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ERGODIC THEORY

OF DIFFERENTIABLE DYNAMICAL SYSTEMS

by DAVID RUELLE

Dedicated to the memory of Rufus Bowen

Abstract. — If/is a C14'6 diffeomorphism of a compact manifold M, we prove

the existence of stable manifolds, almost everywhere with respect to every /-invariant

probability measure on M. These stable manifolds are smooth but do not in general

constitute a continuous family. The proof of this stable manifold theorem (and similar

results) is through the study of random matrix products (multiplicative ergodic theorem)

and perturbation of such products.

o. Introduction.

Let M be a smooth compact manifold, / a diffeomorphism, and p an/invariant

probability measure on M. The asymptotic behavior for large n of the tangent map T^f"

is determined for p-almost all x by the multiplicative ergodic theorem ofOseledec [n].

This theorem (see (1.6) below) is a sort of spectral theorem for random matrix products.

It treats the ergodic theory of the diffeomorphism/so to say in linear approximation. The

aim of the present paper is to tackle the nonlinear theory, and our main result is an (c almost

everywhere" stable manifold theorem (see Theorem (6.3)). This theorem says that

for p-almost all x, the points y such that the distance offx and/^ tends to zero at a

suitable exponential rate (when 72->+oo) form a differentiable manifold (1). The

proof goes via a study of perturbations of the matrix products (Theorem (4.1)) occurring

in the multiplicative ergodic theorem. The proof of the multiplicative ergodic theorem

given by Oseledec is not appropriate for our discussion, and we use a proof due to

Raghunathan [15]. A version of this proof is reproduced in Section i.

We have included in the present paper some results of general interest, which

fitted naturally, but are not needed for the proof of Theorem (6.3). The reader who

only wants to get to the stable manifold theorem may thus omit Section 3 and the

(1) That something like this should be true was suggested by Smale in [20].
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28 D A V I D R U E L L E

Appendices B and C. We have not tried to present all our results in the greatest gene-

rality. Since the articulation of the proofs is reasonably simple, the reader should be

able to obtain further results without too much work.

Our theorem (6.3) is very close to results ofPesin ([12], [13], [14]) who has a stable

manifold theorem almost everywhere with respect to a smooth invariant measure,

assuming that such a measure exists. Our techniques are however rather different

from those of Pesin. We refer the reader to the monograph of Hirsch, Pugh and

Shub [6] for the much studied case where a continuous splitting of the tangent space
exists.

The present paper originated in an attempt at proving certain conjectures on the

asymptotic behavior of differentiable dynamical systems. These conjectures, presented
in [^L generalize results obtained for Axiom A systems (see [19], [i6], [2]). The

results obtained here constitute a preliminary step towards proving the conjectures

of [18]. Another step is contained in [17] (see also Katok [8]). Ultimately, this

work should serve to determine the measures which describe hydrodynamic turbulence,

and more generally the asymptotic behavior of dissipative physical systems.

(0 .1 ) Note on the multiplicative ergodic theorem.

Besides its applications to differentiable dynamical systems, the multiplicative

ergodic theorem has applications to algebraic groups. The idea is due to Margulis

(see Tits [21]), and involves extending the theorem to local fields. The original proof

of the multiplicative ergodic theorem is due to Oseledec, and applies to flows as well

as maps. In view of the applications to algebraic groups, Raghunathan [15] devised

a simpler proof, based on a theorem of Furstenberg and Kesten [4]. This theorem

in turn is a corollary (Corollary (1.2) below) of Kingman's subadditive ergodic

theorem ([9], [10]) (see Theorem (1.1) and Appendix A). An extension of the sub-

additive ergodic theorem to quasi-invariant measures has been obtained by Akcoglu

and Sucheston [i], and would permit a similar extension of all our results. While

Raghunathan's results apply to maps, an extension to flows, following the ideas of Oseledec,

is easy, and carried out in Appendix B (1).

(0.2) Terminology.

Here are a few definitions which might be helpful for what follows.

A class 2 of subsets of a space M is a a- algebra if 0eS, and if S is stable under

countable intersections and complementation (X|->M\X).

A (finite) measure space (M, S, p) is a space M with a o-algebra S of subsets

(measurable sets) and a countably additive function p :2^R^_ . The function p is

(1) I am indebted to A. Connes, M. Herman, and D. Sullivan for pointing out to me the literature on the
subadditive ergodic theorem, and in general for encouragement in writing the present paper. I also want to thank
J. Tits who informed me of the work of Raghunathan.
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 29

a (finite positive) measure. We also assume completeness: if p(X)=o and Y C X then

YeS (and p(Y)==o). If p(M)== i, we say that (M, S, p) is ^probability space, and p

a probability measure.

Let M be a topological space; the elements of the c-algebra generated by the open

sets are called Borel sets. In particular, if M is compact metrizable, and p is a positive

Radon measure on M, one can define p(X) when X is a Borel set. A measure

space (M, 2, p) is then defined where the measurable sets are all the sets XuN with

NCY, X and Y Borel, and p(Y)=o.

Let S be a topological space and M a measure space (resp. a topological space).

A map 9 : M—^S is called measurable (resp. Borel) if (p~~1^ is measurable (resp. Borel)

for every open 6 C S. These definitions extend to sections of fiber bundles, using local

trivializations. As usual a map from a measure space to a measure space is measurable

if the inverse image of a measurable set is measurable.

i. Some basic results.

In this section (M, 2, p) is a fixed probability space, and T : M—^M is a measurable

map preserving p. Almost everywhere means p-almost everywhere.

We denote by/+ the positive part of a function f'.f^^^mQ.x^Oyf^x)).

Theorem ( 1 . 1 ) (Subadditive ergodic theorem).

Let (fn)n>o ^e a sequence of measurable functions M->Ru{—00} satisfying the conditions:

a) integr ability: ^"eL^M, p);

b) subadditivity: f^^+f^ a.e.

Then, there exists a ^-invariant measurable function f: M->Ru{—00} such that

/^^(M.p),

^n^^

and lim I
- f/.Wp(^)= inf^ (f^^dx) = f/WpW.

w -> oo n j n nj J

This is one version of Kingman's theorem (see [io], Theorem (1.8)). In

Appendix A we reduce Theorem ( i . i) to another version, for which an easy proof has

been given by Derriennic [3].

Corollary (1 .2) . — Let T : M->M^ be a measurable function to the real mxm matrices

such that

log+IITHIIeLWp).

Write T^T^"-^)....^^)^^).

277



30 D A V I D R U E L L E

Then there exists a ^-invariant measurable function ^ : M->Ru{—00} such that

^eL^M, p),

Hm^log||T,"||=%W

for almost all x, and

Hm^Jlog||T:||p(^) =inf^Jlog||TSl|pW =JxWpW

This is proved by taking f^x) ==log[|T^|[ in Theorem (1.1).

