
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 337, Number 2, June 1993

ERGODIC THEORY FOR MARKOV FIBRED SYSTEMS
AND PARABOLIC RATIONAL MAPS

JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

Abstract. A parabolic rational map of the Riemann sphere admits a non-
atomic /¡-conformai measure on its Julia set where h = the HausdorfT dimen-
sion of the Julia set and satisfies 1/2 < h < 2 . With respect to this measure the
rational map is conservative, exact and there is an equivalent cr-finite invariant
measure. Finiteness of the measure is characterised. Central limit theorems
are proved in the case of a finite invariant measure and return sequences are
identified in the case of an infinite one. A theory of Markov fibred systems is
developed, and parabolic rational maps are considered within this framework.

0. Introduction

In this paper we study parabolic rational maps on C, the Riemann sphere.
More specifically, we consider the ergodic theory of such maps with respect
to conformai measures on their Julia sets. The nonsingular transformations in-
volved turn out to be Markov fibred systems. We develop a theory of Markov fi-
bred systems based on, and generalising [33], which also applies to some Markov
shifts and Markov maps of the interval.

A rational map T :C-*C of degree > 2 is called parabolic if the restriction
T\jiT) is expansive but not expanding in the spherical metric on C (see [14]).
Equivalently (see [15]), J(T) contains no critical point of T, but contains
rationally indifferent periodic points. For example, a Blaschke product (i.e., a
rational inner function on the unit disc (see [1])) with an indifferent fixed point
is a parabolic rational map whose Julia set is contained in the unit circle Sx
(§9).

Let t > 0. A probability measure m on J(T) is called i-conformal for
T : C -» C if

m(T(A))= [ \T'\'dm
Ja

for every Borel set A c J(T) such that T\A is injective (see [34]).
It turns out (Theorem 8.7) that, for h = the HausdorfT dimension of J(T),

the unique A-conformal measure for T is nonatomic. This result is obtained
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496 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

(Theorem 8.4) by analysing the asymptotic behaviour of inverse branches in
small neighbourhoods of indifferent periodic points using the flower theorem.
This analysis also gives improved estimates for h (Theorems 8.5 and 8.8), in
particular 1/2 < h < 2. Existence of an Ä-conformal measure was established
in [15], and it was shown in [14] to be unique, if nonatomic.

Let T : C —► C be a parabolic rational map and m its Ä-conformal measure.
It is known (see [14]), that there is a topological Markov partition (see [31]))
with respect to which (J(T), m, T) is a fibred system. Also (see [14]), T is
ergodic and has a cr-finite invariant measure p equivalent to m . We show in
addition that T is conservative and exact, and characterise finiteness of p in
terms of h and the Taylor expansion around indifferent periodic points.

For co a rationally indifferent periodic point and q £ N such that Tq fixes
co with unit derivative, the Taylor expansion of Tq around co is of the form
z + a(z - co)p+x -\-, where p = p(co) = p(co, q) does not depend on q . Let

(o      p(co)

Because of the existence of the nonatomic /z-conformal measure we obtain
1 < a < 4. The invariant measure p is finite if and only if a > 2. For
example, if h < 1 (in particular for the parabolic Blaschke products) then p is
infinite. For the polynomials z y-^ z + z2 , z i-> z - z2, and z h-> z2 + 1/4 the
measure p is finite (see §9).

In case the measure is finite we derive the central limit theorem for partial
sums of Holder continuous functions which vanish on neighbourhoods of the
rationally indifferent periodic points (Theorem 9.12). This is derived using weak
dependence structures of an auxiliary transformation (the jump transformation
of [33]).

In case the measure is infinite then T has Darling-Kac sets with contin-
ued fraction mixing return time processes and return sequences of the form
{na-x}„ for 1 < a < 2 and {j^}« for a = 2 (Theorem 9.11). The exis-
tence of Darling-Kac sets, and regularly varying return sequence implies (see
[2, 3]) convergence in distribution of normalized ergodic sums, and, in case the
return time process is continued fraction mixing, we also have (see [4-6]) laws
of the iterated logarithm for the ergodic sums. These and additional results are
stated in detail (with definitions) in § 1, which is a brief overview of the relevant
ergodic theory for nonsingular transformations.

Fibred systems have been studied in [33] and [36] with application to piece-
wise onto transformations of the interval and multidimensional versions have
been studied in [38]. As mentioned above, parabolic rational maps are Markov
fibred systems (see [14]), as are Markov shifts and Markov maps of the interval.
In §§2-7 we develop the basic ergodic theory of these maps, extending [33] and
[36], using Schweiger's relaxation of the Renyi property (see [30]).

An irreducible Markov fibred system with the Schweiger property is either
totally dissipative or conservative ergodic (Theorem 2.5). A conservative, ir-
reducible Markov fibred system with the Schweiger property has a cr-finite in-
variant measure and Darling-Kac sets with continued fraction mixing return
time processes (Theorem 3.1), has wandering rates (Lemma 4.2), and is exact,
if aperiodic (Theorem 3.2).

The fibred systems corresponding to parabolic rational maps (parabolic fi-
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MARKOV FIBRED SYSTEMS 497

bred systems) are studied in §§5-7. Proposition 5.6 provides the information
necessary to use the analysis of the asymptotic behaviour of inverse branches
in small neighbourhoods of indifferent periodic points using the flower theorem
to identify wandering rates. Whence the characterisation of finiteness of the
invariant measure, and calculation of the return sequences in case this measure
is infinite. In §§6 and 7 we prove central limit theorems for aperiodic, parabolic
fibred systems with finite invariant measures.

In §9, we show that parabolic rational maps are indeed parabolic fibred sys-
tems (Theorem 9.1). This enables application of §§5-7 for parabolic rational
maps, except for two last things: continuity of the invariant density for the jump
transformation and continued fraction mixing with exponential rates. These last
two things are provided by Theorem 9.6.

1. Ergodic theory of noninvertible transformations
In this section, for the convenience of the reader, we collect without proof

some results on noninvertible nonsingular transformations of a Lebesgue prob-
ability space (X, f?, m). The proofs of most of the results can be found in
[29, 2-7].

Let T : X -> X be a measurable transformation (that is, T~XA £ 3r VA £
f?). The transformation T is called nonsingular if moT~x ~ m , that is, for
AeF,

m(T~xA) = 0 o m(A) = 0.
The transformation T is called nonsingular on A £ 3r if TA £ f? and, for
B£3rnTA,

m(AnT~xB) = 0 &   m(B) = 0.
The transformation T is called invertible on A e 3r if T is 1-1 on A,
TA£3r, and T~x : TA -> A is measurable. The transformation T is called
invertible if T is invertible on X.

If T is nonsingular and invertible, then clearly so is T~x.
Suppose that T is a nonsingular transformation of X. A set W £ &~ is

called a wandering set (for T) if the sets {T~"W}^L0 are disjoint. It is not
hard to show using an exhaustion argument that there is a set Xd£3r with the
properties

VA£3rnXd,    m(A)>0,
3 a wandering set W ç A B m(W) > 0,

and
W £3r a wandering set =*•   m(W\Xd) = 0.

The set Xd is uniquely defined up to measure zero. It also satisfies T~xXd ç
Xd mod m, since, if IF is a wandering set then so is T~XW. The set Xd is
called the dissipativepart of T, and in case m(X\Xd) = 0, the transformation
T is called (totally) dissipative.

The set Xc := X\Xd is called the conservative part of T, and T is called
conservative if m(Xd) = 0. The set Xc satisfies T~XXC D Xc mod m . It can
be shown that for a set A£9r m(A) > 0,

CO

^ ç Ic mod m   <=>   ^ 1B o r = oo   a.e. on B VB £3r n A,  m(B) > 0,
n=\
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498 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

and that T : Xc —> Xc is a (conservative) nonsingular transformation (when
m(Xc) > 0).

The conservative part of a power of T is the same as that of T mod m .
If 3q £ 3s (X), q o T~x = q ~ m, then clearly there can be no wandering

sets with positive measure, whence m(Xd) = 0 and T is conservative. Here,
and throughout, 3s (X) denotes the collection of probabilities on (X, &).

In case T is invertible, the conservative and dissipative parts of T can be
chosen to be T-invariant. For noninvertible, nonsingular transformations, this
is not necessarily the case, as illustrated by the following

Example. Let X = [0, 1), m be Lebesgue measure, and T : X -> X be defined
by

(2x, x £ [0,1/4),
Tx=l 2x-l/2,    x6[l/4, 1/2),

l2x-l,        x G [1/2,1).
Here, Xc = [0, 1/2] and Xd = [1/2, l]modw.

A nonsingular transformation T is called ergodic if A£3r and T~XA = A
mod m implies m(A)m(Ac) = 0. It is not hard to show that if T\Xc is ergodic,
then

oo

Tis ergodic   «•     (J T~nXc = X    modm.
n=l

In the example, it is well known that T\Xc is ergodic, and, evidently,
oo

(J T~"XC = X    modm,
n=l

so T is ergodic.
An invertible ergodic nonsingular transformation of a nonatomic measure

space is necessarily conservative. The example shows that this is not necessarily
the case for noninvertible, nonsingular transformations.

If T is a conservative, ergodic nonsingular transformation and p < m is
a a -finite T-invariant measure on X, then p ~ m. For nonconservative,
ergodic transformations, this is not necessarily the case, as illustrated by the
example, with Lebesgue measure restricted to the conservative part (0, 1/2)
being T-invariant.

If T : X —> X is nonsingular then f -> f o T defines a linear isometry of
L°°(m) whose dual preserves Lx(m). The restriction of this dual to Lx(m)
is known as the dual, or Frobenius-Perron or transfer operator, denoted by T,
and defined by

/ Tf>gdm= / f-goTdm.
Jx Jx

Note that the domain of definition of f can be extended to all nonnegative
measurable functions by the above formula.

It is not hard to see that for / e Lx(m), / > 0 a.e.

i x e X : JT f*/(*) = oo | = Xc    modm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MARKOV FIBRED SYSTEMS 499

Also,
T is conservative and ergodic

oo r

«*.   Vf"/= 00   a.e.V/6l'(m),   />Oa.e.,   / fdm>0,
„=o ^

and, if p < m and ^ - h , then
poT~x = p <* fh = h.

A nonsingular transformation r : Ji" — X is called exact if
oo

y4 € f| r-"^ => m(A)m(Ac) = 0.
71=1

Suppose r is conservative and nonsingular, and let A £ 3r, then m-a.e.
point of A returns infinitely often to A under iterations of T, and in particular
the return time function, defined for x £ A by cp(x) := min{« > 1 : Tnx £ A},
is finite m-a.e. on A.

The induced transformation on A (see [27]) is defined by
TAx = T*xh.

It is shown in [27] that TA is a nonsingular transformation of (A, 3rnA, m\A),
and that

T ergodic =>  TA ergodic,
oo

TA ergodic and \jT~nA = X modm =*■  T ergodic.
n=\

If, in the above situation, q < m\A is a TA-invariant measure, and the measure
p is defined on X by

p(B) = ¿ q[ A n T-kB\ (J T-U ) =  /" ̂  1Ä o Tk dq,
k=o    \ V=i /     jAk=o

then (see [26]),  p <ü. m  and p o T~x = p.   The above formula is known as
Kac's formula.

Let (X, &~, p, T) be a conservative ergodic measure preserving transfor-
mation on a a -finite nonatomic measure space. Let T be the dual operator. A
set A £ & with 0 < p(A) < oo is called a Darling-Kac set for T if there exist
constants {a„ > 0}„>x such that

n
lim -Í2fklA  =p(A)

n-yoo a„ *—'

uniformly on A.
In this situation, it follows that (see [3, pp. 1044-1045]) the system is also

pointwise dual ergodic:
There exist constants an = an(T), (n > 1), such that

n-\

J—Yfkf= ( fdp   a.e.

for any f£Lx(X,3r,p, T)

lim
■—»ft,.-  ,k=Q
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500 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBANSKI

The sequence a„(T) is uniquely determined up to asymptotic equality, and
is called the return sequence of T. In case the return sequence turns out to be
regularly varying with index a £ [0, 1], the asymptotic behaviour of

Sn(f) = Y,f°Tk
k=0

can be described almost surely and in distribution as follows:
Theorem [7, Theorem 1]. Assume that a„(T) = nah(n) is regularly varying
with index a £ (0, 1] or a = 0 and with h(n) ~ e\p(f[^f-dt), where n is
monotonie, \n(t)\ [0 as t ] oo, and \n(t)\/log t —► oo as t —► oo. Then for
any function f £ Lx(p)

1*1 i
lim ;--V-77FrS„(f) =     fdp   in measure.

n^oo log N^nan(T) JXJ

Theorem [2, Theorem 1]. Let (X, fF, p, T) be pointwise dual ergodic with
regularly varying return sequence an(T) of index a £ [0, 1]. Then for any
f £ Lx+(p) the sequence S„(f)/a„(T) converges weakly to a random variable
YaJxfdp where

T(l+a)nzn
E(exp(zYa)) = £ ni + a«)fl=o     v ;

for z £ C when 0 < a < 1 and for \z\ < 1 when a = 0.
Here, "weak convergence" means that for any bounded continuous function

g: [0, oo] -.R, /e L\, q£3°(X), q<&m,  we have

L g {a^f)Sn{f)) dQ "" E^(Yap(f)))
as  n —y oo, where p(f) = Jxfdp.   For a = 0 the variable  Y0  is clearly
exponential and for a = 1 , Yx = 1.

The almost sure behaviour of S„ (/) for nonnegative integrable functions /
has been obtained in [4-7]. We repeat here the main results for completeness.
Define for 0 < a < 1

r(l+q)
Q      aa(l-a)x-a'

The stochastic process {f°Sk}i(>x, where (Si, 3r, P, S) is a measure pre-
serving transformation, is called continued fraction mixing if

3ceK+9 P(AnS~nB)<cP(A)P(B)  V« £ N, A £ cr{f o Sk}nkZo , B £ 3r
and,

3«, 6 N,  {e„}„>„, ,   e„ -» 0 as n -* oo
such that

V«£N,  A£o{foSkYk-Ji,  B£F, j>nx:
(1 - Sj)P(A)P(B)  < P(AnS~{n+j)B)  <  (l+ej)P(A)P(B).

