(E).
Let | ■ \q denote some extension to K to the ¿¡r-adic valuation on Q. Take a positive
integer 5 such that

\(l-x)r\a>\qs\a,       xŒE.

According to Lemmas 2.1 and 4.2 the subsemigroup 2', consisting of all those
matrices in 2 which are congruent to / modulo qs, is also ergodic. It follows that 2
itself may be assumed to satisfy the condition that every a G 2 is congruent to /
modulo qs. It is easy to see that the characteristic equation of any a g 2 is of the
form

(1 - x)r + qsaxxr-1 +   • • • + qsar = 0,

where ax, a2,... ,ar g Q( By the choice of s the only root of unity which can occur
among the eigenvalues of a is 1. We claim that for every y g Q/ there exists some
a G 2 such that Oay is infinite. In fact, given any linear transformation a, the
subspace of C, consisting of all those points whose orbit under a is finite, is just the
subspace spanned by all eigenvectors corresponding to eigenvalues which are roots
of unity. In our case therefore if for some y g Qr the set Oay is finite for all a g 2,
then ya = y for all a g 2, whence 2 is nonergodic.

To complete the proof it is sufficient to show that for every « < r we can choose
ax,a2,...,a„ G 2 such that denoting

A= {y GQ'|ya, = yVl </<n}

we have dim A < r - n. This fact is easily demonstrated by induction. Thus the
proof is completed.

Remark 4.1. Examining the proof of Lemma 4.3 one can now show that there
exists an effectively computable constant M(r) such that every nonergodic semi-
group of epimorphisms of a compact abelian connected /--dimensional group admits
an orbit containing at most M(r) points. We note that for the infinite-dimensional
torus TN, for example, no such constant exists.

The last theorem is the best possible in some sense; in general an ergodic
semigroup of epimorphisms of G cannot be expected to contain a set of less than
dim G epimorphisms generating an ergodic subsemigroup. This is seen in

Example 4.1. Let 2 be the semigroup of all epimorphisms of Tr of the form
<V,   <vai' a2,...,ar^ Z, where

<W ■■a,(Xl>X2>--->Xr)T =  (Xl  + alXr>X2 + O 2X r,. . . ,0 rX r)T     (mod.l),

(xx, x2,... ,xr)T g Tr. It is easy to verify that 2 is ergodic but no (r - l)-generated
subsemigroup is such.

5. One-parameter ergodic subsemigroups. In this section we shall prove a
sharpened version of Theorem 4.2 for commutative semigroups. In the course of the
proof we shall obtain Theorem 4.1 as a by-product.
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Theorem 5.1. A commutative semigroup of epimorphisms of a compact abelian
connected finite-dimensional group is ergodic iff it contains an ergodic epimorphism.

Lemma 5.1. Let 2 be an ergodic semigroup of epimorphisms of a compact connected
group G. Then for every nontrivial y:j G T, 1 < i < k, 1 </< 2, there exists some
a G 2 with yjXa ¥= yj2, 1 < i < k.

Proof. Assume, to the contrary, that there exist nontrivial y,- ■ g T, 1 < i < k,
1 < j < 2, such that for every a g 2 we have y,,a = y,2 for some 1 < /' < k. For any
e > 0 define two closed sets in G as follows:

A

A, = C\{x^ G||xYil(jc)-£/|<e},

k
Be= \j{x<EG\\xyi,(x)-d\^e}.

i-l

Our assumptions obviously imply 2,Aeç: Be. To arrive at a contradiction to the
ergodicity of 2 it is sufficient therefore to show that Bc is a proper subset of G for a
sufficiently small e > 0. To this end it suffices to prove that if y g Y is nontrivial,
then

ju({ x G G\ \xy(x) - dy\^ ej -» 0    ase->0.

In fact, assume this to be false. If U G y, then

íi({ X G G| l/(x) = /}) = M({ x G G| x,(*) - ¿y})

= limu({ x g G| |Xy(jc) - ¿y|< e}) > 0.