Proposition (1.3) (1). — Let {'Tn)n>Q ^e a sequence of real mxm matrices such that

( 1 . 1 ) limsup'logllTJI^o.
n->- oo n

We write'.

T^T^.-.-.Tg.Ti

and assume that the limits:

Um^logl|(T»)A.||

exist for q == i, . . ., m. Then:

a) lim (T^T^^A
/ n-><xi ' '

exists, where * denotes matrix transposition.

b) Let exp \^<. . . <exp X^ 6^ ̂  eigenvalues of A {real X^, possibly X^^—oo), ^rf

U ,̂ . . ., U^ ̂  corresponding eigenspaces. Writing ^={0} and V(r)==U(l)+ . . . +1^,

we have:

lim ^log [|T^[| ̂ X^ z£to z/eV^V^-^
n-^oo n

for r== i , . . .,j.

(1) If the assumptions of the proposition are satisfied, and det A =^ o (z.^. X^ > — oo), ( i . i) can be replaced by

^mJlog||Tj|=^;log||T^||=o.

/ I N I
(In view of a), lim _ _ S log | det T^ ] == log det A, hence lim - log | det T., | = o, and since
\ N-^oolN»»=,i n -> oo n

IIT^II^HTJI^-i/ldetTj,

we have lim sup - log 1 1 T^111 <_o).
n -> oo ^ /
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 31

Let ^...^w) be the eigenvalues of (T-T1)1/2. By assumption, the limits:

i m i
lim , log n t^ = lim - log 1 1 (T^ A<? 1 1
n-^con °p=m-q+l n->oo7Z 0 1 1 ' / 1 1

exist for q== i, . . ., m, and therefore also the limits:

lim ^log^^^
n-^oo y{

for ^ = i, . . ., m. Let \W<.. . ̂  be the distinct ^(p), and U^ be the space spanned

by the eigenvectors of (T^T^2 corresponding to the eigenvalues t^ such that

(1.2) lim I log ty=\^.
n-^con

We interrupt now the proof of Proposition (1.3) for a lemma. For simplicity
we shall assume that X^—oo.

Lemma (1.4). — Given 8>o, there is K>o such that, for all k>o,

(1.3) max{|(^')|: ^eU^^'eU^,, 1 1 ^ 1 =||^||=i}^Kexp(-7z(|^-^|-S)).

We first prove (1.3) for r<r'. Equivalently, it suffices to prove that, if z^ is

the orthogonal projection of ue S U^ in S U ^ , then
<^r ('^.r'

(1.4) ll^ll^KIHIexp^^-xW-S)).

It will be convenient to assume 8 less than all |X(''')—Xlr)| for r + r ' , and to write
8* =§/,?. In view of (1.1) there is Oo such that, for all n,

log||T^i||SC+^*.

For large n we have thus:

1|^,|| exp^+i^-^^IIT'-^ll

^1|T^J1.||T"»||

^exp(G+^).||M lexp(n(x(r'+y)).

^* ^*

If n is so large that C—\
{r

'
}
+—<^n—, this gives:

4 4

[|^||<||^||exp(-7z(X(r')-^-8-)).

From this we obtain in particular:

ll<r+l||^^J[^|exp(-(7^+J)(x(r+l)-^-8t))

^K^||^||exp(-^r+^-^-8+))
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32 D A V I D R U E L L E

with Ki^i-expC-O^'-^-S*)))-1. Therefore also:

ll<r+2ll^^l||ul|exp(-(»+J•)(X(r+2'-xM-8*))
j=0

A — l

- S J
J-0

+ S KJ|^/||exp(-7^(X(r+ l )-X(r)-8+))exp(-^+J)(X(r4-2}-X(r4- l )-8+))

^Kal^llexp^^X^-^--^*)).

In general:

ll^ll<;K^J|^||exp(-^(^-^-(r'-r)8*).

Since (r'—r)8*<8, this proves (1.4).

Notice that the lemma gives bounds on the elements of the mxm matrix S of scalar

products between the eigenvectors of (T^T^2 and those of (T^+^T^)^2. We

have proved up to now the bounds for the elements on one side of the diagonal of S.

The other bounds are readily obtained from the calculation of S'^^S"1 by the minors

of S. Allowing for change of 8 and K, it suffices to use the bounds already obtained,

and the fact that all matrix elements are bounded by i in absolute value. This conclude

the proof of the lemma.

Lemma (1.4) shows that (V^)n>o
 ls a Gauchy sequence for each r. Part a)

of Proposition (1.3) follows from this and (1.2). Let U^ == Hm U^; (1.3) then

becomes:

max{|(^)[: ueV^\ z/'eU^, ||^|[=||^||= i }^K exp^d^-^ -8)).

Therefore we have, for large n, if o^ueV^y

T I I T ^ y l
^)_28<-log——-L^+28,

- n - u

hence:

lim ^ logHT^II^^ if ^eU^o}
n->w ^

and part b) of the proposition follows.

Corollary (1 .5 ) {of Proposition ( 1 . 3 ) ) . — Let X^XO^^ {put X^^+oo if

r == s). Then:

R^eR^: ||T^||<^ for all n>_o}

is a bounded open neighborhood of o in V^.

That RCV^ is clear from Proposition (i .3) b). Furthermore, we have:

lim HT^H^-^^O
n -> oo • ' ' '
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 33

uniformly for u in the unit ball B of V^. Since R C B, there is N finite such that

R-^eV^: HT^H-Q^ for O<TZ^N}

proving the Corollary.

Theorem (1.6) (Multiplicative ergodic theorem). — Let T : M—M^ be a measurable

function to the real mxm matrices such that

(1.5) log^lT^lleLWp).

Write 'T^=='T^/1:n~lx). • • - . T(-TA;) .T(^), and use * to denote matrix transposition.

There is FCM such that rFCF, p(r)=i , and the following properties hold if xeF:

a) lim^T^^A,
/ n ->ao' - x/ x

exists.

b) Let exp ^1)<^. . . <exp ^s)
 be the eigenvalues of A^ [where s==s{x), the ^r)

 are

real., and X^ may be — oo), and Ui^, . . ., U^ ̂  corresponding eigenspaces. Let m^ == dim U^.

The functions x^7^\ m^ are ^-invariant. Writing Vw={o} and V^)=^l)+ .. . 4-U^,

^^ A^y^:

limIlog| |T>[[=X^ ^^ ^eV^VV^
n ->co ^

/or r==i , . . ., j.

According to (1.5) and the ergodic theorem, there is I\C M such that TI\C F^,

p(ri)==i, and

lim- I-log+ | |T(Tn- lA:)[|=o if xeF^
n ->oo f^ — " ' ' " i

By Corollary (1.2), there is also F^ such that TFgC Fg, p(r2)=i, and, for ^==1, . . ., m,

l im^loglKT^7^^
n-^w n

exists, and is a r-invariant function of x.

Let r==I\nr2. The theorem follows from Proposition (1.3) applied to

T^T^-^) for xer.