The en (n> nx) are known as the mixing coefficients.
The next four results are valid under the assumption that there is a Darling-

Kac set A for T whose return time process {cp o T%}„>x is continued fraction
mixing on A.
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Theorem [4, Theorem 4]. Assume that the return sequence of (X, F, p, T) is
regularly varying with index a £ (0, 1) and satisfies

an(T) ~ nah(n).

Let cj)(n) î and </>(n)/n [ as n ] oo. Then:
If

CO      j

Y, - exp[~ß<P(n)] < oo
«=1    "

for all ß > 1 then

lim sup—. .   ... .... ,.—Sn(f) <Ka / fdpn^txf nah(n/4>(n))4>(n)x-a ~   aJXJ

a.e. for every f £ Lx+(p).
If

oc     *

Y]-exp[-ß(f)(n)] = oo
7!=1

for all ß < 1 then

lim sup—,,   ... ,, ,. .,—S„(f) > Ka / fdp„^ nah(n/cj>(n))<j>(n)x-a ~      JXJ

a.e. for every f £ Lx+(p), and

lim SUP-ry—r.--.-r-rrr.-:-r^Ti-S„(f) = Ka   /   fdp„^vf nah(n/loglog(n))[loglog(n)]x-a aJXJ

a.e. for every f £ Lx+(p).

Proposition [5, Proposition 1]. Assume that the return sequence of (X, F, p, T)
is regularly varying with index 1 and satisfies

an(T) ~ nh(n).
Then there exists a constant Kj e (0, 1] such that

lim sup —-—-—Sn(f) = KT / fdp„-co   nh(n/loglog(n)) Jx

a.e. for every f £ Lx+(p).
Moreover, if h(n / loglog(n)) ~ h(n) as «-too, then

lim sup „L)^S„(f) = / fdp_1_
"„'IfZ1, nh(n)

a.e. for every f £ L\(p).
Theorem [6, Theorem 1]. Assume that the return sequence of (X, 3r, p, T) is
regularly varying with index a £ (0, 1 ) and satisfies

an(T)~nnh(n).

Then the random functions

1 "" «°ft(n/loglog «Xloglog ny-°S{n,]{f)       {t € M+)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



502 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

form a relatively compact set in the Skorokhod space D(R+) and its set of accu-
mulation points is

{x : R+—>■ R+ : x absolutely continuous, increasing, and ||x'(0IIz.1/<1-'")(r+) ^ Ka}-

Theorem [7, Theorem 2]. Assume that T has a Darling-Kac set whose return
time process is continued fraction mixing with rates en = 0(l/(logn)â) (ô > 0),
and

a„(T) = nah(n)

is regularly varying with index a e (0, 1] or a = 0 and with h(n) ~
exp(/1i ttif-dt), where n is monotonie, \n(t)\ j 0 as t î oo, and \n(t)\/logt —> oo
as t —► oo. Then for any function f £ Lx(p)

1^1 flim-— V-77=rS„(f) = / fdp     a.e.
N^oolog N ^nan(T) JXJ

2. CONSERVATIVITY AND ERGODICITY OF MARKOV FIBRED SYSTEMS

We consider various measurable and nonsingular transformations of the non-
atomic probability space (X, 3r, m).

In this paper, a (Markov) fibred system on X will mean a pair (T, 3?), where
T: X —y X is such a transformation, and 3? c 3r is a countable partition of
X, generating f?, satisfying the following conditions.

The Markov property.

TB=        [j        b   VB£3?
beal,bnTB¿0

This version of the Markov property is topological (i.e. set theoretic). It is
also possible to work with a measure theoretic version:

TB= [j b modm   VB £ 3?
be& ,m(bnTB)>0

Local invertibility.     For every B £ 31,  m(B) > 0 and  T is nonsingular,
invertible on B.

For k > 1, let
fc-i

3¿k~x = y T->m,

and for 0 < k < I < oo, let 3~kl denote the cr-algebra generated by \jffX T~j3l.
For b = (¿>i, ... , b„) £3ê" set

[b]=f)T-J+xbJ£3?0»-x.
j=i

Remark. If [b] = [bx, ... , b„] £ 3l£~x , then it follows from local invertibility
and the Markov property that

m([b]) > 0 <s> m([bk , bk+x\) >0       (I < k < n - I)
and, in this case, T" : [b] -» Tb„ is nonsingular and invertible on [b].
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It follows that if X ç 3ê^ and Xm is the closed support of m with respect
to the product discrete topology on 32n, with T : Xm —y Xm the shift, then
(Xm, T) is a topological Markov shift.

Accordingly, a fibred system (T,31) is called irreducible if

VB,B'£3l,  3n£N3m(BnT-"B')>0,

and is called aperiodic if

VB,B' £31,  3n£N9 m(B n T~VB') > 0 Vi/ > n.

Clearly,
r conservative and ergodic   =s> (T, 31) irreducible,

and

T mixing with finite invariant measure   => (T,31) aperiodic.

Indeed the irreducibility (aperiodicity) of (T, 3?) is equivalent to the topolog-
ical ergodicity (mixing) of the underlying topological Markov shift.

Let (T,31) be a fibred system on X. A subclass is a subset 0 ^ 31' ç 3?
such that

Tbc   (J B   \/b£3?'.

Let 31' c 31 be a subclass. Define X' := \Jbe<%, b ; then clearly TX' ç X' c
T~XX'. In case TX' = X', (T, 31') is called a subsystem (sometimes denoted
by X').

If X' is a subsystem of (T, 32), then 7\r = X' ç T~XX', and X' is a
union of elements of {Tb: b e 31} . Clearly, a union of subsystems is itself a
subsystem, and a fibred system having no proper subclasses is irreducible.

If \{Tb: b £ 3l}\ < oo, then any disjoint family of subclasses is finite,
and each subclass has a further subclass which is a subsystem. Any subsystem
(T, 31') also has the property that \{Tb : b £ 3l'}\ < oo . Thus every subsystem
has an irreducible subsystem.

If, in addition, (T,31) is not irreducible, then it is not hard to see that
for any b £ 31, there exists n e N such that T"b is contained in a proper
subsystem. It follows, that if X0 is the union of all the irreducible subsystems,
then

oo

{JT-"X0 = X    modm.
7! = 1

Set, for n £ N, and B £ 3e¡¡~x,

w„n ,„n     dm°T"
A(B)=An(B)=^r

By local invertibility, A(B) > 0 a.e. on B.
Let

3?={J £%ff-x,
TteN

f%+ = {[b]£ Jr:m([b])>0},
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and for C e K+ set

&(C, T) = Îb£3Ï+: ^Jff] <C   for mxm a.e. (x, y) £ B x b\ .
{ A(B)(y) J

It follows from local invertibility that if [b] 6 3g£~x n&(C, T), then for m-a.e.
x £ [b],

m(Tbn)= f A([b]) dm = Mm([b])A([b])(x),
J[b]

where M £[C~X ,C].
Therefore, if [b] e 3?£~x n&(C, T),  [ß] e 3ê»~x f\&(C, T), and also

[b, ß] £ &(C,T), then,
J_     m(Tbn)m([b,ß])        3
C3 -    m([b])m([ß])     -

or, equivalently,

(<?) C-3m([y?]|r¿.„) < m(T~"[ß]\[b]) < C3m([ß]\Tbf),
where the latter inequality is also valid for [b, ß] = 0. The formula (V)
states that the metric distortions of powers of T are uniformly bounded. This
phenomenon will sometimes be referred to as the bounded (metric) distortion.

Example 1 (Markov shift). Let S be a countable set, and let P be a stochastic
matrix on S. Set

X = {x = (xx,x2,...)£SN:pXk,Xk+l >0Vk>l},

T : X -> X the shift, 31 = {[s]}s^s, and for q £ 3°(S), qs > 0 Vs, define
m £ 3S(X) by

71-1

m([sx, ... ,S„]) =qSt Y[psk,sk+r
k=\

It follows that (T, 31) is a fibred system, and that for n > 1 , and [s] =
[sx,...,s„]£3?£-x,

M[S]) = ^s])¿     a-e-0n^    ^

Hence,

[sx,...,s„]£&(C,T)   e>   P-±^- £[C~X,C] (whenever ps„,t,pSn,t> > 0)
Ps„, v q¡

#   [s„]£ÏÏ(C,T).
For s £ S, if 1/2 < qt/pSJ < 2 whenever ps<t > 0 then [s] £ 3¿(4, T).
Clearly, for s £ S, there is q £ 3d (S) with this property.

Lemma 2.1. Suppose (T, 31) is a fibred system such that &(C, T) = 31+ , and
inf{m(B) : B £ T32} > 0. Then there is a T-invariant probability q <S m,
with j^ £ L°° and such that [$% > 0] is a subsystem. In case \T32\ < oo,

log^£L~(m\x.).
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Proof. Since &(C, T) = 31, and 31 generates 3r under T, it follows from
bounded distortion (<?) that V« > 1, [b] £ 3?£~x, and A £ 3r,

C-3m(A\Tb„) < m(T-"A\[b]) < C3m(A\Tbn).
Set ß = {Tb : b £ 3?} , and suppose m(B) > e > 0 V5 £ ß . For A £ 9? and
n > 1, we have

m(T-"A) = Y, m(T-"A\[b])m([b])

C3< C3 Y m(A\Tb„)m([b]) < —m(A).
be^?"

Hence

sup
7!>1

1 ¡^ dm o T k
n *-^     dmk=0

< 00,

and the sequence {j¡Y,l=o dmdm }">' is weak*-compact in L°°(m). Any weak
limit is the density of a T-invariant probability on X. In other words, there is
a probability q <^i m on X such that q oT~x = q and ^ e L°°(m).

Set
i/„(¿) = 5^m(¿|£)     51      w(7'"(B"1)fl)       (neH,Ae3").

B€ß ae^,Ta=B

then, by the above,
m(T-"A)

vn(A)
£[C~\C3] (fl£N,/l£^)

and
dvH     ^Zae<%,Ta=Bm(T-(»-x)a)
dm

Biß
m(B)

By construction of q , there is a subsequence nk —> oo such that
»*-i

lim — y m(T-JA) = q(A)    VA £ 3r,
7C—»OO   W¿

;=0

whence

where

i/A„t  L°°(m) ̂  Eae^ , ra=B ^(<J) , ¿"
¿m

Beß
m(B) dm '

£€/?     aeâl ,Ta=B

and

It follows that

1 ""'K = - Y] v¡.
n *■—'    J

7=0

'^'Eài   £   *"""»■
dm m(B)Biß      v    ' a£3l, Ta=B
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Let 31' = {b £ 31 : q(b) > 0} and X' = \Jbeâgl b. Evidently [jfe > 0] =
X'. Next we claim that (T, 31') is a subsystem. To see this, note that, for
b £31', [^ > 0] on Tb, hence Tb ç \Ja€^, a, and 31' is a subclass. As
T~l(X'\TX') ç X\X', it follows that q(X'\TX') = 0, whence, by the above,
TX' = X' and X' is a subsystem. In case \T32\ < oo, the nonzero values of
jfa are uniformly bounded below. Hence, the nonzero values of ^ are also
uniformly bounded below, whence log ^ e L°°(m\x').   <0>

Example 2. Let P be a stochastic matrix defined on S = Z by p„,n+\ = P>
and pn,n-\ = I -p,> where /? e (0, 1).

Let X c ZN be defined as in Example 1, let T : X ^ X be the shift, and
define m £ 3°(X) by

m([sx, ... ,sn]) = qSl Y[p
71-1

"\ ,■** + !  »

where qs = ¿m

k=\

If 31 = {[í]}íez, then (T, ^) is an irreducible fibred system, and &(C, T)
= i?forC = 4g}5g.

However the conclusion of Lemma 2.1 does not hold since T is totally dis-
sipative for p ^ 1/2, and T is conservative, ergodic, and with an infinite
invariant measure p~ m for p = 1/2.

Example 3. As in the example of § 1, let X = [0, 1 ), m be Lebesgue measure,
and T : X -> X be defined by

(2x, x£ [0,1/4),
7x= I 2x-l/2,       xe[l/4, 1/2),

[2x-l, jce [1/2,1).
If m = {[0, 1/4), [1/4, 1/2), [1/2, 1)}, then (T,31) is a fibred system,

and S?(l, T) = 31, since V = 2.
The conservative part of T is [0, 1/2), and this is the subsystem of Lemma

2.1.
Lemma 2.2. Suppose (T, 31) is a fibred system such that &(C, T) = 3?+ and
\{Tb : b £ 32}\ < oo, and let Xc£9r be the conservative part of T. Then

oo

\JT-"XC = X    modm.
71=1

Proof. By Lemma 2.1, if X' is an irreducible subsystem, then

3q£3>(X'), q~m\x',  qoT~l=q,

whence X' ç Xc. If Xq is the union of the irreducible subsystems of (T, 32),
then X0CXC.     <C>

As shown above,
oo

{JT-"X0 = X    modm
71=1
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whence
oo

\JT-"XC = X    modm.   0
71=1

Schweiger property. The Schweiger property is 3C £ R+ , and a collection of
sets 32(C, T) c &(C, T) such that

[b] e 32(C, T),[ß] £32,[ß,b]^0 ^[ß,b]£32(C, T)
and

U     B = X    modm.
Beâl(C,T)

It follows from this that 32(C, T) generates f?.
Clearly, if 32(C, T) is such a collection, then

32(C, T)C32(C, T),
where

32(C, T) := {[b] e&(C, T) : [fi]£3Ï, [ß,b] * 0 =► [ß,V\e&(C, T)}
and so T has the Schweiger property if and only if

y     B = X    mod m
Bë%{C,T)

for some_C > 1. It is not hard to show that if T is conservative and ergodic,
and B £32(C, T), then T has the Schweiger property with respect to

32(C, T) := {[bx, ... , bn]nT~nB : n > 0, [bx, ... , bn]£32^x}.

If (T, 32) is an irreducible recurrent Markov shift, then it is well known that
(T, 32) is conservative ergodic, and, by the discussion of Example 1, (T, 32)
has the Schweiger property if and only if S?(C, T) ^ 0 for some C > 1 .
Indeed, it now follows that any irreducible, recurrent Markov shift has the
Schweiger property with respect to some initial probability distribution.