Given any matrix A in the image of U, the set {x g G|í/(jc) = j4} is a coset of
{x g G| U(x) = /}, whence both sets have the same measure. Consequently, the
image of U is finite. Since G is connected this actually means that U is constant,
contradicting the nontriviality of y. This proves the lemma.

We now need the notion of an ergodic sequence of transformations. Let (T„)™=x
be a sequence of measure-preserving transformations of a probability space
( X, 38, ft). The sequence is ergodic if

iitj*    [ fdp   for every f^L2(X, ¿g,p).

This definition is equivalent with the one given in [2] in view of the basic results
there.

Proposition 5.1. A semigroup of epimorphisms of a compact connected metrizable
group is ergodic iff it contains an ergodic sequence.

Proof. The " if" part is immediate. For the converse direction, let 2 be an ergodic
semigroup of epimorphisms of a compact connected metrizable group G. Since G is
metrizable, L2(G) is separable so that T is countable, say T = {/, yx, y2,...}.
Construct a  sequence (o„)™_x  inductively as  follows. Select ax g 2  arbitrarily.
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Suppose ax, a2,...,o„ have already been defined. According to Lemma 5.1 there
exists some a G 2 such that y,a # y,a; for all 1 < i < n + 1, 1 <y < n. Take
a„+x = a. Now consider the sequence (y,o„)™=x for any /. Discarding its / initial
terms we obtain a sequence which assumes each value just once. The results of [2]
imply that (o„)™=x is ergodic (in fact, even strongly mixing). This proves the
proposition.

Corollary. A countable semigroup of epimorphisms of a compact connected
metrizable group is ergodic iff it can be ordered so as to form an ergodic sequence.

In fact, if 2 is ergodic we can form an ergodic sequence out of some of its
elements. Now we insert all the other elements into sufficiently distant places in this
sequence. The new sequence gives an ergodic ordering of 2.

Proof of Theorem 4.1. Take an ergodic sequence of epimorphisms in the given
semigroup. The subsemigroup generated by all the epimorphisms in this sequence is
a countable ergodic semigroup.

Proof of Theorem 5.1. We have to prove only that if 2 is ergodic, then it
contains an ergodic epimorphism. Arrange the elements of 2 as an ergodic sequence
(o"„)^=i- Suppose no element of 2 is ergodic. Then every a„ has some root of unity
among its eigenvalues. It follows that some fixed root of unity À is an eigenvalue of
o„ for a set of positive upper density of numbers «. The results of [2] imply then that
(o„)™=x is nonergodic. The contradiction proves the theorem.

The following example demonstrates that our results in the last two sections fail to
be true if some of the underlying assumptions are dropped.

Example 5.1. Given a sequene a = (a„)^=x of nonzero integers we define an
epimorphism a- of TN by

o3(x1,x2,...)   = (axxx,a2x2,...)T   (mod.l),        (xx, x2,.. .)T G TN.

Let F be the set of all sequences a with a„ = 1 for sufficiently large «. Take 2 = {as\
a g F}. 2 is a commutative ergodic semigroup but no finitely-generated subsemi-
group is ergodic. Thus, the condition concerning the finite-dimensionality of the
group is essential in both Theorems 4.2 and 5.1. If instead of TN we consider T7,
where / is uncountable, and define 2 analogously, then we obtain an ergodic
semigroup containing no countable ergodic subsemigroup, so that the metrizability
condition in Theorem 4.1 cannot be dropped.

Example 5.2. The semigroup consisting of all rational rotations of T is ergodic but
no finitely-generated subsemigroup is. Thus the semigroups of epimorphisms in
Theorems 4.2 and 5.1 cannot be replaced by semigroups of affine transformations.

6. Finite invariant sets. In this section we shall be interested in the conditions
under which the property now to be defined is satisfied.

Definition 6.1. A semigroup of epimorphisms 2 of a compact abelian group G is
an FT semigroup if every finite 2-invariant set consists of torsion elements of G. (FT
— Finite is Torsion.)
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The importance of studying the FT property stems from its connection with the
ID property, discussed in the next section. The main result of this section is

Theorem 6.1. A commutative semigroup of epimorphisms of a compact abelian
connected finite-dimensional group is an FT semigroup iff it is ergodic.