Corollary (1 .7) . — L e t xer, z/eR"1; then:

(1.6) Hm^log||T^||=xM

^^fo, ̂ »ifc or —oo. If XeR, fAe /zHear ^a^

V,x={MeRm: x(^")^^}

zj ^ measurable function of xer.

This is an immediate consequence of Theorem (1.6). We have /(^^^^^

if ^eV^V^, and V^=U{V^: X^^X}.
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34 D A V I D R U E L L E

Remark (1.8). — [
1
' ^ ) implies

^x,T{x)u)=^{x,u).

In particular T(A:)V^CV^, T(^)V^CV^. If X^-oo, T{x) is invertible and

therefore T(^)V^=V^, T(A:)V^==V^. On the other hand, the U^ do not transform

simply under T{x).

2. The spectrum.

As in Section i, (M, S, p) is a probability space, and T : M->M a measurable

map preserving p; T : M->M^ is a measurable function such that

log^lT^lleL^M.p).

We write T^T^"1^). • • • .T(^x) .T(x). According to Corollary (1.2) and the

multiplicative ergodic theorem (Theorem (1.6) and Corollary (1.7)), there is F C M

with rFCr, p(r)=i, such that, if x eF, wecan defineA^; s=s(x)', x!̂  . . .O^^^A:) ;

U ,̂ . . ., U ;̂ {o}=V2))CV^C . . . CV^R^ and the functions u^^{x, u), Xh>V^.

Let ^^dimU^^dimV^-dimV^-^. The numbers X^ are called charac-

teristic exponents', with the multiplicities m^ they constitute the spectrum of (r, T), or T,

at x. We shall say that V^C . . . CV^ is the associated filtration of R^. The spectrum

is T-invariant. If p is r-ergodic, the spectrum is almost everywhere constant. In what

follows we shall determine the spectrum of (r, T^, (r"1, T*) and (r, T*""1).

(2 .1) Spectrum of (r, T^.

Let TA P :Ml-^Mfw^ be the p-th exterior power of T. We have:
\ p )

T^T"-^) . • • • .T^w) .T^x) = (T^"

and Urn ((T^At'•(T^AP)l/2»=A^.
n ->oo

/w\

This determines the spectrum of T^ and the associated filtration of R p .
w

Writing T7^ === © ^A^ ^^ obtain in particular:
p=o

lim ^^11(^11= S m^>.
n-^wn r:4r)>0

(2.2) Spectrum of (T~1, T*).

Suppose that T has a measurable inverse, we shall show that the spectrum of (r"1, T*)

is almost everywhere the same as that of (r, T). Let A^== lim (T^T^)1^ where

T^T^T'"^4'1^). • • • .T*(T~1^) .T*(^). Since the spectrum of A^is T-invariant it is also
N^ N^

the limit almost everywhere of the spectra of the (T^T^)1^, where

T^=T*(^)T*(T^) . • • • .T*^-^).

^^



ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 35

The spectrum ofT^T^is the same as that of T^t^=T^T^. Therefore the spectrum

of A^ is the same as the spectrum of A^.

(2.3) Spectrum of (r, T*-1).

Suppose that T is almost everywhere invertible and that

log^lT-^lleLWp).

Define X,== lim (T^T^)172", where T^T*-1^"-1^ . • • • .T*-1^) .T*-1^). We have
^ n->oo

then A^^A^T1. Therefore the spectrum of (r, T*~1) is obtained by changing the sign

of the spectrum of (r, T) r^^—Xi,8"'4'^. The filtration of ^ associated with

(T, T'-1) is the orthogonal of the filtration associated with (r, T) : ̂ ^V),8-^.

3. The invertible case.

In this section, (M, S, p) is a probability space, and T : M->M is a measurable

map with measurable inverse preserving p.

Theorem (3.1). — Let T : M.—>GL^ be a measurable function to the invertible real

mxm matrices, such that

log^l lT^II , log^llT-^lleLWp).

Write:

T^T^-^). . • • .T(T^).T^)

T^-^'^T-^T-^.-.-.T-^T-'^.T-1^-1^).

There is then A CM such that TA==A, p(A)==i, and a measurable splitting

A:h->W^®...®W^ ofV over A {with s==s{x)), such that

^im^log||T^||=^ if o^ueWy.

Let again the numbers X^^ . . . ̂ X^ with multiplicities m^\ . . ., m^ constitute

the spectrum of (r, T) at x. Let V^ C . . . C V^ be the associated filtration of R"1.

From Sections (2.2) and (2.3) we know that the spectrum of (T~1, T'^or"1) at x consists

of the numbers —-X^ . . . -^—X^ with multiplicities m^\ . .., m^. Let:

vi^8)c...cvi^l)

be the associated filtration. Suppose that we can show that

(3.1) Vir-^nV^^o}

(3.2) V^+Vî ir

for r = 2, . . . , ̂  and almost all x. Then, putting

Wl^V^nV^

^



36 D A V I D R U E L L E

we obtain:

R-^V^-^n^+V.-^n^+V^-^n ... nV^

=W!,1)©W^)®...®W^

and the theorem holds. It remains thus to prove (3.1) and (3.2).

Define S as the set of those x such that (3.1) does not hold. Given S>o and

re[2,.y], let S^ be the subset of S such that, if xeS^y

(3.3) IIT^II^IHlexp^-^+S) and

(3.4) \\T^u\\<_\\u\\expn(-^+S)

for all ^eV^nV!^. From (3.4) we get, if ^er-^,

(3.5) ||T^||^||^||expn^-8)

for all ^eV^nV!,-^ For A^UT-^, (3.3) and (3.5) yield ^--^-^S.

Since p(S^nT-nSJ->p(S) we have ^-^-^sS for almost all xeS and, since

8 is arbitrary, we get p(S)==o. We have proved (3.1); (3.2) follows because

dimV^+dimV^^.

(3.2) Spectrum and associated splitting.

The characteristic exponents x!̂  . . . O^ with multiplicities m!̂  = dim W^

constitute the spectrum of (r, T) at x. We call W^® . . . ®W^ the associated splitting

of R^. Notice that the \^ are all finite, and that:

T^W^-W^J r-i, ...,^.

(See Remark (1.8).)

The spectrum of (r, T^) at x consists of the numbers [JL^ST^X^ with
r

o^T^^m^, and S^=j&. The subspace corresponding to pi in the associated splitting

fp\
 r

 P
of R^ is generated by ^ A . . . A ^ where ^.eW^ and Sx^^pi. (This follows

readily from Section (2.1).)

The spectrum of (r~1, T'^oT"1) at x consists of the numbers —Xl^..^—?^

with multiplicities m^\ ....m^. The associated splitting of R^ is W^ ) ®.. .®W^ ) .