Lemma 2.3. Suppose (T ,32) is a fibred system which has the Schweiger property
with respect to 32(C,T), and suppose A£32(C,T). Then

VB£3rr\A, n£N,  [b]£32^~x,  3M£[C~6,C6]

3 m([b] n T~nB) = Mm([b] n T-"A)m(B\A).
Proof. Suppose A = [a] = [ax, ... , a„] £ 32(C, T), and fix [c] £ 32(C, T).
For k > 1 and [b] £ 32^~x, it follows from bounded distortion (9) that

m([b, a, c]) - _^_m([b, a])m([c])   (since [b, c] £ &(C, T))

= M'^J m([a, c])   (since [a, c], [c] £ 9(C, T))

= MM'm([b,&])m([&,c]\A),

where M, M' £ [C~}, C3], and the result follows since 32(C, T) generates
3r.   <}
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Theorem 2.4. Suppose (T, 32) is a fibred system which has the Schweiger prop-
erty with respect to 32(C, T). Let Xc be the conservative part of T, and suppose
A£32(C, T). Then

¿ m(T-"A) = oo => A c Xc mod

and

m
71=1

J^m(T-nA) <oo => AcX\Xc modi\m.
71=1

In particular, Xc and Xd are both unions of sets in 32 (C, T).
Proof. The second implication is clear.    To prove the first, suppose  A  £
32(C, T) and m(A\Xc) > 0. Then

oo

3B£3rnA, m(B)>0,   3^m(r"i()<ooJ
n=\

whence, by Lemma 2.3,

Yjm(T~nA) <oo.    0
7!=1

Theorem 2.5. Suppose (T,32) is an irreducible fibred system which has the
Schweiger property. Then T is either conservative or totally dissipative; if T is
conservative, then T is ergodic.
Proof. Assume that

y      B = X    modm.
Be3l(C,T)

It follows from Theorem 2.4 that

Xc=        y        B    modm.
B€âl(C,T)nXc

Therefore, it follows from irreducibility that T is either conservative, or to-
tally dissipative. Suppose T is conservative. Since 32(C, T) generates 3r, it
follows from bounded distortion ('s?) that

mmT{Zjb[^] e[C-3,C3]   \/n£N,[b]£320"-xn32(C,T), A£S?.

Now suppose that A £^,  T~XA = A, and m(A) > 0. Then
mi À\lht\

£[C-\C3]   Vn£N,[b]£32£-xn32(C,T).
m(A\Tbn)

By the martingale convergence theorem, for m-a.e. x £ X,

m(A\[bx(x), ... , bn(x)]) -> lA(x)   as n -y oo,

where, for n > 1, b„(x) is defined by T"~xx £ b„(x) £ 32 .
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By conservativity of T, if [b] = [bx, ... , b„] £ 32(C, T), then, for m-a.e.
x £ [b], Tkx £ [b] (that is, (bk+x(x), ... , bk+n(x)) = b) for infinitely many
k, hence

1a{x)     €[C-3,C3].
m(A\Tbn)

It follows that
A= y B    modm.

Be%{C ,T) ,m(AC\B)>0

Since m(A) > 0,

3B£32(C,T)   3 Be A modm.

By irreducibility, if B' £ 32(C, T), then

3k >0 3 m(B KT~k B') > 0,

whence B' c A . Thus A = X mod m, and T is ergodic.     0

Suppose that (T,32) has the Schweiger property, with respect to the collec-
tion 32(C, T), and let Nc : X -» N u oo be defined by

ATc(;c) = inf{« g N : [bx(x), ... , bn(x)] £ 32(C, T)}

where inf 0 := oo. Then Nç < oo a.e.
Schweiger's jump transformation T* : X -* X is defined by

T*(x) = TNc{x\x).

By the Schweiger property, T*(x) is defined for m-a.e. x£X.
If T : B -y X is onto VB £ 32, then (X,3',m,T*) is a nonsingular

transformation. In general, by the Markov property,

V« > 1,  3t„ C 32   3   T*nX = y b.
bet*

Clearly, T*"X D T*n+xX, and x„ D t„+1 V/i > 1, whence
oo

X* := fi r*"^T = y è    modm,
7i=l 6er

where t = n„eN T« •
It is not hard to show that (X*, 3r, m\x-, T*) is a nonsingular transforma-

tion in case m(X*) > 0 (i.e., t ^ 0).

Lemma 2.6. Suppose (T ,32) is a fibred system with the Schweiger property, and
inf{m(B) : B £ T32} > 0. Then m(X*) > 0.
/Vüo/. Let ß = {Tb : b £ 32} ; then it follows from inf{m(5) : B £ T32} > 0
that

3320C32,  \320\ <oo 3Br\32o¿0 V5 £ ß.
Also,

V« > 1,   30 / 32n C 32   3   T*"X =   [j B.
B£âl„
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Since, for every n > 1,  T*nX is a union of sets in ß, it follows that  1 <
\32„ n 320\ < oo V« > 1, whence, since 32n D 32n+x,

f]32nD f)32nn32o¿0,
7¡€N 7i€N

whence m(X*) > 0.   0

Note that Nc is a stopping time with respect to 32 in the sense that [Nc =
n]£3r0"-x  VaeN.

Define the partition

32* = y X* n [Nc = n]n32£-

It follows that (T* ,32*) is a fibred system on X*, and ÏÏ(C, T*) = 32*+ .
Also, by the Markov property,

{T*b : b £ 32*} ç {Tb : b £ 32},
whence

\{Tb : b £ 32}\ < oo => \{T*b : b £ 32*}\ < oo
and

inf{m(5) : B £ T32} > 0 => inf{m(B) : B £ T*32*} > 0.
Lemma 2.7. Suppose (T,32)  is an irreducible fibred system which has the
Schweiger property, and suppose [b]£32 . Then

VA£3r,  m(A)>0,  3/i£N3 m([b] n T~"A) > 0.
Proof. Assume

y     B = X modm.
B€al(C,T)

Fix [b] £ 32 and suppose [a] = [ax, ... , a„] £ 32(C, T). By irreducibility,
there is a [b'] c [b] such that m([b', a]) > 0. Clearly, [b', a] £ 32(C, T), and
it follows from bounded distortion ('s?) that if [c] e 32(C, T), then

m([b', a, c]) > C3w|ran)m([b',a])m([c])

^ m([b', a])
- c^m([a])m([a'C]):=>?m([a'c])'

whence, for ,4 g y n [a],

m([b]nT~kA) > nm(A).

The result follows as

VA£3r,  m(A)>0,  3[a]£32(C, T)   3   m([a]nA)>0.   0
Theorem 2.8. Suppose (T, 32) is an irreducible fibred system with the Schweiger
property, and inf{m(5) : B £ T32} > 0. Then T is conservative and ergodic.
Proof. Suppose   T  has the Schweiger property with respect to  32(C,T).
By Lemma 2.6, m(X*) > 0, whence (T*, 32*) is a fibred system such that
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&(C, T*)=32* and inf{m(5) : B e T*32*} > 0. By Lemma 2.1, the conser-
vative part of T*, Xc, has positive measure, and, by Theorem 2.4, is a union
of sets in 32(C, T*) C M. If W £ 9? and m(W) > 0 is a wandering set
for T, then, by Lemma 2.7, for some n £ N, m(Xc n T~nW) > 0. The set
Wn = Xc n T~nW is also a wandering set for T. Since Wn c Xc c X*,

oo oo

[}T*-vWnQ \jT-vWnCW¿,

whence, by the conservativity of T* on Ic, m(Wn) = 0. This contradiction
establishes the conservativity of T. By Theorem 2.5, T is ergodic.     <0>

Examples: Markov maps of the interval. A map T : I —> / (la bounded
interval) is called Markov if there is a partition sé of I into intervals such
that

1. VA £ sé , T\A is strictly monotonie and extends to a C2-function on
A.

2. (T,sé) is a fibred system.

It can be shown (using the methods of [35]) that if in addition
(a) for each A £ sé , A contains at most one fixed point,
(b) the set A of indifferent fixed points is finite,
(c) Ve > 0 3p(e) > 1  3T'x> p(e) Vx £ A\B(A, e),
(d) 3n>0 3  V | on (y - n, y) n Ay and V | on (v, y + r¡) n Ay Vy £ A

(here for y £ A, Ay £Sé and y £ Ay), and
(e) |r"|/(r')2 is uniformly bounded on /,

then (T, sé) has the Schweiger property with respect to

{[ax,... , an]: either coan i A or an-X ^ an}.

3. Invariant measures, Darling-Kac sets, and exactness
for Markov fibred systems

Theorem 3.1. Suppose that (T,32) is an irreducible fibred system having the
Schweiger property with respect to 32(C, T), and T is conservative. Then T
is ergodic and there is a a-finite, T-invariant measure p ~ m such that

log-^eL°°(ß)   \/B£32(C,T).dm
Moreover, any A £ 32(C, T) is a Darling-Kac set for T whose return time
process is continued fraction mixing.

Definition (see §1). Let (X,fF,m,T) be a nonsingular transformation, q ~
m a T-invariant probability, and 32 c 3" a partition of X.

The system (T, 32) is called continued fraction mixing with respect to the
T-invariant probability q ~ m , if

3c £ R+3 q([b]nT~nB)<cq([b])q(B)   V« £ N, [b] £ 32^x, B £ 3,

and
3«,gN,  {£„}„>„,,   e„->0   as n -y oo
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such that
V/VeN, A£32k-{, B£3~, n > nx :

(l - en)q(A)q(B)  < q(AnT^k+^B)  <  (l + en)q(A)q(B).

Induced systems.   Suppose (T,32) is a fibred system and T is conservative.
For A £ 3~, let cp : A —> N be the first return time to A under T, namely,
cp(x) = min{« £ N : Tnx £ A}. (By conservativity, cp < oo a.e. on A.) The
induced transformation on A is defined by TAx = T^^x.

If k £ N and A £ 9rk~x then [cp = n] £ 30n+k-x V« G N. In this case,
define the partition

oo

32A=\J[cp = n]n320"+k-x.
71=1

It follows that (TA, 32A) is a fibred system on A , the induced fibred system on
A.
Proof of Theorem 3.1. The ergodicity of T follows from Theorem 2.5.

To show the existence of an invariant measure with the required properties,
it suffices (see § 1) to show that for every A £ 32(C, T), there is a 7>invariant
measure p ~ m\A such that log ^ G L0C(A).

This is indeed the case by Lemma 2.1, as TA(b) = A V¿> G 32A, and
&{C, TA) = (32A)+ as ^G^(C, T).

To complete the proof of the theorem, it suffices to show that every A £
32(C, T) is a Darling-Kac set whose return time process is continued fraction
mixing.

For A£32(C, T),

&(C,T) = (32A)+   and   TAb = A   Vb£32A,
and so, by bounded distortion (9), there exists a D > 0 such that

^q(b)q(B) < q(b n TfB) < Dq(b)q(B)   V« > 1, b £ 32£~x ,B£3T\A.

It follows from [9] that (TA, 32A) is continued fraction mixing, whence, evi-
dently, A's return time process is continued fraction mixing, and, by the main
lemma in [3], A is a Darling-Kac set for T.   <}

The following theorem generalises, and was inspired by [36, Theorem 1].

Theorem 3.2. Suppose that (T ,32)  is an aperiodic fibred system having the
Schweiger property with respect to 32(C, T), and T is conservative. Then,  T
is exact.
Proof. By Theorem 2.5, T is ergodic. Suppose

oo

A£f]T-"3',        m(A)>0,
71 = 1

then
V«>0,    3An£3'   3   A = T~nAn.

It follows that An = T"A , whence A = T~nTnA , and
T~kAn+k = T-kTn+kA = Tn(T~(k+n)T(k+n)A) = Tn A = An.
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Since m(A) > 0,

3[ß] = [ßx,...,ßv]£32(C,T)   3   m(An[ß])>0.

Set
cp(x) = min{n £N:Tx£ [ß]}.

Then cp < oo a.e. as T is conservative and ergodic. Define T* : X —y [ß] by

T*x = T*xh.

Then T*\^x = T[ßX, the induced transformation which is conservative and er-
godic on [ß]. For k > 1, let

fc-i
9k (x) = X¡ 9(T*jx).

j=0

Then T*kx = T^xh and

[b<pk(X)+\, ■■■, by^+v) = [/?].

For every x £ X and k > 1,

[bx(x),...,b<Pk{x)+l/(x)]£32(C,T),

whence, by bounded distortion (<?) and the Schweiger property,

m(A\[bx(x), ... , bVk{x)+v(x)]) = C±7'm(A(l>k(x)+v\Tßv).

It follows from the martingale convergence theorem that, for a.e. x £ A ,

m(A\[bx(x), ... , b<,,k(X)+v(x)]) -» lA(x)   asfc^oo,

whence
liminf m(Alf (x)+v\Tßv) > 0

AC—»oo

and
liminf m(A9k(x)+v) > 0.

K—»oo

Since   T*\[ßX   is conservative and ergodic on   [/?],    T*~x[ß]   =   X,  and
m(A n [ß]) > 0, it follows that

OO

[JT*-nA = X    modm.
71=0

Suppose x £ X and t £ N, are such that T*'x G .4 , and

liminfm(^(r.lx)+I/)>0.
k—>oo

Then
3e > 0 9 m(v4n(7-.,x)+i/) > e VA: large.

Recall that
A<pk+l(x)+v = A9k(T«x)+9l(x)+v = T'P'{X)A<pk(T*>x)+v

Next, we claim that

3ex>0 3 B £3,  m(B)>e   =►   m(T^{x)B)>ex.
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To see this note first that

332t ç 32g'{x)-1  3 \32e\ < oo and m [  [J b I > 1 - e/2.
\b€^   )

The map TV'W is invertible and nonsingular on every b £ 32B, whence, since
\âSe\<oo,

Vnn'>0   3B£3r, m(Bnb)> n for some b £ 32e   =>m(r"wB)>i|'.

It follows from the definition of 32e that

m(B) > e => 3b £ 32E 3 m(Bnb)> ^=-

and the claim is established.
From the claim, we obtain that

liminfm(^ç,A.(X)+i/) > 0   a.e. on X.
k—*oo

To establish the theorem, it is sufficient (again, by the martingale convergence
theorem) to prove that

limsupm(^w+„ n Tßv) > 0   a.e. on X.
k—yoo

To see this, let x £ X with m(An^+l/) > e > 0 for some e > 0 and all large
k . By aperiodicity of (T,32)

3//0 e N 3 m(Tpßv) > 1 - e/4,    Vp > p0.