Before the proof can be presented some more information concerning groups of
the type considered in the theorem is needed. (For more details see [1, §§IV.l, V.l]
and the references mentioned there.) Let G be such a group and T = G. As we have
seen, it may be assumed that Zr Q Y Q Qr. These embeddings give rise to dual
epimorphisms Qr -» G -» Tr. Let us describe Q. Put P = {p0, px, p2,...}, where
p0 = oo and px,p2,... are all the primes. Denote by \~\'™xQp the local direct
product of the groups Qp with respect to the compact open subgroups Zp . Agreeing
that QX = R and Zx ='[0,1] we set U'pePQp = R X IT^Q^. Consider the em-
bedding r: Q -» U'pePQp given by i(s) = (s, s,...), 5 g Q. The group Yi'pePQp is
self-dual and hence the dual homomorphism

»--a n'Q„-o
pep

exhibits Q as a quotient group of n^e^Q^. An explicit representation of Q is given
by the set YlpePZ (certain pairs of points being identified). If the sequences
(xp)pep> (yP)Pep G t\p£PZp correspond to the points x, y g Q, then the sequence
(zp)PeP corresponding to z = x + y is given by

_ /.*» +■>'•-[*.. + >'«].    />=°o,
Zp   \xp + yP+\.xoc + >U,    p*cc.

Now we can prove the theorem.
Proof. Suppose 2 is ergodic. By Theorem 5.1 there exists an ergodic a g 2. The

proof of Lemma 11.15 in [1] carries over to our case to show that a finite set,
invariant under an ergodic epimorphism, necessarily consists of torsion elements.
Hence 2 is an FT semigroup.

For the converse direction assume 2 to be nonergodic. Employing Theorem 5.1 we
infer that the semigroup 2r, consisting of the transposes of all matrices in 2, is
nonergodic as well. Consequently we can choose a nonzero row vector y g Zr such
that y G 2ris finite. Put va = (ayr,0,0,...) g U'p(EpQp for a g R. 2ua is obviously
finite for any a g R. Now if a is irrational, then va projects into a nontorsion
element in Tr. Hence the projection of va in G is also a nontorsion element. This
completes the proof.

Example 6.1. The semigroup 2 of epimorphisms discussed in Example 4.1 is
ergodic but not FT. The semigroup 2r, on the other hand, is FT but not ergodic.
Thus for noncommutative semigroups there is no necessary connection between
ergodicity and the FT property.

Example 6.2. The shift transformation on Tz, although ergodic, admits many
nontorsion periodic points.
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7. ID semigroups of affine transformations. In this section we study the following
property.

Definition 7.1. A semigroup IT of affine transformations of a compact abelian
metrizable group is an ID semigroup if the only infinite closed IT-invariant subset of
G is G itself.

Apart from the dynamical aspect, the concept of an ID semigroup is of interest
from a number-theoretical viewpoint. For example, a semigroup 2 of endomor-
phisms of T is ID iff {a g 2| a > 0} is not contained in the set of powers of a single
integer [3, Chapter IV]. Thus, given such a multiplicative semigroup of integers 2,
the set 2a is dense modulo 1 for every irrational a. In [1] a full characterization was
given of commutative ID semigroups of epimorphisms of compact abelian connected
finite-dimensional groups. Here the ID property will be examined for semigroups of
affine transformations. It will be shown that, under various assumptions, a semi-
group of affine transformations lying above an ID semigroup of epimorphisms is ID
itself. Thus, applying the following theorem to semigroups of affine transformations
of T, acting on correspondingly chosen points, one obtains sets of integers A (not
semigroups) having the property that Aa is dense modulo 1 for any irrational a.

Theorem 7.1. A semigroup of affine transformations of a compact abelian connected
finite-dimensional group, lying above a commutative ID semigroup of epimorphisms, is
ID as well.

For the time being G will denote a compact abelian metrizable group. 2 is always
a semigroup of epimorphisms of G and IT a semigroup of affine transformations
lying above 2. In the course of our discussion we shall make use of several ideas
introduced by Furstenberg [3] while studying the ID property for semigroups of
epimorphisms of T.