The spectrum of (r, T*~1) at ^ consists of the numbers —^s)<^ • . • <—^1) witli

multiplicities ^.....m^. The associated splitting of R^^ is W^"^®. . . ©W^"^

where W^""^ is the orthogonal complement of S Wf^ in R"'. (This follows readily

from Section (2.3).)

The spectrum of (r"1, T^or"1) at x is the same as that of (r, T). The associated

splitting ofR™ is W)^®... ©W^-^. (This follows from what has been said of (r, T*-1)

and (r-ST-^T-1).)
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 37

Corollary (3.3). — Define:

^)=max{|(^0 : ueW^u'e S W^JHI = ||^|| ==i }
y' ; y' 4; y t i l l 1 1 t I ^

{put y,(.v)=o !/' j(A')=i). r̂ »:

W=={i-^W2

=^^m^{^v){:
 v£^~r}' "II=I^

and ,^m^log8.(T^)=o•

Let indeed p=m^\ q=m-p, o+we(W^ ))AP o+w'e( S W"^^ then:
r': r' + r

1 1 (CIT^) A ((T^)^^') i |^(T^) IKT^^^II . [KT^^^II
and it suffices to apply what has been said on the spectrum of T^ in Section (3.2).

4. A perturbation theorem.

Theorem (4.1). — Let T=(TJ^o be a sequence of real mxm matrices such that (
1
)

(4.1) lim^up^logllTJI^o.

We write T^T,,. . • . . Tg.Ti and assume the existence of

(4.2) lim (T^T^^A
n -xx)

with det A 4=0. Denote by X^^ . . . Oj^ ^ eigenvalues of log A.

Z^ T]>O be given and, for T'=(T^>o, ^rz^

||T'-T||=sup T,-TJ^
n

^W T'^^T^. • . . .Tg.T^. r^TZ there are 8, A>o ^rf, given £>Q, ^r^ ^r^ B^>o,
B^> i ^^A ^A^ following properties:

If ||T'-T||^8,

(4.3) ^m (T'^T^^A'
W -> 00 '

^z'j^ ^Tza? has the same eigenvalues as A (including multiplicity). Furthermore, if P^T) denotes

the orthogonal projection of A.' corresponding to exp X^, and ||T'—T||^8, we have:

(4.4) ||P(r)(T/)-p(r)(T")||^A||T/-T"||

(4.5) B.expTz^-^^HT^P^^II^B.expTz^+s).

(1) Instead of (4.1) one could write:

lim ^log||T^[-o.
n-> oo n

See the footnote to Proposition (1.3).
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38 D A V I D R U E L L E

If (4. i) holds, it is known (Proposition (1.3) a)) that the existence of the limit (4.2)

is equivalent to the existence of the limits

lim ^ log 1 1 (T1)^ 1 1
n -> oo ^ ° ' ' v / II

for q=i,...,m. Since (4.1) and HT '—TI^+OO imply

lim^sup-^-log||T;||^o,

(4.3) will follow if we can prove the existence of

lim ^ log 1 1 (T'^ 1 1
n ->oo ^ o II v / 1 1

for ^==1, . . ., m. Furthermore these limits determine uniquely the eigenvalues of A'.

Therefore, to prove (4.3) and the fact that A' has the same eigenvalues as A, it suffices
to show that

(4.6) lim "- log [ | (T^) \\^== lim ^log| (T^]].
- ' n --oo ^ <-' 1 1 \ / l l ^ _^. oo ^ 0 | \ / ||

Let o<7]'<7] and define:

IIT'^-T^ll^supllT^^-T^II^'.

Then (4.1) implies the existence of Eg>o such that

(4.7) [IT'^-T^ |<,EJ|T'-T||

for 8^1. Therefore, the replacements T,,h>T^, T^h>T^ reduce the proof of (4.6)
to the case <7==i , i.e.:

l im-^logl lT^H^^.
n -> oo n " 1 1 ' 1

Equivalently, it suffices to find an open set UCR^ such that

l im^ logHT^I I^X^ for ueU.
n-^w ^ G I' 1 1

To see this take ^(1), .. ., u'^' linearly independent in U and notice that the matrix

norm ||| . ||| defined by:

|||X[||=: |X^||+...+|[X^)|1

is equivalent to || * ||. The existence of the limit (4.3), and the fact that A and A' have

the same eigenvalues, are therefore a consequence of the following result:

Lemma (4.2). — Let \{rwl<_. . . <_ x^^ = X^ be the eigenvalues of log A repeated

according to multiplicity. Let ?^\ . . ., ̂ ) be unit vectors spanning R^ and such that

(4.8) Jim^logllT-^II^X^).
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There is then 8>o such that

l im^ logHT^I I^X^
n->oo YI ' 1 "

whenever o<oc<^i, | T'—T||<8a, and ueU, where:

(m-l ^(0) \u==Lsa^+^):m<a.x|^<|M»)•
The existence of ^0), ...,^ satisfying (4.8) follows from Proposition (1.3) b).

The reason for not assuming the ^0) orthogonal will appear in Remark (4.7).

(4.3) Proof of the lemma and further inequalities.

By Proposition ( 1 . 3 ) a):

m

(4.9) Jim L log || T^A .. . AT"^>|| = S X^".
J
 ft K — 1

Let ^n) be a unit vector proportional to T^^, and write:

(4.10) T^r^w.
Let also ̂ ) be thej'-th component of^< The matrix ^=={^) satisfies [[^n) | |<^/m

and, because of (4.9),

lim^log det^|=o.
W - > 0 0 ^ 0 1

Therefore

lim^logll^-1!!^
n->oo YI 1 1 1 1

and given £>o, we have:

(4.11) D^sup^H^-^l^+oo.

We write D^=D.

In view of proving (4.5) we shall obtain a result somewhat stronger than the

lemma. We suppose that HT '—Tj | ^8a and estimate the components u^\ ....

^-n € of T^u along i^/a, . . ., ̂ -i/^ ̂ \ for any ^+0 in R-

Let [L be the smallest integer such that

(4.12) (Vn) max ^j > max \u^\.
v* / v / J^IJL J 1 — k>v. • "; 1

(In particular if ueV, we have [L==m.) Because of (4.10) and (4.11) we have:

l4n)l<^n)l4n-l)l+D8^-2^S|4n-l)
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We weaken these inequalities if we replace the t^' by t^>_t^ such that

i N

a
) fc ̂ ^ log t^ = \^ for k<_ ̂  and

b ) e^-^.n)*.

'^ —^

In view of (4.8), (4.10), this can be achieved by multiplying the sequences (^n)), for

A<[X, by constants ^i. Since Y]>O, ^ implies the existence of Oo such that,
for all ^o, N>v, and k,l<_^

(4.13) n t^l n t^<ce^\
n==v+l / n = v + l

One can also choose G independent of (JL.