By ergodicity of T*\[fi],
oo

3pi > Po, I > 1   3     ^2 h<pi=p\] °T*k = 00   a.e. on X.
k=l

As before,

3^p,,£ <f32ff-x f\Tßv  3  \32p^f < oo and m I    [j    Tp>b\>l-e/2,
\b&*fl.. J

whence
3beXPl3t3   m(Afk{x)+l,nT"b)>     *

¿Y^px ,t\

for large k . Also as before, there exists £i > 0, such that

if B£3~, andb£32p^t  3 m(B n Tp,b) > -^—-,   then

m(T-p'Bnb) >ex, and hence m(rPlfin rj8„) >e,.

This shows that

m(A?k{x)^Pl+l/ n rß,) = m(r-pM^U)+I/ n r^) > e,

for large fc.
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Because of the choice of px, we have

«i < m(A<Pj+lix)_Pl+l/ n Tß„)

= m(A^(x)+9l(T'ix)-Pl+u n Tßv) = m(A9j{x)+v n Tßf)

for infinitely many j, and

limsupm(^w+„ n Tßv) > sx.
k—>oo

This establishes the theorem. 0

4. Wandering rates for Markov fibred systems

Suppose that (fT ,32) is a conservative, ergodic fibred system having the
Schweiger property with respect to 32(C, T).

Let A £ 3~. Set A0 = A and
\ k~l

Ak = T-kA\\JT-U,     (k>l),        ck(A) = p(Ak),     (k>0),
V=o

where p ~ m and poT~x = p. The wandering rate of A is defined by

LA(n) = p({jT-lA\=J2ck(A).
\/=o /      k=0

(see [2] or [36]). The following is a generalisation of Theorem 3 of [36]. Let
3(\ denote the ring generated by 32(C, T).
Theorem 4.1. Suppose that (T ,32) is a conservative, ergodic fibred system hav-
ing the Schweiger property with respect to 32(C, T). Then 3L(n) ]

LB(n)~L(n)   asn^ocVB£3+, BcA£3q.
Proof. It is sufficient to show that if A £ 3~ is a finite union of sets in
32(C, r),then

LA(n)~LB(n)   as«->oo, \/B£3rnA, m(B) > 0.
The proof of this is based on Thaler's proof of Theorem 3 in [36], and uses

Lemma 4.2. Suppose that (T, 32) is a conservative, ergodic fibred system having
the Schweiger property with respect to 32(C, T), and suppose that A £ 3' is a
finite union of sets in 32 (C, T). Then

3M>1  3 Vk>l,Be3T\A,

p I T'kB \ y T-j'A j < Mm(B)p j T~k A \ \J T~> A j .

Proof. First, since A £ 3~ is a finite union of sets in 32(C, T), by Theorem
3.1,

3M > 1  3 -A £ [l/M, Ml on A.~        dm
Also, since  T is conservative and ergodic, for B £ 3~, we have by Kac's
formula,

p(B) = f> I a n t~'b\ y t-J a j .
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Thus, for B G 3r n A and k > 1,
(\     k-\ \ oo        / \     k+l-l

T~kB \  y T~jA \  = £]//    T-^k+^Bf)A \    [J   T~>A

CO / \       fc+/-l

<¥jffl   r(W'in/i\  y r~^

Using bounded distortion (fp) and the Schweiger property, it is not hard to see
that

3K>l3^B£3' \~\A,    k,l>l,
(\    k+l-l \ I \    k+l-l

r<w>fin/i\  y T~'A \<Km(B)m   r(WUni\  y r-^

whence
(\      k-\ \ CO / \      k + l-\

T~kB \ y r-;y4     < MK^m(B)m    T-[k+l)AnA \   y   T~jA

oo / \     A:+/-l
< M2K Y, m(B)p    T^k+lU n ̂  \   U   r"M

= M2Km(B)p I r-*^ \ U T~JA j .  0

Continuing the proof of Theorem 4.1, let B £ 3~ n A . Then

Ü T~kA\ [J T~kB c (¿\£) U [J T-k(A\B)\ Q 7^ ,
Ac=0 \/fc=0 fc=l \;=0

whence

L^(«) - LB(n) < p(A\B) + ¿ p ( r-fc(^l\ß) \ Q r-^
fc=l      \ \;=0

< Mm(A\B)LA(n)

by Lemma 4.2. Using this, we obtain for any fixed d > 1,

LB(n) ~ LB(n + d)   as « —> oo

> jl-Mm Ia\ \Jt~Jb\  \LA(n).

This establishes Theorem 4.1 since

iA \ U 7_Jß ) -* ° as d -* °°- ^
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Recall that if (T, 32) is a fibred system, then, for p > 1, so is (Tp, 32g~l).
If (T, 32) is aperiodic, then so is (Tp , 32p~x). If (T, 32) has the Schweiger
property, then so does (Tp, 32ff¡~x). Clearly, it can be fixed that

32(C, Tp)c3o(T).
From this follows
Proposition 4.3. Suppose that (T ,32) is an aperiodic, conservative fibred system
having the Schweiger property with respect to 32(C, T). Then

L(TP, n) ~ L(T, pn)   as n -» oo Vp > 1.

Next we recall the relationship between wandering rates and return sequences
for a conservative ergodic fibred system (T,32) with the Schweiger property.
Suppose that the return sequence for T is given by

7!

a„(r)~^wi.    as«—>oo,
k=\

where uk > 0 Vfc e N. It follows from Theorem 3.1 and the asymptotic renewal
equation (see [3]) that

oo . .

y«„jc"~--7—   asxîl",   \/A£3~, ACB£32(C, T),
ff^ l-xcA(x)

where
oo

CA(x) = ^ck(A)xk.
k=0

In case L(n) := J2l=o ck is regularly varying with index a £ [0, 1), it follows
from Karamata's Tauberian theorem that

m 1 "an(T) ~—————--—-   as n -y oo.T(l +a)r(2 - a) L(n)
In §9, this will be used to identify the return sequences of parabolic rational
maps from their wandering rates, which will be calculated (also in §9) using
results established in the next section.

5. Parabolic fibred systems

Suppose that (T,32) is a fibred system having the Schweiger property with
respect to 32(C, T). It follows from the definition of 32(C, T) that NcoT>
Nc - 1 whenever Nc > 2.

In this section, we assume that the fibred system is irreducible, and that
\T32\ < oo. We also assume that the collection 32(C, T) satisfies the addi-
tional properties that

Nc ° T = Nc - 1       (Nc > 2),
\32xn[Nc = 2]|<co,

T : [Nc > 2] -> T[NC > 2]     is invertible,
and also

T([Nc=\]\T[Nc = 2]) = X.
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These assumptions are satisfied by parabolic rational maps, as will be seen
in the sequel, and, accordingly, we shall call a fibred system satisfying them
parabolic (with respect to 32(C, T)).

If (T, 32) is a parabolic fibred system, then, by Theorems 2.8 and 3.1, T
is conservative and ergodic, and there is a cr-finite, T-invariant measure p on
X equivalent to m. Let P = [Nc > 2]. Then T : P -> T(P) is nonsingular
and invertible, and we obtain that there exists a unique inverse branch of T,

/, : T(P) -> P.
Clearly, fi(P) c P (since TP D P). Whence, for n > 1 ,

f: ■ T(P) - P
is defined.

Since \(TP\P) n32\ < oo, it follows that for every a £ (TP\P) n 32 there
is an eventually periodic sequence {bn}^f=l (bn = bn(a)) such that

f:a = [bn,...,bx,a]       (n>l).
Writing _

(bx,..., bn ,...) = (bx,..., br, ßx, ..., ßd),
where r = r(a) and d = d(a), we have bkd+r+l/ = ßv  (k>0,0<v<d-l),
whence

f?k+r+vac[ßl/,...,ßx,ßd,...,ß„+x]   Vk>0,0<v<d-1.

Lemma 5.1. Suppose that (T, 32) is a parabolic fibred system with respect to
32(C, T). Then X* = X and (T*, 32*) is irreducible.
Proof. Note first that if x, y £ X, Nc(x) = 1, and T"y = x, then

3k <n 3 T*ky = x.
It follows from irreducibility and the Markov property of (T,32) that

oo

V5 G y 32¿-x,  b G 32 n [Nc = 1],   3n > 1  3 T*nB D b.
k=\

It now follows from the equality T([NC = 1]\T[NC = 2]) = X that
OO

V5, B' £ y 32£-x ,   3n > 1   3 T*nB D B',
k=\

which yields X* = X and the irreducibility of (T*, 32*). 0

By Lemma 2.1, there is a T* -invariant probability q ~ m such that log jfa £
L°°(m). It is not hard to show that if

oo

p'(B):=Y,9(T-kBn[Nc>k]),
k=0

then p' o T~ ' = p! < m, whence, by conservativity and ergodicity of T,
p = cp', where c€l+ is a constant. We assume that c = 1, that is,

oo

(*) p(B):=Y/Q(T-kBn[Nc>k]).
k=0
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It follows from (♦) that

p([Nc <v])<v   Vi/ G N.

Lemma 5.2. Suppose that (T ,32) is a parabolic fibred system with respect to
32(C, T). Then

LA(n) = p([Nc < n]) + 0(l)   asn^oo,

where A = [Nc — v] (v > 2) and p~ m, poT~x = p.

Proof. Set A0 = A and Ak = T-kA\\Jkfx T~Ja (k > 1). Then LA(n) =
Y,nk=0p(Ak) and Ak = [Nc = v + k] U Bk , where Bk c [Nc < v] are disjoint.
Thus,

LA(n) = j^p([Nc = v + k\) + p{\jBk\
k=0 \k=0      J

= p([Nc < n]) + 0(1). 0

Lemma 5.3. Suppose that (T, 32) is a parabolic fibred system with respect to
32(C, T). Then

p([Nc<n])= Í (Nc/\n)dq + 0(l)   as n -► oo.
Jx

Proof. For n > 2 and k > 1,

[2 + k < Nc < n + k] ç T~k[Nc < n] ç [Nc < n + k],

hence

q([k+2 <NC< k + n]) < q(T~k[Nc < n]n[Nc > k]) < q([k + l < Nc < k + n])

and
oo

P([NC < «]) = 5>(r-*[JVc < "] n [Nc > k])
Ac=0
oo

= ^2^([k+l <Nc<k + n]) + 0(l)
k=0
oo

= Y,kAnq([Nc = k]) + 0(l)
k=\

= / (Nc An)dq + 0(1),    as n -» oo.   <0>
Jx

For x £ T(P) we denote

_ dm of,"
dn{X)~    dm

and
An(x) = A(bx,...,bn)(f:(x)),

where fn(x) £[bx, ..., bn]£ 32$ . Clearly A„(jc)Ô„(jc) = 1
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Lemma 5.4. Suppose that (T ,32) is a parabolic fibred system with respect to
32(C, T). Then

Vi/ > 2, B£[Nc = v]C\ 32¿-x, V« > 1,   for a.e. x£B
oo oo

£> A n)m(fkB) = Dm(B) £(* A n)dk(x),
k=0 fc=0

where D g [C~2, C2].
Proof. First, note that if [b] G 32^~x n [Arc = ^], then [b] G 32(C, T), and
there exist bx, ¿>2, ... G 32 such that

f?([b]) = [bn,...,bx,b]       (n>l).
Clearly, f?([b]) £32(C, T) and hence

for a.e. x £ [b], n > 0 3D g [1/C2, C2] 3

dnW"^  m([b])  •

Thus for a.e. x £ [b] G 32^~x n [yVc = H and « > 1,

Yi(kt\n)m(fk[b)) = J£(kAn)      dkdm
k=o fc=o ,/[bl

OO

= Z)m([b])j](fcAii)fllk(jc),
¡fc=0

where D £ [C~2, C2].  0

Theorem 5.5. Suppose that (T ,32) is a parabolic fibred system with respect to
32(C, T), and let v > 2 and K = 32^~x n ([Nc = v]). Then

3M > 1 3    for a.e. (xb)beK £ J J b,    V« g N
b€K

oo

M~xL(n) < Y^ ̂ 2(k A n)dk(xb) < ML(n).
b€K k=0

In particular,
oo

p(X) < oo «• ^2 ndn(x) < oo   for a.e. x £ T(P).
71=0

Proof. By Lemmas 5.1, 5.2, and 5.3,
oo oo

L(n) ~ £(fc A «)g([JVc = *]) ~ $> A n)*tâ\.Nc = v\)
k=0 k=0

oo

= Z)£(fc A n)m(fk[Nc = v]) = D £ £(* A «)m(/fe5)
i:=0 B£K k=0

oo

= ß£^^(Ä:A«)9,(xÄ),
fie/t:A:=o
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where | logD\ < || log$£||z,°°(W) and E £ [C~2, C2]. This proves the first part
of the theorem. The second part follows since, clearly, p(X) = limn^oc L(n).   £>

Proposition 5.6. Suppose that (T, 32) is a parabolic fibred system such that
p(X) = oo, and suppose that jfa is uniformly continuous on 32N in the sense
that

Ve>0, 3«> 1  3
dq dq
-¡—(x) - -¡—(y)dm dm <s   Vx,yeX 3bk(x) = bk(y) (l<k<n)

Then
d(a)-\ oo

L(")~      E       E ca,uY^khn)m^k+r+"a)   asn^oo,
aeTP\Pc\3l   i/=0 k=\

where ca,v > 0 Va, v, and where r = r(a) and d(a) are as defined before
Lemma 5.1.
Proof. By Lemmas 5.2 and 5.3,

oo oo

L(n) ~ Y.k A "«We = k])~Y,kA nq(fk(TP\P))
k=l k=l

oo

~   E   E^A")^fl)
aeTP\PC\3t k=\

d(a)-\  oo

~      E     rf(fl)  E  E(fc A n)9{ftk+r+va)   asn-oo.
aeTP\Pn@ v=0   k=\

Since
fdk+r+u{x) _ (ß,, ... , 0,, ß,, ... , ßv+x)    in ^N

for x £ a and 0<v<d-l,it follows by the continuity of fy that

Va G TP\Pr\32, 0< v <d- 1,  3ca,„ > 0 3

°f»k+r+l,(x)^ca<u   asÁr^ooVxGa,UQ   .  rdk+r+v i
dm

and hence
q(f?k+r+va) ~ ca,vm(f?k+r+,'a)   as A: - oo.