Definition 7.2. (1) A closed 2-invariant set A in G is ^-restricted if A + B = G,
B a closed 2-invariant set. implies B = G.

(2) 2 is an MR semigroup if every 2-minimal set is 2-restricted.
Definition 7.3. 2 is an ID0 semigroup if the only closed 2-invariant set which

contains 0 as a nonisolated point is G.

Lemma 1.1. If? is ID0, then it is FT.

Proof. Let F be a finite 2-invariant set. For every positive integer « the set nF is
also 2-invariant. Given any neighborhood U of 0 there exists some « g N such that
nF c U. Hence we can take a sequence (nk)f_x with nkF -* {0} as k -» oo (in the
Hausdorff metric). The set A = \Jf_xnkF is a closed 2-invariant proper subset of G
and, provided F contains a nontorsion element, contains 0 as a nonisolated point.
Hence F consists of torsion elements, which proves the lemma.

Lemma 7.2. //2 is ID0, then it is ergodic.

The lemma follows from the fact that nonergodic semigroups of epimorphisms
admit continuous nonconstant invariant functions.
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Proposition 7.1. If? is ID and there exists a finite Yl-invariant set, then IT is ID.

Proof. Let A be an infinite closed n-invariant set and B a finite n-invariant set.
The set A — B = {a - b\ a g A, b g B} is 2-invariant. Since 2 is ID we get
A — B = G. Thus a finite union of translates of A is the whole group, so that A has
a nonempty interior. By Lemma 7.2 and Theorem 3.2 n is ergodic, whence A = G.
This proves the proposition.

Definition 7.4. A flow (X, S) is an !F-flow if there exists a descending sequence
(S(k))kx>_x of subsemigroups of 5, with / g 5(A> for each k, such that:

(1) (X, 5(A)) is ergodic for every k.
(2) 5/5" ' has a finite group structure in the following sense: 5 decomposes into a

disjoint union 5 = U,"i15/'<) (Sx{k) = S(k)) such that for every 1 < /', / < nk there
exists some 1 < h < Hk with Sfk)Sjk) ç Sj¡k\ The collection {5,(/i)| 1 < i « nk)
forms a finite group under the operation ° defined by S/fc) ° Sjk) = Sj,k).

(3)(Jt=x{x^X\S^x={x}} =X.
Note that 5(/t) is in particular of finite index in 5 in the sense of Definition 2.2.

Theorem 7.2 [1, Theorem 1.2]. If(G, 2) is an&flow, then 2 is MR.

For the rest of this section G will denote a compact abelian connected finite-
dimensional group with dual T, Zr C T C Q/.

Lemma 7.3. 2 is ID iff it is both ID0 and MR.

The "only if' part is straightforward. The "if" part goes, employing our previous
results, exactly as the proof of Proposition II.7 and the subsequent conclusion of
Theorem II.1 in [1].

Lemma 7.4. If? is ID0 and ?' is of finite index in 2, then ?' is ID0 as well.

Using Lemmas 2.1 and 7.2 the proof is immediate.

Theorem 7.3. 7/2 is an ID0&flow, then IT is ID.

Proof. That 2 itself is ID follows from Theorem 7.2 and Lemma 7.3. Now take a
sequence (2(A))J°=1 of subsemigroups of 2 such that the conditions of Definition 7.4
are satisfied. Let Yl{k) be the subsemigroup of n consisting of those transformations
lying above any a g ?<-k). Put Fk = {x g G|2<A)x = {x}}. Select a dense sequence
(xk)T-i m G. We may assume that xk g Fk for all k. Let E be an infinite closed
n-invariant set. E — E is an infinite closed 2-invariant set, so that E — E = G.
Hence the set Ex = {re£| x + xx g £}, which is readily seen to be a closed
n(1)-invariant set, is nonempty. In general, for each « the set E„ = {x g E\
x + x¡.g E VI < /' < n} is a closed IT("'-invariant set. Assume that E„ ¥= 0 for
some «. If E„ is finite, then by Proposition 7.1 and Lemma 7.4 IT'"' is ID, so that we
are done. If E„ is infinite, then E„ — E„ is an infinite closed 2<")-invariant set
whence E„ - E„ = G. It follows therefore that the set E„+x = {x G E\ x + x,■ G E
VI < / < « + 1} is nonempty. As we see, either the process terminates at some
stage, in which case n is ID, or the process continues indefinitely. In the latter case
we get a point x g E with x + x„ g E for all «. Hence in this case E is dense, which
implies E = G. This completes the proof.
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The theorem points at the importance of the concept of J^flows for the study of
the ID property. We intend therefore to look for conditions on semigroups of
epimorphisms which are sufficient to guarantee that these form inflows. In the
following lemmas q denotes an arbitrary fixed prime. For a positive integer « we put
G[n] = {x g G\ nx = 0}. First we need