In view of the above we have u^ \ <_ U^ for n^ v, provided

U^U^maxI^),
"• e I t 3

and U^^^^^U^-^+DS^-^.^.maxU^-^.
^^EA

Using (4.13) we see that this is satisfied by

N N

(4.14) u^ n 4^. n (i+wGDs^-^.u^.
n^v+l n^v+1

We choose

^ ^n^D^
1
-^

2
-

In this way mGDS<i, and

00

n (i+OTCDs^) oo , i . - ^
(4.16) c'=»-^—————^ n^—^ n(i-,--)-2= !

-»=i i—g-^-»=i^ / OTGDSn (i-e-

Therefore (4.14) gives:

N N

(4.17) law ^u^'^c' n 4"'*. n (i-e-^.u^.
n= v+ 1 " n==v+ 1

In view of the definition of [L by (4.12), we may choose v such that

^ l^maxj^l^U^.

Using (4.13) and (4.17) we obtain then, for N>v:

I^I^^K'^I-DS^-^S uf-^

N N-l

^^I^-^l-mGG'D^-^ n ^. n (i-,-^).j^)[.
•U. ' \ ' •

 u
 )

 t
 \

a
^l

n==^+l
 tA n=v+l ' ^
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Using (4.16) gives:
N-l N-l

| « (N) [> / (N) /1 (N-l) -NTI TT .(n) T [ (._.-n-n\ \ [v] \\
|^ P^x U^ e ^\\^ • n - v+ l 1 ^ I^U

which implies, by induction,

N N

(4.18) I ^ N ) ^ n ^ n (i-,-^). ^)[.
n = v+ 1 72 = v + 1

From (4.11), (4.17) and (4.18) we obtain:

(4.19) nm^log||T"a|[=X^».

In particular, if z/eU we have r(pi)==j, and the lemma results from (4.19).

(4.4) Partial proof of (4.4).

Suppose that the eigenvalue exp X^ is simple, i.e. the corresponding pro-
m-l ^(0)

jection P^T) is one-dimensional. If u= S u^—+^^^U, we have:
k == 1 OC

IIP'W^ll^l^^ma^l^l^all^-1]!.!]"!!.

Let ^ be a unit vector in the range ofP^T). Since the kernel of P^T') cannot inter-

sect U, we have, in view of the above estimate and triangle similarity:

||(I-P(s)(T /))P^T)|]=||(I-P^T /))S||^a]|^- l |],

hence

[[p^^p^^ii^i-a2!!^-1!!2.

We apply this result to the situation where A' is replaced by A'^, p being the sum of the

multiplicities of the largest eigenvalues of A' corresponding to the projections P^(T'), . . .,

P^T).

Writing ^ instead of a, ^ ==^\\^
o}

-
l
^

p
\\, and

p ^p^m+.o+p^m
p'^p(r)(T')4-. . .+p( s)(T /)

we obtain:
j l pApp/AppApl l ̂  Hp'AppApl l2^> j _^2^

PP'P has at most p non zero eigenvalues, with product ^i—a'2 , so each eigenvalue

is^i-a'2. Therefore ||P-PPT||<a'2, or || (i-P')P||<a'. Similarly:is

(l-P)P'H^a',
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so that ||P'-P||^2a' provided \\T^P-T^\\ <^ap with 8y determined by the

lemma. In view of (4.7), we can take o^= , Ep|[T—T||. This is less than i because

we choose 8 in the theorem <8y/Ep for each p. Thus:

IP'-Pll^sa'-^-E^K^-^^II.IIT'-TH.

Therefore:

(4.20) I IP^^T^-P^WII^AIIT'-TII

with

(4.21) A-max^E^IK^-^A^I.
p °P

(4.5) Proof of (4.5).

Ifu is in the range ofP^T'), and ^=t=o, (4.19) shows that r(^) = r. In particular,

we may use (4.17) with v = o to obtain

IIT '^II^B^II^IIexp^+s)

which is the second half of (4.5).

If z/eU, then [1=772, and one can take v ==o in (4.18). Therefore (4. n), (4.17),

and (4.18) show that, given s>o, there are Cg, C^>o such that

(4.22) GJ|^||exp7z(^-s)^||T'^||^G:||^||exp7z(^+s).

We shall now prove that 8 may be decreased so that these inequalities hold for all u

in the range of P^T) when ||T'-T||^8.

Let u be a unit vector in the range of P^T), and u' be such that

(4.23) ll^'ll^i, II^-^II^MI^-1!!)-1.

Write

,, — y ,, ;:(o) ,/ __ y ,/ ?:(o)
U — ^ U^ , U — 2J Uj^^ .

Then S u^^ has norm ^i. Therefore |^ |>— for some k with r{k)=s and,
A-: r(/c) = s 77Z

by renumbering the ^0), we may assume | u^ \ > — . Since
772

<-^\<.\\^\\•\\^-U\\<-L,
2771

we have |^|>—. Andsince | [^ ' | [^i we have l^l^ll^"1!! ^or
 k<m. Therefore

277Z

u'eV when a<^(277^||^ (o)~ l | |) - l. According to (4.20), every vector in the range of

290



ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 43

P^T) is proportional to u' satisfying (4.23), provided Alir—TH^^II^-1!))-1.

We also want ||T'—T|[^a8. This is achieved by replacing 8 by

(4.24) min((2^||S(o)-l||)-18,(277^A||^-l||)-l).

With this choice (4.22) holds whenever u is in the range of P^T) and ||T'—T||^S.

Let q be the sum of the multiplicities of exp A^4'^, . . ., exp X^, and apply (4.22)

with T replaced by T^ and T'^^. One finds, for u in the range of P^T), and
y=f=o in the range of (P^^T)^-. . . + P^T'))^:

IIT^II^I1^^^^^'^^24'^ II II ^ ,
1 1 11^——(T^A^II—^-C^-IHI-^P^ ^

Therefore:

IIT-P^^II^B.expTz^-s).

This completes the proof of (4.5).

(4.6) Proof of {4.4).

The earlier c( partial proof of (4.4) 53 in Section (4.4) yields (4.20). We obtain

(4.4) from (4.20) by the replacement Th>T" if A can be chosen independent ofT". In

view of (4.21) this is achieved if we can replace T by T" in Lemma (4.2) and get bounds

on 8;-1, Ep (defined by (4.7)) and \\^
0)

-
1
\\ uniform in T". Since ||T^|1^||TJ|+8

it is easy to obtain a bound on E^,. We take the vectors ^0), . . ., ̂  in the lemma to

be orthogonal, so that ll^""1)! == i.

The choice of 8 made in the proof of the lemma is given by (4.15). Therefore

it suffices that we find upper bounds to G and D independent of T". Remember that

G is given by (4.13), and D is given by (4. n). In view of (4.5) we can bound C by

(EW^)2^^—^)- Applying (4.5) to T"^ we obtain an estimate:
g(m)

|det^)|^^exp(-^+i).).

Taking £=T] / ( ^Z+I ) yields the desired bound on D.

(4.7) Complement to Theorem (4.1).