The proposition follows from this.  0

6. Mixing properties of fibered systems
with finite invariant measures

The first goal of this section is to establish
Theorem 6.1. Suppose that (T, 32) is an aperiodic fibred system such that for
some C £ R+,

S?(C,T)=32+,
there exist 320,32x ç 32 such that \320\ < oo, and TXX Ç X0, where X¡ =
Ußea?, B  (i = O, 1). Then there is a T-invariant probability q ~ m such that
log j^ G L°°(m), and (T, 32) is continued fraction mixing.

The proof is presented in a sequence of lemmas.
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Note that under the assumptions of Theorem 6.1, since TX = X modm ,
necessarily TXq ç Xx modm . Also, \{Tb : b £ 32}\ < oo, and so by Lemma
2.1 there is a T-invariant probability q ~ m such that log ̂  G L°°(m).

Lemma 6.2. Under the assumptions of Theorem 6.1,
3L £ E+ 3 V« G N, A £ 32£-x ,B£3Ï:

either q(AnT-"B) = 0,   or i < q{An T~"B] < L.
L        q(A)q(B)

Proof. If A = [a] G 32£~x ,B£32, and m(A n T~nB) > 0, then, by bounded
distortion (<?),

~_3   ,~   H     m(/lnr"i))     .j ._,
C   m{Tan)    £   .(^W   *C m{Tan)   ■

The result follows from this since \{Tb : b £ 32}\<oo and log^GL°°(m).   0

Remark. In case \32\ < oo, the continued fraction mixing of (T,32) follows
from Lemma 6.2 and Corollary 2.4 of [12].

Lemma 6.3. Under the assumptions of Theorem 6.1,

3n0£N3T"B = Xmodm   VB£32,n>n0.
Proof. Since \320\ < oo, by aperiodicity

3N G N 3 m(B n T-"B') > 0   Vn > N, B, B'£ 320,
whence, by the Markov property,

X0 ç TnB modm   Vn > N, B £ 320.

Since TB C X0 VB G 32 ,
X0 Q TnB   Vn>N+l,B£32

and, since TXq d Xx ,
XCT"B modm   \ln>N + 2,B £32.   0

For b £ 320 and b' £ 32x such that b' c Tb set

<%(b, b') = {c£32x: T(c) = T(b'), c c T(b)}.

Remarks. Suppose 0 ^[bx, ... , bn]£ 32£~x . Then

bj£32x =>*/_i, bl+x £320,
since TXX ç X0 and

bj£320,bj+x£32x,b£%'(bj,bj+x) => [bx,..., b¡, b, bj+z, ...,bn] f 0.
Lemma 6.4. Under the assumptions of Theorem 6.1,

3/7 > 0 3 y A £ 320, B £32X,B cTA:

ml     U     c)>n.
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Proof.  \{W(A ,B):A£320,B£32x,Bc TA}\ < oo .      0

If A £ 32£-x, B £ 32 , and p £ N, define
9SP(A ,B) = {C£ 32p~x : A n T~nC n T~n-pB ¿ 0}

and
DP(A,B)=      y      C.

Ce3fp(A,B)

Lemma 6.5. Under the assumptions of Theorem 6.1,

V/> g N 3 TpB = ImodmVß G 32,
3 yp > 0   3 m(Dp(A ,B))>yp    VA, Be 32.

Proof. Suppose A = [bx,... , b„] and B £ 32, and recall that  TP+"A =
X,    AnT~pB¿0, and 3fp(A,B) + 0. If

[c] = [cx,...,cp]£2p(A,B),

then, by bounded distortion (Ç>),
p

Dp+xm(Dp(A, B)) > m([c]) > -^ f[ m(ck),
k=\

where D = C3/ min{m(Tb) :b £32}, and if

3[c] = [cx,...,cp]£ 2P(A ,B) 3ck£320 VI < k < p,

then
m(Dp(A,B))>-^TT,

where e = minB6^.0 m(B).
If not, then 3[c] = [cx, ... , cp]£ 3P(A, B) so that ck £ 32x for some k . If

Cj £ 32q , Cj+X £ 32x, and r g ^(c, , cy+i), then

[cx, ... ,Cj,r,cj+2, ... , cp] £3tp(A, B).

If cx £ 32x , then an £ 320, and, for r G &(an , cx),  [a„ , r, c2, ... , cp] £
%(A,B).

Set L = {1 < j < p : Cj £ 32x}. Then, denoting cq = a„ ,

%(A, B) D {[c'x ,...,cp]:c'i = ciVi i L, c\ £ % (c,_,, cf) Vi G L} =: 2(c).
Hence

m(Dp(A,B))>    £   m([c']) = ^Tr1\L\ep-\L\>yp,
[C]e^(c)

where n is as in Lemma 6.4, and

1 fmin{n,e}YYp = D {-D-J   •  0
Lemma 6.6. Under the assumptions of Theorem 6.1,

3L£R+,p£N 9V«gN, A£32£~x ,B £32:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



524 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

i    g(Anr-("+p>£)
L-       q(A)q(B)       ~    '

Proof. The upper bound follows from Lemma 6.2.
For p £ N such that TPB = XVB£R,

m(A n T-Ip+^B) > D-3m(A)m(Dp(A, B))m(B)
l¡L™(A\™tn\      W„rM      A tr 0n-\> j^m(A)m(B)   V« G N, A £ eg"1, B £

The result follows since log ^ G L°°(m).  <>

Proof of Theorem 6.1. The continued fraction mixing of (T ,32) follows from
Lemma 6.6 by [9], and Theorem 6.1 is established.   0

7. Central limit theorem

In this section we assume that (T,32) is a finite aperiodic and parabolic
fibred system with respect to 32(C, T), and that the T-invariant measure p
is finite. In particular,

oo

p(A) = Y,l([Nc>u]nT-»A)       (A £3-).

Let po = P/p(X) denote the equivalent probability measure. Under the as-
sumptions, the jump transformation need not to be aperiodic as well. How-
ever, it follows that the other hypothesis in Theorem 6.1 is satisfied by setting
32¿ = 32 n [Nc = 1].
Theorem 7.1. Let (T ,32) be a finite aperiodic and parabolic fibred system with
respect to 32 (C, T), and let there be two periodic points x, y £ X with relatively
prime periods p and p' respectively, such that their forward orbits are contained
in [Nc=l]- Then (T*, 32*) is aperiodic and continued fraction mixing.
Proof. By Lemma 5.1, (T*, 32*) is irreducible. Let Tjx £ Aj £32 (0 < j < p)
and T'y £ B, £ 32 (0 < i < p'). Then, by the Markov property,

Aj+xCTAj,     A0CTAP-X        (0 < j < p - 2),
Bi+X ç TBi,     B0 ç TBP,_X        (0 < i < p'- 2).

By irreducibility there exist n, m > 1 so that Aq Q (T*)"Bq and B0 ç
(T*)mA0. Since T = T* on [Nc = 1] it follows that

A0 Q (T*)PA0 n (T*)n+mA0 fi (T*)m+n+p'A0.

Since the common divisor of p, n + m, n + m+p' is 1, (T* ,32*) is aperiodic.
By Theorem 6.1 it then follows that (T* ,32*) is continued fraction mixing.  ^>

By Lemma 5.3, A := J Nc dq = p(X) < oo, and by the ergodic theorem
N"       l    *.-> —   a.e.,
n       A

where

Nn(x) = mini l: ¿ Nc((T*Yx) > n\ .
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Let / G L°°(p) and define

f*(x) = f(x) + f(Tx) + ■■■ + f(TN^~xx) - Nc(x) [ fdp
Jx

It follows immediately that
r r Nc~l

p(f):=     fdp=      ^fo^dq,
Jx Jx k=Q

hence q(f*) = ¡x f*dq = 0, and that /* G L2(q) in case

Y,n2q([Nc = n])< oo.

o       (x £ X).

7!>1

Denote

ol(n = o2M) = ¡x{yjro(T*)k\   dq.

In this section we prove
Theorem 7.2. Let (T*, 32*) be absolutely regular with mixing coefficients

ß(n):=supysup{\q(E\F)-q(E)\: F G (?■*)?+„} dq : E G (F*)k ; k > o}

satisfying
£/3(«)</<2+í><oo
71>1

for some Ç > 0. Let f be a bounded measurable function such that f* £ L°°(q)
and such that

£„ := \\r-Eq(f*\(3-*)l)\\L^(q) < Cn-2^       (n > 1)
for some constant C > 0. Then

oo

c/= a((/*)2) + 2£>(/*/* °(n')< oo
/=i

converges absolutely, lim„^oo cr«/" = lim„_oo o"« (/*)/« = Cf, and, if Cf ^ 0,
then f satisfies the central limit theorem, that is,

lim po
71—»OO

^±(f°Tk-p0(f))<t
v    ■> k=o

= —['
V2~TC J-a

e\p(-u2/2)du

for any ieR.
Corollary 7.3. Let (T* ,32*) be aperiodic, and let f be measurable with respect
to a(32ff) for some m > 0 such that f* £ L2(q). Ifa2 = o2(f*) -> oo, then
a2 = nh(n), where h is slowly varying on R at infinity, and f satisfies the
central limit theorem, that is,

1
lim po

71—»OO
^Y.(foTk-po(f))<t
a" to

I     exp(-u2/2)du
J—oo

for any ieK.
The proof of Corollary 7.3 is a modification of the proof of Theorem 7.2,

observing that, by Theorem 6.1, (T* ,32*) is continued fraction mixing. For
the proof of Theorem 7.2 the following maximal inequality is needed.
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Lemma 7.4. Let (T*, 32*) be as in Theorem 7.2 and let g G L°°(q) be a
bounded measurable function satisfying q(g) = 0 and

£„:= [j\g-Eq(g\(3-*)l)\2dq}     <Cn-2~<>      (n > 1)

for some C > 0. Then
alln = rf(g)/n -^cg   asn^oc,

where
oo

cg = q(g2) + 2'£q(ggo(T*)l)<oo
/=i

converges absolutely, and if cg ^ 0, then for every e, n > 0 there exist no and
¿o > 0 such that for n > «o and 0 < N < Son

max
0<j<N 1=0

Proof. It is well known [24] that by the assumptions in the lemma, a2 ~ cgn .
Since (T* ,32*) is absolutely regular it is also aperiodic, hence, by Theorem
6.1, (T*, 32*) is continued fraction mixing with respect to 32*.

Denote by
q(EnF)
q(E)q(F)

the continued fraction mixing coefficients of q with respect to 32*.
Let e,  n > 0 and fix p0 so that for p > p0, y/(p) < v(po) < 1 • Denote

y/(n) := sup 1 F£(3-*)f+n; E£(3-*)k;k>o}

Sj(g) = Y,S°{T*)'-
1=0

Let «o and ¿o > 0 be chosen in such a way that for n > no,    N < Son , and
p = p(N) ~ N«-™2,

C(N + 2p)p~2-t: < oN+2p,

4N3C2
—r~rP 4+2Í <e/2,

and

yN:=(l-V(p))(l-X-~jf\>0,

2p||g||oo<cr7,'7/8,

_32<2p_<e/2
n2 min0<,<N yto2

Let n > no and 0 < N < ôon be fixed. Let

Q = [\Sf(g)\ > ann/2 ; \S°(g)\ < o„n/2 (0 < j < t)],
where

Sf(g) = E Sp ° (T*)1,        gP = E(g\(3*)l).
1=0
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Then

Q{[\S°N+2p{g)\ > onn/4])

>q \S%+2p{g)\ > ann/4; maxN\Sf(g)\ > onn/2

N

= Y,<l(C,n[\S%+2p(g)\> onr,/4])
t=o

>£°(ctn[\s%+2p(g)-s?(g)\<?£])
t=0

> ¿a (ctn[\S%+2p(g)-S?+2p(g)\<^-,  K2p(g)-S?(g)\<?f-})
t=o

= £,q(Qn[\S%+2p(g)-S?+2p(g)\<?g])
t=0

> (1 - ¥(p)) (l - maxNq ([\S°N+2p(g) - S?+2p(g)\ >
onn
8

xq ¿8&«c»i>^
Since by a crude estimate

E(S°N+2p - S*N+2p)2 <(N + 2p)2E(g - gp)2 < C(N + 2p)2p~^ < o2N+2p ,

we obtain

o([\S%+2p(g)\ > a.,/*» < l6ElS2l+22p)2 < ̂ -
un 'I un 'I

Moreover, since

for 0<t<N,it follows that

max\S^(g)\>onn/2})
<j<N J /9<J

<

<

Q([\S°N+2„(g)\ > cTnrj/4])

(1 - y/(p))(l - maxo<t<Nq([\S°N+2p(g)-Sl2p(g)\ > onnß)]))
32a2'N+2P

n2 min0<,<v ltO~n 2
<e/2.
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Finally observe that

max S* (g) - max S?(g)
0<t<N 0<t<N > Oni}/2   )

<q({lO<l<N 3\(g-gp)o(T*)'\>^L})

<í>([iu-^)°(n'i>f£])
/=o
^ 4JV2 4JV3C2        e

-JLcr2772Íp-  CT2.2P4+2Í  ^  2'

Whence
/=o

Q max Sï (g)
0<t<N

> onr\ < fi.   0

Proof of Theorem 7.2. Let 0 <ô <y(l). Choose n > 0 so that for t £
1 /-i+471

v/27Z /
du <ö.

Set g = f - Po(f) • Since # is absolutely regular with rates as in the theorem,
it is well known (see [24]) that /* satisfies the central limit theorem:

lim q I  —Yf*° (T*)k <t   | = -L /' exp du.