Lemma 7.5.//T ç Q[q), then[Jkc=xG[qk] = G.

The lemma is proved just as Lemma II.lb in [1].

Proposition 7.2. IfYçz Q[q), ? is ergodic and |det a\q = 1 for every a g 2, then
(G, 2) is an &-flow.

The proof follows that of Proposition II.6 of [1], so that only a brief outline will be
provided. For every k we define ?(k) as the subsemigroup of 2 consisting of those
matrices which are congruent to / modulo qk. Then 2(A) is ergodic and we easily
verify that the second condition in the definition of J^flows is also satisfied. To
establish the third condition it is sufficient, according to the preceding lemma, to
show that if a g ?ik) and x G G[qk], then ax = x. Write a = I + qki with t g
Mr(Q(q)). We have to prove that t represents an endomorphism of G. For an
appropriately chosen positive integer a, which may be assumed to be relatively prime
to q, at is an integer matrix and hence represents an endomorphism of G. Take
integers / and m with la + mqk = 1. Then t = l(ar) + m(qkr) is an endomorphism
of G. This completes the proof.

Theorem 7.3 and Proposition 7.2 taken together provide an ample supply of
semigroups of epimorphisms for which the ID0 property implies the ID property to
be valid for any lying above semigroup of affine transformations. We point out two
special cases.

Corollary I. If Y ç Q[q) and ? is an ID0 group, then Yl is ID.

Corollary II. // Y ç Z[l/a]r for some positive integer a and ? is a finitely-gener-
ated IDq semigroup, then IT is ID.

Proof of Theorem 7.1. Most of the proof relies on considerations described in
detail in [1] and so we shall only sketch it.

Being a commutative ID semigroup, 2 is ergodic and hence contains an ergodic a.
We first claim that a may be assumed to lie in IT. For this we notice that, in general,
if a set E is invariant under an affine transformation p lying above an epimorphism
t, say p(x) = r(x) + a, then the set E + ß is p'-invariant, where p'(x) = t(x) + (a
+ ß — r(ß)). Now if 1 is not an eigenvalue of t, which is in particular the case if t is
ergodic, then / - t is epic, whence for an appropriately chosen ß the set E + ß is
T-invariant. Returning to our situation we assume accordingly that a g n.

As in the proofs of Theorems IV.1 and V.l in [1] we can represent G as an inverse
limit of groups G„, each satisfying the conditions of Corollary II, and find corre-
sponding finitely-generated subsemigroups 2<,!) of 2 inducing ID semigroups of
epimorphisms on these groups. In view of Corollary II the corresponding subsemi-
groups LT'"' of n also induce ID semigroups on the groups G„. Suppose E is an
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infinite closed ü-invariant set in G. Let E„ be the image of E under the projection of
G onto G„. Suppose E„ is finite for all «. Since E„ is invariant under the ergodic
epimorphism induced by a it consists of torsion elements of G„. Employing Lemma
V.2 of [1] we infer that there exists a positive integer / such that E„ c G„[l] for all «.
This implies E Q G[l] which, by [1, Lemma V.l], contradicts the infinity of E. It
follows that E„ is infinite for some « = «0 and so for every n > «0. Invoking
Corollary II we get E„ = G„ for all «, and thus E = G. This proves the theorem.
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