If, instead of (TJ^o, we consider the sequence T^= ^n+f)n>^
 th

^ conditions

of Theorem (4.1) are again satisfied. We check here that 8-1, A, and Eg can be chosen

to increase with t at most like ^n, <?2^, and /n respectively. This result will be used

in Remark (5.2) c ) and the proof of Theorem (6.3).

First, we replace in Lemma (4.2) the vectors ^0), ..., ̂ ) by ^), ..., ̂ ). Then

Dg and G are multiplied at most by /e and A Therefore 8 is multiplied by a factor
not smaller than ^~2^.

Replacement of T by T^ replaces 8 by 8p which is multiplied by a factor not
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smaller than e~
cltr:

. The Ey (see (4. 7)) are multiplied by at most e^~
7/), and therefore

8^/E^ is multiplied by at least g-^~^\ Remember that min Sy/Ep is the choice of 8

used to prove the existence of the limit (4.3)3 and also in Section (4.4). From (4.11)

it follows that the choice of A given by (4.21) does not grow faster than e^
371

 ~
ril + ̂ .

The choice of 8 in (4.24) therefore does not decrease faster than ^- /(3 7 l -Y^'+2 £^ ̂  e~
3{rl

if 7/==2£; going over to min 8y/Ep does not change this.

In Section (4.5), Bg, Cg, Cg"1, Bg~1 do not increase faster than /£' for any s'>o,

e.g. ^ == T]. Therefore in Section (4.6) we obtain finally that A does not increase faster

than ^.

5. A nonlinear ergodic theorem.

In what follows we denote by B(a) the open unit ball of radius a centered at the

origin of R^, and by B(a) its closure. We shall say that a map is of class CT'8 if its

derivatives up to order r are Holder continuous of exponent 6; similarly for manifolds.

Theorem (5.1). — Let (M, S, p) be a probability space and T : M-^M a measurable map

preserving^. Given an integer r^i, and 6e(o, i], let x[->F^map M to C^B^), o; R ,̂ o).

We write

F;-F^-i,o...oF^oF,

and denote by T(A:) the derivative ofFy^ at o. We assume that .ri-^T(^), ||FJ[,. Q are measurable

and that

(5.1) Jlog+||FJ[^p(^)<+^.

We choose \<o and assume that almost everywhere the spectrum ofTatx contains neither X

nor —oo (the spectrum is finite, in particular T(A:) is invertible).

There is then a measurable set FCM such that rF C F, p(r)==i, and there are measurable

functions P>a>o, y^i on T with the following properties'.

a) If xeF the set

^={^eB(a(A:)) : \[^u\\<_^x)e^ for all 7^0}

x'j a CY'6 submanifold of'B{oL(x)), tangent at o )̂ V^.

b) If u, ve^, then

1|F>-F;^II^TMII^-^1|^-

If p zj ergodic^ the spectrum may be assumed constant on F. 7/' X'<?^ aTzrf the interval [X', X]

z'j- disjoint from the spectrum, there exists y' measurable on F wz'^A the property:

b') ^A^z z/3 ^eu^ then

1|F>-F^II^Y'W|1«-^<

We first study the case r = i; the case r> i will be dealt with later.
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We may take F C M such that -cTcr, p(r)=i , and, if xeF:

(5-2) ^(TrTy^A,,

(5-3) detA^o, det(A,—^i)+o and

(5-4) lim-log-^lF^-iL^o." .̂S \\ •i'rn-LT\\-l f t -n ->oo n 0 1 1 " a; 1 1 1 , u

This follows from Theorem (1.6) for (5.2), by assumption for (5.3) and from (5.1)

and the ergodic theorem for (5.4). Notice that (5.4) implies

"-^^^ll^^'^ll-o-

Let O<^T]<_—X6; we may then write, using (5.4),

G = sup | [ F^-iJj^Q exp(—7Z7]--X6) < + oo
(5.5)

|F,n-iJ|^exp(/2(X6+3^)-^)^G.

Given xeF, we write A^=A and let log A have the eigenvalues X^ . . . Oj^

(characteristic exponents) with the multiplicities m^, . . ., m^. Let V^ C . . . C V^

be the associated filtration of R^ We assume that X^ is the largest characteristic

exponent <X. Therefore, with the notation of Corollary ( 1 . 7 ) 3 V^==V^\ We write

(5-6) £=X-X^.

Given (B, o<p^i , we shall use the definitions:

(5-7) S^^elf": ||F>||^p^ for o^^v},

(5.8) S(p) ^{^eR^: HF^H^P^ for all 77^0}.

There are 8, A>o such that Theorem (4.1) holds with T] as defined above and

^^=T{^
n
~

l
x). We can make 8 smaller so that

(5.9) A 8 < 1
V t j ' c y / "-"^ ^ /—

V2

and then choose (B==(B(;c) satisfying

(5.10) o<(3<i, G^<S.

The functions xh>8, A may be assumed measurable, as follows from their (essentially)

explicit construction in the proof of Theorem (4.1). Therefore also x\->^ may be
assumed measurable.

Take x>i such that x(B^i, G^p)6^. We shall show that there is aE(o, (3)
such that, for all v>o,

(5.11) ^(oOnS^n^eir: || T^^u\\^^ for all n>v}

=B(a)nSV(xp)n(F;)-lV^.
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Let indeed z/eS^xjS)?^)-1^. The mxm matrices:

T^DF^-i^F:-^ if n^

T^==T^ if n>v,

are such that

T^-T;. ... .T^=F^ if n<^

and using (5.7), (5.5)? we have

||T'-T||-supl|T,-TJ|.3n^sup||DF,n-lJ|e(x[B)eexpKxe+3^)-^)^G(xp)e^8.
n n <^v

Therefore, Theorem (4.1) applies. In particular u is in the space V'^CR^ spanned

by the eigenvectors of log A' corresponding to the eigenvalues X^, . . ., X^L Using (5.6),

(4.5) gives

HT'^H^B^IHI

uniformly in v and ^eS^KJB)?^)"1^. If a==[B/Bg<(B, we see that the right-

hand side of (5.11) is contained in the left-hand side. The converse inclusion is

immediate. As for (B, we can assume that x\->oi is measurable.

Let D^(a) be the set defined by (5.11). Since the boundary of S^KJB) is disjoint

from 8^(3), and hence from D"(a), we conclude from (5.11) that D^(a) is open and closed

in ^(a)^)-1^.

Let now u, yeD"(a) or u, yeB(a)nS((B)==u^ (in the latter case, write v==oo) .

The mxm matrices

^^==^DF,n-l^-lu+{l-t)^-lv)dt if n<_^

T,=T, if n>^

are such that

T'^-y)^. • • • .Ti(M-o)=F>-F;y if w^v,

and, using (5.7) or (5.8), and (5.10), we have

IIT'-Tll^supllDF^IIe^exp^xe+s^-xe)
n<v

^G^<S.