Let
N„(x)

Mn(x) = £ Nc((T*Yx).
;=0

By definition, n < Mn and so
M„ M„

E SoT'
l=n+\/=0 /=0

The difference Mn-n has possible values 0, 1,2,.... If Mn(x) - n = p > 1
and / = 2Zo<i<N„(X)Nc((T*yx), then I < n by definition, and (T*)N»^x =
T'x. Hence Nc(Px) > Mn(x)-n = p and Nc(Tnx) = Nc(Px)-(n-l) = p ,
equivalently T"x G [A^ =/>"]. Hence, setting p0 = [ne„A~x/2\\g\\f0x],

M„

P
On

Y,g°T'-Y,s°T' >n <Y^nc=p)<o,
P>PoI /=0 /=0

if n is chosen large enough. Therefore there exists kx such that for n > k > kx

VÄ M„

> 2n <2S.
l=k+\ l=Mk + \

Let «o and r50 be determined by ô and -4= as in Lemma 7.4. We may choose
kx so large such that kx > 2«0, y/(kxA~x) < ô , and, since n~xNn —► A~x,

p([2\Nk-A-xk\>ôok;  (k>kx)])<S.
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Choose «i > kx so large that for n>nx,

529

P E^'
/=0

>1 <8

and, since /* satisfies the central limit theorem uniformly in u £ R,

Xd     £     f*o(T*)'<u
l=ktA-' + \

<Q
.      nA-'

-^E/*°(r")'<("+>7)^-
anA-i   ff¿ VAon/A

+ q

1    t- V2ñ J-

I

£/*o(n'
/=0

,2

> ^t,

exp
-V

1      /■"< —= I     exp

v^

du + 20 + -

dv + 3(5.

A°Ia->
rfo2

Here we used that a2 is regularly varying with index 1 by Lemma 7.4 and hence

on ~ \IA anjA.

Next observe that by definition for k < n

E 8°ti= y r°(T*Y-
l=Mk+l l=Nk+i

Therefore, if n > nx, it follows from the above thatq

P £±S°T><_,1=0

<p ^   E   r°(T')l<t + 3r,
o«    ...

l=Nk,+l
+ P

+ P vj
On

E g°T¡- E r°(T*y
i=k, + l l=Nk¡ + \

VÄ

> 2t]

Eg*?1
1=0

>n

<p

<p\

^   E   r°{T*)><t + 2>n
"71     ,     ,,     . ,

l=Nk¡+\
+ 30

2\Nl-A-xl\<ôol(l>kx);?—   Y   r°(Dl<t + 3n
l=Nk,+\

+ 40.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



530 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

Using the definition of p in terms of q in §5, it follows that for n > nx

P ^J2(foT'-po(f))<t
a»   1=0

oo       oo

u=0j=u+l
Nc = j; 2\NloTu-A~xl\<ôol(l>kx);

il    N"oT"
—     E     f*°(T*)l°Tu<t + 3n

"   I=NkoT"+l
+ 40.

Note that for ; > u and x £ [Nc = j] we have that T*(Tux) = T*x
by definition of T* and that N¡(Tux) = N¡(x) by definition of Nc and N¡.
Therefore, using continued fraction mixing and Lemma 7.4,

P- ^Y(foP-po(f))<t
°n   1=0

<4¿ + EEa
u=0 j=u+\

+ Q

VÂ~    nA~x
Nc = J'  h~     E     f*°(T*)l<t + 4r,

l=k¡A~l + l

Va
Nc = j; max max

2\w-k,/A\<á0k, 2\v-n/A\<S0n  On

n/A

oo       oo

<4<5 + EE^
u=0 j=u+\

E f*°(T*)1- E f*°(T*)'
l=w+\ l=ki/A+\

ÍA      nA~'
Nc=J> —  E   r°(T*)l<t + 4i

l=k,A-i + l

>n

+ Q

+ Q

Nc = j;       max      -
2\v-n/A\<â0n   <X„

E f*°(T*)'
l€[v,n/A]

Nc = j;        max       —
2|tü-A:l/^|<<Sofe|   On e f*°(T*y

l£lw,k¡/A+l]

>n/2

oo      oo<4¿ + EE^
u=0 j=u+\

+ (I + y,(l))q([N   =j])

VA

Nc = j> IT    E     r°{T*)l<t + 4n
l=k¡A-l + \

xq max
2\v-n/A\<ô0n   CT„

E r°(T*y
lelv,n/A]

>n/2

x q([Nc = j])q max       -
2\w-k,/A\<Sok,   On

E   f*o(T*y
lE[w,k¡/A+\]

+ v(i))

>n/2
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nA~

On

+ (4 + 2A(l + y/(l)))S.
Using the asymptotic normality for /* and the »/-mixing property we obtain

u=0 j=u+\
*r> ^ E  r°(T*y<t+4r,

l=k¡A~l + l

il      nA~X
Nc=j> fr  E  r°{T*y<t+4t1

a"   l=k,A-i + \

<(l + W(klA'x))q([Nc=j])q

<(l + W(kxA-x))q([Nc = j])

1-7      nA~'

^ E  r°(T*y<t+4n
On /=M-'+l

,t+An
== /       exp
ITC J-oo

du + 3S\ .

Consequently,

ß ^-Í2(foTl-po(f))<t
a"   1=0

oo        oo /      1 /*

< E E Í1 + V(kxA-x))q([Nc = j])   -== \
u=oj=u+\ \\im j-

+ (4 + 2A(l + ip(l)))S
OO OO 1 /*'ÍE«=%I exp

t+4n
exp

-W¿
du + 3â

du
u=0j=u+l

OO OO

+ E E Q([Nc = J])[v(kiA-x)(l + 3S) + 3ô] + (4 + 2A(l + ip(l)))â
u=0 j=u+\

<!&.['
V2nLexp du + (4 + 9A(l + tp(l)))S.

The lower bound is proved similarly. 0

8. CONFORMAL MEASURES FOR PARABOLIC RATIONAL MAPS

In this section, we study parabolic rational maps. For completeness we begin
with some notation. Let T : C —► C be a rational map of the Riemann sphere
C equipped with the spherical metric d. We denote by J(T) the Julia set of
T. Recall that T\j(T) is expansive if there exists ß > 1 (an expansive constant)
such that

sup d(Tn(x),Tn(y))>ß
n>\

for all x, y £ J(T), x ¿ y. This property does not depend on the metric. On
the other hand, a rational map T is called expanding if

3n>l  3 \lx£j(T),  \(T")'(x)\> 1.
Recall from [14] that a rational map T : C —» C of the Riemann sphere C

is said to be parabolic if the restriction T\jrr) is expansive but not expanding
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in the spherical metric on C. It is proved in [15] that T is parabolic if and
only if the Julia set J(T) contains no critical point of T, but contains ratio-
nally indifferent periodic points. Denote by A the set of rationally indifferent
periodic points of T. It is known that this set is finite (see [28]).

The proof of the following elementary fact can be abstracted from [36, pp.
81, 82].
Lemma 8.1. If b > 0 is a real, p > 1, and {x„}™=i is a decreasing sequence of
positive reals such that

lim xn=0      and       lim x"~*"+x = b,
71—»OO 71—»OO y-P

then

lim -%- = (bp)-x'p       and       lim *" T*";1 = b(bp)-^+x^.

Now let T : C -> C be a parabolic rational map. Using a homographical
change of coordinates we can suppose that oo does not belong to the Julia set
J(T). In particular, oo is not a rationally indifferent periodic point of T.

Suppose that 0 is a rationally indifferent fixed point with T'(0) = 1. Then
on a sufficiently small open neighbourhood F of 0 a holomorphic inverse
branch Tfx : V —y C of T is well defined which sends 0 to 0. Moreover,
we can suppose that V is so small that on V the transformation Tfx can be
expressed in the form

Tfx(z) = z- azp+x + a2zp+2 + a3zp+3 + ■■■ ,

where a/0 and p is a positive integer. Consider the set {z : azp £ R and
azp > 0} . This set is the union of p rays beginning in 0 and forming angles
which are integer multiples of y . Denote these rays by Lx, L2 , ... , Lp .

For 1 < j < p , 0 < r < oo, and 0 < 0 < 2n let S¡(r, 0) c V be the set of
those points z lying in the open ball 5(0, r) for which the angle between the
rays L, and the interval which joins the points 0 and z does not exceed 6 .
Using the power series for Tfx in V , an easy computation shows the angular
stability,

V0 > 0 3rx(6) > 0 30 < 0o < 8 VI < ; < p
T0-x(Sj(rx(d),eo))cSj(œ,d),

and the contractive property that there are ß > 0 and ôx > 0 such that

\Tfx(z)\<\z\
for every 0 ^ z G Sx (Sx, ß) U • • • U SP(SX, ß). The following version of Fatou's
flower theorem (see [19; 20; 8, Theorem 3.12; 17, §3.7; 18, Exposé IX]) shows
that the Julia set J(T) approaches the fixed point 0 tangentially to the lines
LX,L2, ... , Lp . This can be precisely formulated as follows.

Lemma 8.2 (Fatou's flower theorem). For every 0 > 0 there exists r2(6) > 0
such that

J(T) n B(0, r2(6)) c Sx(r2(0), 0) U • • • U Sp(r2(8), 0).
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Since the Julia set J(T) is fully invariant (T~X(J(T)) = J(T) = T(J(T))),
we conclude from this lemma and the contractive property that for 0 < S2 =
min{i5i, r2(ß)} we have

Tfx(J(T) n B(0, ô2)) C J(T) n 5(0, S2).
Thus all iterations Tf" : J(T)f)B(0, ô2) -» J(T)nB(0, ô2), « = 0,1,2,...,
are well defined. From angular stability, Lemma 8.2, and the contractive prop-
erty we obtain a contractive angular stability:

V0 > 0 3r3(0) > 0 VI < ; < p
Tfx(SJ(r3(d),0)nJ(T))cSJ(r3(d),e).

Put 8 = min{S2, r^(ß)} . Fix z G J(T) n 5(0, Ô) and for every n > 0 let
z« = Tfn(z).

It follows from the contractive property, contractive angular stability, and
Lemma 8.2 that

lim z„ = 0
n—>oo

and therefore, in view of Lemma 8.2, a simple computation based on the power
series for Tfx proves that

Hm }Znf~fn+l[ = 1.
7i-»oo \Z„\ - \Z„+X\

Hence, again by the power series for Tf ',

7I-»00 |Z„|P+1

In view of this and the contractive property, we conclude that Lemma 8.1 applies
to the sequence x„ = | z„ |. Thus,

lim ^-= (\a\p)-x'p
Ti—»oo n   i"

and
lim |2"l7|f"+l1 = \a\(\a\p)-^xVp.

n^oo     /j-(P+l)/P '    IVI    Wl

Combining all this, we get

Hm |z"~z"+'1 = |fl|(|û|p)-C+i>/P.
7I-»oo    A2-(P+1)/P '    IVI    'yJ

Now let oj £ C be an arbitrary rationally indifferent fixed point of T with
T'(co) = 1 and let V¿ c C be an open neighbourhood of co of diameter not
exceeding an expansive constant for T : J(T) -> J(T) and with the following
properties: There exists a unique holomorphic inverse branch Tfx of T de-
fined on V¿ which sends co to co. Moreover we suppose V¿ to be so small
that

Tfx(v¿nJ(T))cV¿nJ(T)
and that Tfx is given on V¿ by

Tfx (z) - co = z - co - a(z - co)p+x + a2(z - ctj)^2 + a3(z - co)p+3 + ■■■ ,
where 0/a£C and p = p(co) is a positive integer (sometimes we write
p(T, co) in order to indicate the map under consideration).

Using the translation that maps co to 0 as a change of coordinates, we obtain

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



534 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBANSKI

Proposition 8.3. If T : C -» C is a parabolic rational map and co £ C is a
rationally indifferent fixed point of T with T'(co) = 1, then there exists an open
neighbourhood Vw c V¿ of co such that for every z £ Vwr\ J(T) we have

limi^LZ^i = (Kp)-.//>
ti^oo   n~xlP

and

where z„ = Tfz.

lim |Z" . f"t    = \a\(\a\pr^+x^p.«-oo  n-(p+i)/p      ' m 'yj

Combining Proposition 8.3 and the Kobe distortion theorem (see [22]) we
obtain the next result.

We shall prove the following.

Theorem 8.4. Let co £ A be a fixed point with T'co = 1. For any co ¿ z £VW
define

, , , /i(p(w)+1)/p(ft')
£(z) = liminf|z-^M+.    ^^

and

then

, ,  ■ /j(pM+1)/í'(cu)
g(z) = limsup|z-w|p<(a)+1-

\(T")'Zn\

lim g(z) = lim g(z) = (\a\p(co)Y{p{(a)+x)lp^).
Z—KO— z—>cu

In particular, there is a constant C(z) g R+ such that
,     PM+1 p(to)+l

C(z)~xn**r < \(Tn)'zn\ < C(z)n^r.
Proof. Put p = p(co). Without loss of generality we can suppose that co = 0.
Since J(T) n Crit(T) = 0, it follows from the flower theorem that for every
0 < 0 < n/p,  3r3(0) > 0 such that

OO

U rn(Crit(r))n (5i(r3(0), 0) U ••• USp(r3(0), 0)) = m.
71=0

For every 0/zeC let

Z^z) = 5 (z,i|z| cos£).

By the flower theorem there exists r4 > 0 such that if z £ J(T) and \z\ < r4
then

D«c4'(ê)'i§)u-us'KlO'l.)
and therefore all holomorphic inverse branches of all iterations T" , n = 0, 1,
2, ... , are well defined on D(z). In particular, we denote by 7"" : D(z) -> C
the inverse branch of T" which sends z to z„ . It follows from the power
series for ro_1 that there exists 0 < r$ < r^ such that if \z\ < r$, then zx £
B(z, \\z\ cos j-). Thus, by the Kobe distortion theorem and the definition of
D(z), we get for every n > 1

(t(z))~x\zn - zn+x\ < |(77")'(z)||z - z,| < i(z)|z„ - zn+x\,
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where t(z) = k(2\zx - z|/|z|cos7r/2p) and k is the function appearing in the
Kobe distortion theorem. Hence, in view of Proposition 8.3, we have

(t(z))-l^^a\(\a\p)-^ <£(*) <g(z) < i(z)Ä^_|a|(|a|p)-^.

The theorem follows from the power series for T0-1, limz-,w t(z) = 1 and
Hm^lzrVlz-z.lHl/lal. 0

Next, we extend the definition of p(co) given by the power series of Tfx to
the set A of all rationally indifferent perodic points co of T putting p(co) =
p(T9, co), where q > 1 is taken so that Tq(co) = co and (Ti)'(co) = 1. Note
that p(co) does not depend on q with these properties. We shall prove the
following.