Therefore Theorem (4.1) applies and, since u—v is in the range ofP^T'), (4.5) yields

(5.12) HF^-F^II^YII^-^II^ .

In this formula we have written y=Bg>i5 and ^Ky may be assumed measurable.

This proves part b) of the theorem. Part b') is also obtained if we take s=X'—X^

instead of (5.6). From (4.4) we obtain:

(5.13) 1|(I-P(P'(T))(M-.)||==||(P^(T')-P('))(T))(M-.)||<A8||^<-.1|
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which implies:

AS
[i-P""(T))(u-.)||^.(5-i4) .||PW(T)(M-,)||.

47

Define 0 : (V<"' n B(a)) X (V1^1 n B(a)) -^ B(a) by:

<D(Mi, Ma)=^\/a2-||^||2+M2.

Let O^i.^.^.^eD^a) or B(a)nS(p). Then (5.13) yields ||^||, ||^||^ASa
and, by (5.14):

Vi-^AS)2

•ll«2-"2ll^ -Va2-||y,||2^<^--Va2-||^<,||VAS

<. IVa^yiMalp—Va2"

+^Va2-||^||2. jl^-^1

+ll"i-"ill

^A8«|||^||-||^|

Va2-(ASa)2

AS
1 1 " 2 — "2ll+||Mi —Mi|

<

V/I-(AS)2

fVi-(AS)2 AS '

so that

(5.15)
< 1 1 " 1 - < 1 1 .l"2-"2ll

Vi-(AS)2/AS

In view of (5.9) the expression in parenthesis is >o. Since D"(a) is open and closed

in B(a)n(F^)-lV^ as a consequence_of ( 5 . 1 1 ) , we conclude from (5.15) that D"(a)

is the connected component ofo_in B^r^)-1^,,. Furthermore O-^^a) is the

graph ofaC1 function y": V('-'nB(a) -^V^n^a) with derivative bounded uniformly

with respect to v.

Let cp be the limit of a uniformly convergent subsequence of (y^). Since

0> (graph ̂ ^^(atnSm we have <D(graph y)C B(a)nS(p). The converse
inclusion follows from (5.15) applied to B(a)nS((3). Therefore

0 (graph y)=B(a)nS(P)=u^,

and, by uniqueness of y,

lim q^ = cp uniformly.

Let u, oeD^a) and define mxm matrices:

T^DF,,,-!^-1"). T^'^DF^-i^F;-^) if n^,
'T^f _ nr'// _ rp

^n — -"-n — ^n if 72>V.
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Then |[T'—T||, ||T"—T||<8. Using (5.12) we have also

ll^-T^II^IIDF^iJIe.llFr^-F:-1.!!9

^||F,„-l,|l^Ye|[a-.[|9exp(n-I)X6

if n ̂ v, and therefore

[[T'-T' l l^GY'l l^-yl l6 .

By (4.4) we have then

[|p(.)(T')-p(.)(T'/)||<(AGY6)|[„-.||e,

where the ranges of P^T) and P^T") are the tangent spaces to D^a) at u and v.

Letting v->oo we find that the tangent space to B(a)nS((B)==u^ at w also depends

Holder continuously on w, with exponent 6. This tangent space is the range of P^T),

where T^DF^-i^F!,;"1^) for all n: to see this notice that we may assume |[T—T|[-^o

as v-^oo, and apply (4.4). In particular the tangent space to u^ at o is P^T), i.e. V^.

This proves part a) of the theorem when r === i.

We prove now that u^ is G^8 by induction on r for r> i. Let

F^: B^CR^R^R^

be the G'-110 map defined by

F,(^)=(F^,DF,(^).

We can apply the results obtained till now to F instead of F. In particular, let S((B)

be replaced by S((B) CR^QR^. The above identification of the tangent space to S((B)

as the range of P^T) shows that {u, y)eB(oc)n^((B) i fandonly i f^eB(a)nS([B) and

v is tangent to S((B) at u and sufficiently small. Since B(a) n S((B) is G7'"1'6 by induction,

the dependence on u of the tangent space to B(oc)nS((B) at u is G7'"1'6. Therefore

B(a')nS((B) is G^6 if a'<a.

Remarks (5.2). — a ) The theorem as we have stated it assumes only the measurability

of x^T{x), | |FJ[r,e- Ch^ could easily give an "abstract55 version for a sequence

of maps F^eC^B^), o; R^ o) satisfying conditions corresponding to (5.2), (5.3),

(5.4). On the other hand further measurability properties of x\->'F^ would imply

measurability properties of x\->^. Such properties follow from the fact that u^ is the

Gr limit, as v->oo, of the connected component D"(a) of o in B(a)n (F^)"^^ (with

G^0 estimates uniform in ^).

b) Let T^=DF^-i^-1^). The range of P^(T). for q=i. . . . , .? , has C'-110

dependence on ue\^. This was shown above when q=p< For general q the step r== i

is the same; the argument used for r> i has to be modified by writing

¥\{u,v)--=(V^e^'DWv)

where X' is not in the spectrum and q is the largest characteristic exponent <X'.
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c ) From^Section (4.7) and (5.9), it follows that we can take 8 at ^x to decrease
at most like e

 s/l). From (5.5) we see that G increases at most like A Therefore,

by (5.10), we can take ^x) to decrease at most like e-^l
9
. Since oc=(3/B,, a(-r^)

decreases at most like e~
e
'
{ r

'
l e

.

(5.3) The C" case.

_ Theorem (5.1) has a G" version as we now indicate. Let xt->F^ map M to

G'a(B{^), o; R", o). We assume that x\-^T{x), ||FJ|, are measurable and, instead of (^ i)
that "

(5.16) Jlog^lFJI^^+oo

for every integer r>o. Then the conclusions of Theorem (5 .1) hold with ̂  a C°° submanifold

^•B(aM).

Let r,, a,, p,, Y, be a choice of F, a, (3, y according to Theorem (5. i), for r^i

and any 6e(o, i], say 0=-1 . Let:
2

r,(n)=={xer,: ^(x)e"^<^x)}.

We have o<(3i<i (see (5.10)) and o<a,<i; therefore j^ a,(T»A:)p(^)^"\

implying Hm^(M\F^))=o. Let F;=^r,(n); then p(F;)lT If ^F;, there

is some H^O such that F^ maps u^ (?^. u^ defined with ^ and p^) onto a subset of

the C'- manifold u,^ , (i.e. u^, defined with a, and ^). Since F^ is C'-, and is a C1 diffeo-

morphism on u^i, it is also a C" diffeomorphism, and u^ is therefore C1'. Let now
00 CO *

rro= JiJo^^- ^^ve p(FJ=i and TF^CF^; let a,, (S,, y^ be the res-

trictions of ai, pi, Yi to F^. Then the desired G" version of Theorem (5. i) is obtained

with F^, o^, (B^, y^ in place of F, a, (B, y.