Theorem 8.5. If T : C -+ C is a parabolic rational map, then h = HD (J(T)) >
max{p(co)/p(co) + I : co £ A} .
Proof. Since J(Tn) = J(T) for every n > 1, we can suppose that A consists
only of rationally indifferent fixed points co with T'(co) = 1. Take an arbitrary
point co ̂  z £ Vwr\J(T) and consider r > 0 so small that the ball B(z,2r)
contains no iteration of a critical value of T. Therefore (compare the proof
of Theorem 8.4) for every n > 1 there exists a unique holomorphic inverse
branch Tf" : B(z, 2r) -y C of T" defined on B(z, 2r) and determined by
the condition Tfn(z) = z„ . The radius r is also assumed to be small enough
such that Tfx(B(z, 2r)) n B(z ,2r) = 0 . Then for all positive integers k^l

Tfk(B(z,2r))DTf'(B(z,2r)) = 0.
By [15, Theorem 13(iii)] there exists an /z-conformal measure m for T :
J(T) —> J(T). In view of this, and the Kobe distortion theorem it follows
from conformality of the measure m that

oo oo

1 > £ miTfWz, r))) > K~hm(B(z, r)) £ |(77")'(z)|A ,
71=1 71=1

where K is the constant appearing in the Kobe distortion theorem. Since
m(B(z, r)) > 0, this formula implies that the series £~, \(Tf")'(z)\h con-
verges. Therefore, as

l(rz-«)'(z)|A = |(r")'(z„)|-A,
it follows from Theorem 8.4 that h > p(co)/(p(co) + 1). The proof is finished.

Corollary 8.6. IfT:C-yC isa parabolic rational map then HD (J(T)) > 1/2.
We now prove the main result in this section.

Theorem 8.7. If T : C -+ C is a parabolic rational map then there exists exactly
one h-conformal measure for T. Moreover this measure is nonatomic.
Proof. By [15, Theorem 13(iii)], there is an A-conformal measure for T. By
[14, Theorem 4.6], this measure, if nonatomic, is unique. Since J(T") = J(T)
for every n > 1 and since any i-conformal measure for T is also i-conformal
for Tn , the existence of a nonatomic h -conformai measure for Tn for some

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



536 JON AARONSON, MANFRED DENKER, AND MARIUSZ URBAÑSKI

n > 1 will establish the theorem. Consequently, we can suppose that all ratio-
nally indifferent periodic points of T are fixed points and their derivatives are
equal to 1.

From Theorems 8.4 and 8.5 we deduce that there exists a constant o > 0 such
that for every rationally indifferent fixed point co and every point co / z G Vw

3(C(co, z) > 1) V(* > h - o) V(k > 1)
oo oo        i

7i=7<: n=k

Now let W„ =B(A, ±), «=1,2,... , and let

Kn = {z£ J(T) : Tk(z) £ Wn   for every   k > 0}.

The sets K„ are closed and forward invariant under T. Since J(T) contains
no critical points of T, we obtain from [16, §5], an increasing sequence {/„} c
(0, h], and probability measures m„ g 3(Kn)  (n > 1) with the properties

mn(T(A))> [ \T'\'"dmn
Ja

for every special set A c J(T) and

mn(T(A))= [ \T'\'"dmn
Ja

for every special set A c J(T) disjoint from Wn . (k set A £ 3~ is called
special if T : A —y T(A) is invertible.)

Let m be an arbitrary weak accumulation point of the sequence {m„}<fLl c
3>(J(T)). Fix k > 1. Since T : J(T) —> J(T) is an open map, and since
J(T) contains no critical points of T, it follows from [16, Lemma 3.3] that

m(T(A))= [ \T'\udm
Ja

for every special set A c J(T) disjoint from Wk , where tn —> u. Therefore
letting k -y oo we conclude that this is true for every special set A c J(T)
disjoint from A and, since |T'(c<;)| = 1 for every cd G A, for every special set
A c J(T). Consequently m is a «-conformai measure for T : J(T) —» J(T).
As u < h , it follows from [15, Theorem 14] that u = h .

In view of [15, Lemma 6(ii)], it is sufficient to show that m (A) = 0. To this
end fix eu G A and consider the ring

R(co) = {z££: r\\T'\\-x < \z - co\ < r},

where ||r'|| = sup{|T'(z)| : z G J(T)} > 1 and where r > 0 is so small that

B(co,r)c Vw.

Since J(T) contains no critical points of T, since the cu-limit set of critical
points of T intersects the Julia set J(T) only on A, and R(co) n J(T) is
compact, we can find finitely many points, say, xx, ... , xq £ R(co) n J(T), and
positive reals rx, ... , rq such that

R(co)nJ(T)cB(xx, rx)U---UB(xq, rq) c B(xx, 2rx)u---U B(xq , 2rq) c Vw
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and for every i = 1, ... , q
oo

B(Xi, 2rf) n y r"(Crit(T)) = 0.
71=0

Hence for every i = 1, ... , q and every n > 1 there exists a unique holomor-
phic inverse branch Tf" : B(x¡, 2rf) -> C of T" such that Tfn(xf) = T~n(xf).

Fix a neighbourhood V c Vw of co. Since T : J(T) -* /(T) is expansive
and r < diam(Fcu) does not exceed an expansive constant of T : J(T) —► 7(T),
we conclude that for every co ̂  x £ B(co, r) n J(T) there exists n > 0 such
that T"(x) ^ 5(ctj, ||r'||~'r). If we denote by n(x) the smallest integer with
this property, then T"^ £ R(co). Thus by the above,

q       oo

VnJ(T)c{co}u\J  y   ip'Äfo.r,)),
¡=1 71 = 7l(K)

where n(V) = min{«(x) : co ̂  x £ V n J(T)} . Therefore using the properties
of {m„} and the Kobe distortion theorem we obtain for every k > 1

q        oo

mk(VnJ(T))<K'^  E   \{Tfn)'(xi)\^mk(B(xi,ri))
i=\ n=n(V)

q        oo<*'*E E i(V)'(*i)ir*
,= 1   71=7l(F)

where AT is the constant appearing in the Kobe distortion theorem. Hence,
putting C = Kh max{C(c/j, x¡): i = 1,.. .q}, it follows that for every k so
big that tk>h - a we have

CO .

m,(Fn/(T))<C  £   —y.
71 = 71(F)

Thus, letting k —y oo
oo .

m(Fn/(T))<C £  -^.
n=n(V)

This proves that m(co) = 0, since n(V) —» oo as K J. ctj . <>

The following is a strengthening of [ 15, Theorem 17], that the (2-dimensional)
Lebesgue measure of J(T) is equal to zero.

Theorem 8.8. If T : C -> C w a parabolic rational map then h = HD (J(T)) <
2.
Proof. Suppose otherwise that h = 2 and let m be the 2-conformal measure
in Theorem 8.7. Put X = J(T)\\Jfl0 T""(A). By Lemma 10 in [15], there
exists a constant 5 > 1 and for every x £ X there exists a sequence {rj(x)}Jix
of positive reals decreasing to 0 such that

B-i < m(B(x, rj(x))) <ß
rj(x)2
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Fix e > 0 and denote by X the (2-dimensional) Lebesgue measure on C.
Since X(J(T)) = 0 by [15, Theorem 17], and since Hindoo r¡(x) = 0 for every
x £ X, there exists a radius r(x) being of the form r/(x) such that

xi[JB(x,r(x))\ <e.
\xex J

Now by the Besicovich covering theorem (see [21]) we can choose a countable
subcover {5(jc,, r(jc,))}^1 of the cover {B(x, r(x))}x€X of X, of multipicity
bounded by some universal constant C > 1. Therefore we obtain

oo oo oo

m(X) < Y,m(B(Xi, r(xf))) < 5£V(x,)2 = Bn~x Y,W{Xi, r(xf)))
i=i ¡=i í=i

<Bii-xCx[\jB(Xi, r(Xi))\ <BCn~xe.
\i=\

Thus, letting e —» 0, we obtain m(X) = 0. Since m is nonatomic, it implies
that m(J(T)) = 0. This contradiction finishes the proof. 0

The next lemma will be used in the sequel.

Lemma 8.9. If E c Vw n B(co , rf) n J(T) is a Borel set and co £ E, then there
exists a constant c(E) such that

lim m(TZn(E))ne^rh = c(E),
71—»OO

where r5 ¿j as defined in the proof of Theorem 8.4.
Proof. Put again p = p(co) and also a = ^y-h . Let r(, = inf{j|z| cos ¿:z£
E} . Since co £ E, we see that r¿ > 0. We shall prove the following claim:
Vcr > 1 3r7 > 0 such that:

If G c J(T), G n E ¿ 0, and diam(G) < r7
then 3#o = qo(o, G) such that Va > qo

o-xqam(Tfq(G)) < liminf m(Tf(G))na
n—*oo

< limsupm(Tf"(G))na < oqam(Tfi(G)).
71—»OO

Take 0 < r7 < r6 so small that k2h(r1/r6) < Vö (k denotes the function
appearing in the Kobe distortion theorem) and fix z £ G. For any n > 0 put
G„ = Tf"(G). Since Tfn(Gq) = Tfqn(Gq) for all n,q>0, it follows from the
Kobe distortion theorem that

\(T~nY\h
(Vo)-xm(Gq)liminf     *«_J     < liminf m(Tf"(Gq))na

uT-ny\h
< limsup m(Tf(Gq))na < Vom(Gq) limsup     z,_
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for every q > 1. In view of Theorem 8.4 and Proposition 8.3 there exists qo
so large that for every q >qo

(Vo~)-\\a\p)-a(\a\p)aq« < liminf '^"J'
n—»oo n

< lim sup     '«J1   < M\a\p)~a(\a\p)aqa.
71—»OO 7t

Therefore we get for every q >qo
o-xqam(Gq) < liminfm(Tfn(Gq))na

n—»oo

< limsupm(Tfn(Gq))na < oqam(Gq).
71—»OO

Therefore the observations that Tf(Gq) = Tf(n+q)(G) and lim«-.«^2*4)0 = 1
finish the proof of the claim.

Now fix a > 1 and partition E into finitely many mutually disjoint Borel
sets Ex, ..., Es with diameters not exceeding ry. It follows from the claim
that, setting

q = max{q0(o, Ex), ... , q0(o, Es)},
we obtain

liminfm(Tfn(E))na > liminfm(Tfn(Ex))na + ■■■ + liminfm(Tfn(Es))na
71—»OO 71—»OO 71—»OO

> o-xqa(m(Tf(Ex)) + ■■■ + m(Tff>(Es)))
= o-xqam(Tf«(E))

and
limsupm(rj"(£))/!Q < lim sup m^"^))«" + • ■ • + limsupm(Tt-;"(£'s))«a

71—»OO 71—»OO 71—»OO

< oqa(m(Tf«(Ex)) + ■■■ + m(Tff>(Es)))
= oqam(Tf(E)).

Consequently,
! < hm sup„^00m(rj"(£))«" < ^2

- liminfn^oom(r-"(£))«« "
Therefore, letting o \ 1, the lemma follows.  <0>

9. Parabolic rational maps as parabolic fibred systems

Let T: C —► C be a parabolic rational map of the Riemann sphere C
equipped with the spherical metric d. Denote by A the set (not empty, fi-
nite) of rationally indifferent periodic points of T.

By Theorem 8.7 there is a nonatomic /i-conformal measure m on J(T).
We consider T to be a nonsingular transformation of the probability space
(J(T),3~, m), where 3~ denotes the cr-algebra of Borel subsets of J(T).
The first result of this section is

Theorem 9.1. There is a partition 32 for T such that (T ,32) is a finite, ape-
riodic, parabolic fibred system with aperiodic jump transformation.

The proof is by construction of a suitable topological Markov partition and
is in a sequence of lemmas.
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A topological Markov partition sé for a continuous map S on a topological
space X is a finite collection of closed sets {5} such that

U B = X;   B = B~o,

V5 G sé 3séB c sé 3   SB=  [JA,
A€JfB

{B° : B £Sé}  are disjoint.

One of the additional properties will be that S\b is one-to-one for every B £sé .
It follows from this that necessarily

S(dB)C  y dA    \¡B£Sé.
A€stf

It has been shown in [14] that every open expansive map (in particular T :
J(T) —y J(T)) admits a metric p generating the same topology, so that the
map is expanding in the sense of Ruelle [31] with respect to p, that is,

3n > 0 and A < 1 3 Vx, y' G J(T), p(T(x), y') < n 3! y g J(T) 3 T(y) = y'

and
p(x,y)<kp(T(x),y').

Consequently (see [31, 14]) such a map admits Markov partitions of arbitrarily
small diameter. Since the metrics p and d induce the same topology, the
relevant results in §4 in [14] can be reformulated in the following lemma.

Lemma 9.2 (Construction). Let ß > 0 be an expansive constant, so small that
for every pair of rationally indifferent periodic points co ̂  co' £ J(T),

dist(T(B(co, 2ß)), A\T({co})) > 2ß ,

dist(5(c7j,2/?),5(û/,2y3))>0.

Then there exist 0 < S < ß and a Markov partition sé = {Ax, ... , As} such
that

(1) diamT(^) < ô for 1 < k < s. In particular, T\B is 1-1 for every
B £Sé.

(2) If T(Ak) n (J(T)\B(A, ß)) ¿ 0, then all inverse branches Tf" of
T" : C -y C are well defined and analytic on B(T(Ak), 23) for every
n>l.

(3) //rii<;<7, T-J+x(lnt(Akj)) ¿ 0 and T(AkJn(J(T)\B(A, /?)) ¿ 0, then
there exists a unique analytic inverse branch Tf" : B(T(Akn), 2ô) —> C
of T" such that

Tf(T(AkJ) = (jT-J+x(Akj).

(4) m(dse) = 0.
(5) max{diam5 : 5 G 32$} -> 0 as n -> oo.
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Lemma 9.3. Without loss of generality there are two (repulsive) periodic points
with relatively prime periods whose orbits are outside of B(A, ß) and in the
interior of sets in sé .
Proof. Since the repulsive periodic points are dense in J(T) there exist two
(repulsive) periodic points with relatively prime periods whose orbits are con-
tained in the union of the interiors of the sets A £ sé . Refining the Markov
partition and taking a smaller neighbourhood 5(A, ß) proves the lemma. <0>

Lemma 9.4 [14]. (1) Let
oo

X = J(T)\[j T~n(dsé)
71=0

and 32 = {b = AnX : A£sé}. Then (T ,32) is an aperiodic Markov fibred
system on (X, 3~ n X, m, T\J{jf).

(2) Let
32(C, T) = {[bx ,...,bn\: bnn(J(T)\B(A, ß)) # 0},

where C = (k(l/2))h, with k the constant appearing in the Kobe distortion
theorem. Then (T, 32) has the Schweiger property with respect to 32(C, T).

Lemma 9.5. (1) (T,32) is parabolic with respect to 32(C, T).
(2) The jump transformation (T*, 32*) is aperiodic.

Proof. By the construction in Lemma 9.2, every point in X has at most one
preimage in 5(A, ß). Therefore T\[Nc>2] is 1-1 and T([NC = l]\T[Nc =
2]) = X, since [Nc > 2] ç B(A, ß) and (T, 32) is parabolic.

It follows from Lemma 9.3 that there are two periodic points of prime periods
whose orbits are contained in [Nc = 1], whence, by Theorem 7.1, the jump
transformation is aperiodic. 0

It now follows from Theorems 3.1, 3.2, and 4.2 that (T, 32) is conservative
and exact, has a cr-finite invariant measure p ~ m, and has wandering rates. It
follows from Theorem 6.1 that (T* ,32*) has a finite invariant measure q ~ m ,
and is continued fraction mixing.

The next result establishes additional properties needed for the central limit
theorem for T (in case p is finite), and the identification of wandering rates
of T (in case p is infinite).

Definition. For sé a partition of J(T), let C(sé) denote the collection of
bounded functions /: J(T) —> R which are uniformly continuous on A0 for
each A £ sé , and let L(sé) denote the collection of bounded functions / :
J(T) —y R which are uniformly Lipschitz continuous on A" (with respect to
the spherical metric d) for each A £sé .
_If sé  is the Markov partition as above, then the above is nonvacuous as

A0 = A for each A £ sé . We fix sé as the Markov partition and denote
C = C(sé), and L = L(sé). Let

11/11 c = max sup \f(x)\
Attf x€A°

and
u-l/lc+5- -p mffTAetfx,yeA°     a(x,y)
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then (C, || • ||c) and (L, || • ||¿) are Banach spaces, L = C, and bounded sets
in L are precompact in C by the Arzéla-Ascoli theorem.

Definition. Let 5 be a countable set. A function / : 5N —► R is called Holder
continuous if

3rG(0, 1), M>0 3 V«> 1,
x,y£SN, bk(x) = bk(y) (l<k<n) =>   \f(x) - f(y)\ < Mr".

Remark. By the bounded distortion properties used in the construction of
32(C, T), we have that

3t£(0,l), M>0 3    max diam 5 < Mtn.
Be^"

Therefore, if / G L, then fon* is Holder continuous on 32 *n, where
n* : 32*N — J(T) is such that b*(n*(yx,...)) = y„. Also, if / g L, then
/o % is uniformly continuous on 32N, where n : 32N —> J(T) is such that
bn(n(yi ,■■■))= yn ■ This is because

max diam 5 —> 0   as n —> oo.
BÇ.31»

Moreover, if / G L vanishes on some neighbourhood of A, and

ß*)(x) = f(x) + f(Tx) + --- + f(TN^-x(x)),

then /'*) o n* is bounded and Holder continuous on 32 *N .

Theorem 9.6. (a) ^£L.
(b) (T*, 32*) is continued fraction mixing with exponential rates.

Proof. By part (2) of Lemma 9.2, all inverses are defined and analytic in some
neighbourhood of J(T)\B(A, ß). For points in this neighbourhood, no preim-
age is a critical point of T. Thus the collection of inverse branches of {T"}neN
forms a normal, and hence, equi-Lipschitz continuous, family in this neighbour-
hood with respect to the spherical metric. It follows from the Kobe distortion
theorem that the logarithms of the absolute values of the spherical derivatives
of the inverse branches of {T"}n€^ form an equi-Lipschitz continuous family
in this neighbourhood. It follows from this that the family of inverse branches
of {r"}„eN and their Jacobians with respect to m form an equi-Lipschitz
continuous family on [Nc = 1].

Whence, the collection of inverse branches of {r*"}„eN and their Jacobians
also form an equi-Lipschitz continuous family on the interior of each set A £
sé n[/Vc = 1]. Since T*~x[Nc > 2] c [Nc = 1], and since the inverse branches
of T* agree with inverse branches of T on [Nc > 2], it follows that the
collection of inverse branches of {jP*"}„eN and their Jacobians form an equi-
Lipschitz continuous family on the interior of each set A £ sé . This implies
that if / G L, then {T*nf}n&$i is a uniformly Lipschitz continuous family on
the interior of each set A £sé , and hence, by the Arzéla-Ascoli theorem, every
subsequence has a subsequence converging in C to a limit in L. It follows
from this that there is a T* -invariant probability q ~ m such that ^ G L.
Recall from previous sections that log ^ G L°°(m).
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Now let T* denote the dual operator to fy-^yfoT on Lx(q). Specifically

f*f=   E   lT'aK \hP0Xa f°1a,
aeâl'

where p = j^ , and xa : T*a -» a (a £ 32*) are the inverse branches of T*.
Also, for fceN,

f*kf=   £   ir.a,K ,hP°^ f°r»
*&x;k

where ta : T*ak -* [a] (a G 320*k~x) are the inverse branches of T*. To prove
(b), we shall apply the theorem of Ionescu-Tulcea, and Marinescu [25]. To do
this, we must show that

(1) supVlT*"Jlk :/gL,kgn1<oo,

(2)
and

bounded sets in L are precompact in C,

(3)      3r£(0,l),R£R+,k£N 3  \\T*kf\\L<r\\f\\L + R\\f\\c   V/ G L.
Since, T* 1 = 1, ( 1 ) is clear. As mentioned above, (2) follows from the Arzéla-
Ascoli theorem. To prove (3), we note first that there is a number M g R+
such that

d(rx,ry)<M\r'(x)\d(x,y)
whenever x, y £ A0 n (J(T)\A), A £ sé , and t = t„ is an inverse branch of
T*k (k G N). Using this, we see that

^kf{xJ~Ty\kfm<MX\\f\\c+M2\\f\\L Y, K(*)ll+*

<M,||/[|c + MCVlUSUPMal):a"5f"'!.
Since

sup{a([a]) : a G 320*k~x} - 0   as k - oo
and mina€i5i> <?(Ta) > 0, it follows that (3) is satisfied for some k £ N.

As T is exact, it follows from [25] that there exist p £ (0, 1) and K g R+
such that

Jx
<Kpn

To deduce statement (b) from this note that for [a] = [ax, ... , a„],

.HP0**

and, by the above,

sup
r'|A

i i 'a
lT'ak~ <7([a])

T*nlW=lT>a„K

:/cgN, [a] = [a,, ... ,ak]£ 2*k-X) < oo,
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whence

M := sup r*»iw
<7(M) :«GN,aG^0*"_1 \ <oo

L

and
F*"+%] - <7([a])llc < KMpkq([a])   V«, k £ N, a G R™"1.

This is statement (b).    0

Remarks. (1) It follows from statement (a) that ^ is uniformly continuous
on RN with respect to the product topology.

(2) As a consequence of statement (b), we obtain that for any set A g
32(C, T)n [Nc = 1], (TA, 32f) is continued fraction mixing with exponential
rates. This is because TA = T*A , and 32A = 32*A .

Recall that P = [Nc > 2] is defined in §5 for parabolic fibred systems and
that /» is the unique inverse branch of T such that /» : T(P) —y P. Clearly
/» = T~l on sufficiently small neighbourhoods of rationally indifferent periodic
points co. Therefore, since m is h -conformai, we obtain from Theorem 5.5
the following.

Proposition 9.7. Let p be the T-invariant measure equivalent to the h-conformal
measure m . Then p is finite if and only if for some (every) z £ P

71=1

where zn = /"(z).

For co £ A, let

|(r»y(z„)|*<0°'

,       . p(CO)+l

where p(co) is as in §8, and let

a = mina(co).
co€A

Theorem 9.8. Let T : C —► C be a parabolic rational map with o-finite T-
invariant measure p ~ m. Then the following assertions are true:

( 1 ) If a > 2 then p is finite.
(2) If a < 2 then there exists a constant c^ > 0 such that

hm —^ = c,,.
71-.00 n2~a

(3) If a = 2 then there exists a constant cß> 0 such that

hm-= cM.
7!->oo log n      ^

Proof. By Proposition 4.3 it suffices to prove this theorem for a positive iteration
of T. In other words, we can assume that A consists only of fixed points and
T'(co) = 1 for every co g A. By Theorem 4.1, L(n) ~ LA(n) for A = [Nc = 2].
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(1) follows from Proposition 9.7 and Theorem 8.4. By statement (a) of Theorem
9.6, Proposition 5.6 applies, and

d(a)-l co

¿(")~      E       E Ca,uJ2(kAn)m(f?k+r+"a)   as/woo,
a6TP\Pnâl   i/=0 k=\

where ca t „ > 0 Va, v .
Clearly, for every a £ TP\P and v , 0 < v < d(a), there exists coa ,„ G A 3

fdk+r+»(x)^coa,,,Vxea.
By Lemma 8.9 m(fdk+r+»a) ~ 0$ . Hence,

CO OO // \

5> A n)m(ftdk+r+"a) ~ £> A n)j¿¿¡ ~ c"(a, t/)«2"^-) as « -> oo.
fc=l fc=l

This proves (2) of the theorem. <0>
As an immediate consequence of this criterion we get the following

Theorem 9.9. If h =HD(J(T)) < 1 then the measure p is infinite.
Theorem 9.10. If h > 1 and p(co) = 1 for every co £ A then p is finite.
Remarks. (1) If 5 is a Blaschke product then J(B) c Sx, whence h < 1.
By the Denjoy-Wolff theorem (see [11]), there is a fixed point co £ U, the
closed unit disc, such that B"(z) —> co for every z £ U° and B"(z) —> 1/cö
for every z £ Uc. B has no critical points on 51. Therefore, if B'(co) = 1
(and necessarily co £ Sx), then 5 is parabolic and Theorem 9.9 applies. In
case B"(co) = 0 then 5 is conservative with respect to Lebesgue measure on
Sx. This follows for example from [1, Theorem 3.8]. Consequently J(B) = Sx,
since otherwise Bn(z) —y co as n —» oo for z G SX\J(B) and hence there would
be wandering intervals for some power of T. Here, a = 3/2 and p = 2. In
this case, the exactness, pointwise dual ergodicity of 5, and form of return
sequence (established in Theorem 9.11 below) follow from [1, Theorem 3.8],
which Theorem 9.11 strengthens and generalises.

(2) The simplest example satisfying the assumptions of Theorem 9.10 is pro-
vided by the polynomial z y-y z - z2 (note that this map is conjugate by a
linear map to zy-+ z + z2 and z v-y z2 + 1/4). For z f-» z - z2, A = {0} and
p(0) = 1. Since the critical point 1/2 is not in the Julia set, z y-^ z - z2 is
parabolic. It is shown in [39, 37] that the Hausdorff dimension of its Julia set
is greater than 1.

Theorem 9.11. Suppose that
,   p(co) + 1a = min       '   — h < 2

o>eA    p(co)
(hence the T-invariant measure p is infinite). Then the dynamical system
(J(T), 3, p, T) is conservative and exact, has Darling-Kac sets whose return
time processes are continued fraction mixing with exponential rates, and has a
return sequence given by

-na~x        when 1 < a < 2,
an(T) ~ {

cpT(a)TCi - a)
1     n

I Cft log n
Here cu is as in Theorem 9.8.

when a = 2.
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Proof. By Lemma 9.5, (T,32) is an aperiodic, parabolic, finite fibred system
with respect to 32(C, T). By Theorem 2.8, T is conservative and ergodic. By
Theorem 3.2, T is exact. By Theorem 3.1, any set in 32(C, T) is a Darling-
Kac set for T whose return time process is continued fraction mixing. By
Theorem 9.8 the wandering rates L(n) satisfy

m~{c>"2-°    (1<a<2)-
[Cftlogn       (a = 2)

as n —y oo. In the present situation, as explained in §4, Theorem 3 in [2] or the
argument in [3, p. 1044], combined with Karamata's Tauberian theorem shows
that

m     _n_1_
Un[   ^ L(n)T(l+y)T(2-y)'

where y = 2 - a. This implies the theorem. 0

The following two results concerns the central limit theorem in case of a finite
invariant measure. We do not know whether such a result holds for all Holder
continuous functions.

Theorem 9.12. Let p be finite (a > 2). Then for any Holder continuous function
f : J(T) —y R which vanishes on some neighbourhood of A and satisfies p(f) =
0,

CO

cf = q((f*)2) + 2Y,q(f* f*(T*)')<oo
l=i

converges absolutely, and if Cf> 0 then f satisfies the central limit theorem:

lim p i^ttf-Ms)*'
l=omj    í-- y n{J{T))

/lexp(^)KAT)) , , du
V2n

for any t £ R.
Proof. By (b) in Theorem 9.6, (T* ,32*) is continued fraction mixing with
exponential mixing rates. By the remarks before Theorem 9.6, /* is bounded
and Holder continuous on 32*N. Hence Theorem 7.2 implies the theorem.
0
Theorem 9.13. Let p be finite, and let f be measurable with respect to 32ff for
some m > 1 such that f* £ L2(q). If o2(f) —> oo as n —> oo, then

o2n(f) = nh(n)
where h(n) is slowly varying as n-»oo, and f satisfies the central limit theo-
rem:

lim p ^jjTT)y(foT,_J>W_]<t¿-^\J ni 11TW I -On(f)       f^ V P(J(T))
p(J(T))

V2n
for any t £ R.

/leXP(^)<,M
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Proof. This follows immediately from Corollary 7.3.     0

Remark. Theorem 9.12 is true for all functions / with the property that /* is
bounded and Holder continuous on 32*N .
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