Notice that we have also shown the following: if the conditions of Theorem (5 .1 )

are satisfied, the functions «., (3, y can be determined by considering x^F^ as a map from M to

C1-1^!), o; R, o) {but F might depend on r).

(5-4) The analytic case.

Let B(i) denote here the open unit ball centered at o in C"1 and H(B(i), o, C", o)

be the space of maps holomorphic in B(i) and continuous on B(i). The holomorphic

version of Theorem (5. i) is as follows. Let x^F^ map M to H(B(i), o; C"1, o). We

assume that x'-rT^x), [|FJ|i are measurable and, instead of (5.1), that

(5.*7) Jlog^lF.JI^^+oo.

Then the conclusions of Theorem (5.1) hold with ̂  a holomorphic submanifold ofK{v.{x)).

Notice that (5.17) implies:

Jlog^lFJIW^+oo
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where || • [ [ 2 is the C2 norm on a ball with radius < i. Therefore a C1 manifold is defined

by Theorem (5.1). By construction, this manifold is a limit of holomorphic mani-

folds D^a), defined by (5.11), and therefore u^ is holomorphic.

In Section 6, this result on holomorphic maps will be used to handle real-analytic

maps.

6. Stable manifold theorem.

Let M be a compact differentiable manifold, and /: M-^M a C1 map. Applying

Appendix D with T =/, E = TM, T = Tf yields a Borel set F C M with the following

properties:

I. yT C F and (r ( r )==i for every f- invariant probability measure a on M.

II. For each xeF, the spectrum {X^, . . ., X^} of T/and the associated filtration

V^ C . . . C V^ - T,M of T,M are defined. We write V^ = UW: X^X}.

III. r is the union of disjoint Borel subsets Fp indexed by the ^-ergodic measures,

such that TFp C Fp, and

i n
~~

l

lim - S ^(f
k
x)==o((D)

n-^co^/ ,=o 1 V J / r v T /

whenever xeF^ and cp : M->R is continuous. The spectrum is constant on each Fp.

Theorem (6.1). — Let M be a compact differentiable manifold and f'. M->M a diffe-

rentiable map of class G^0 (r integer ^i, 6£(o, i]). Let d be a Riemann metric on M and

denote by B(^, a) the open ball of (sufficiently small) radius a centered at x in M. Given X<o

there are Borel functions (B>oc>o and y^1 on the set

r^^^er : the spectrum of Tf at x contains neither X nor —00}

with the following properties'.

a) If xeT^, the set

^{y.{x))=={yeB{x, ocM) : d{fn^,fnx)<_^x)e^ for all n^o]

is a C"'0 submanifoldofW^x, a(;c)), tangent at o to V^. IfM and f are G00 (resp. G", i.e. real-

analytic), then u^(a(^)) is 0°° (resp. G").

b) If y, ^e^(aM), then

d{fnyJnz)^M^z)en\

Given p ergodic, if X'<X and the interval [X', X] is disjoint from the (constant) spectrum

on r , there exists a Borel function ^l-^y'^y with the property.

b') If j^e^(aM), ̂

^(/^/^YW^ ̂ )^.

We may assume that M is C00. There is then a C00 map {x, u)\->^{u) of TM

to M such that ^ maps the open unit ball ofT^M diffeomorphically onto a subset of M
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and 4a;(°) == x
' With a finite Borel partition of M trivializing the tangent bundle we

may associate a Borel map (x, u)\->^u) which is piecewise C00, is a bijection of MxR"*

onto TM, and is such that ^: R^-^T^M is a linear contraction. We choose 8 so

small that the image by/^^ of the closed ball B(S) is contained in ^^B(i) for all x.

Define now Y^^8:B(i)^M and F^Y^o/oT^ Given X<o, the proper-

ties (5.2), (5.3), (5.4) hold if xeF\ Therefore Theorem (5.1) holds (with 1̂

replacing F) and we obtain readily the €7'° version of the present theorem. The

(essentially) explicit construction of A:h>a, (B, y ensures that these functions are Borel.

In the C00 case, Section (5.3) should be used instead of Theorem (5.1).

If M and / are C", let f be a holomorphic extension of/ to a neighborhood N

of M in a complexification M. There is then a G00 map {x, u)\-^^^(u) of T^M to M

such that ^ restricted to the open unit ball of T^M is a holomorphic reality preserving

diffeomorphism onto a subset of N, and ^[o)==x. With a finite Borel partition of M

trivializing Tj^M we may associate a Borel map {x, u)[->^{u) which is piecewise C",

is a bijection ofMxC^ onto T^M, and is such that ^: C^-^T^M is a C-linear reality

preserving contraction. Choose now 8 so small that the image by/^^ofthe closed

ball B(8) (in C^) is contained in ^^B(i) for all x. Define T,=^8 : B(i)->N

and F^^^Y^o/o^. Given X<o we may apply section (5.4) and we obtain a family

of holomorphic manifolds. Their real parts are the desired C° manifolds u^(a(A:)).

Corollary (6.2). — If p is ergodic and all the characteristic exponents of Tf are strictly

negative on Fp, then p is carried by an attracting periodic orbit.

Let the characteristic exponents be <X<o. There is xeF^ such that

p(B(^,aM))=£>o.

Since we have here u^(a(A;))==B(A:, a(A:)), we find

f^^C^f^^e^

and we have

p(/»B(x, aW))^.

Thus the set B^^, (B^)^) has measure at least s. Using compactness, and taking

a limit, we find a point with mass >s. Its orbit carries p by ergodicity, and is finite.

Clearly, it is also attracting.

Theorem (6.3). — Let M. be a compact differentiable manifold^ and f a diffeomorphism

of class G7''6. We have here fT == F, and the following properties hold'.

a) Let X^^. . . <x!^ be the strictly negative characteristic exponents at xeY. Define

u^C.. .Cu^ by

u^= [yeM: lim sup ̂  log d^xj^) <X^
I

n -> oo * fln ->• oo n \

for p == i, . . ., q. Then u^ is the image of V^ by an injective CT'6 immersion 1^ tangent to

the identity at x.
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b) If xeT and X^<o, then u^C Fp for some ergodic p. The filtration V^C . . . CV^

A^- Cy"116
 dependence on I^^eV^.

0^ TTZ^ ^ ̂  a&o^ r^/^ G''8 (resp. G'"-1'6 in b)) by C00 or G".

With q==q(x) defined above, choose a Borel function ^ on F such that

o<^)<-^.

We take q-\-1 numbers X^, . . ., Xg, T] such that

(6. i) \^<\<\^<\<... <^<\< -W,

o<7]<Ie^),
\j

and such that X^, ...,\, •/] are constant on a countable family of/-invariant Borel

sets forming a partition of F. On each one of these sets, and for p== i, . . ., q, a

function a is defined by Theorem (6.1) with respect to X = = X . We call again a the

minimum over p of these functions. This new function a defined on F is again Borel,

and is such that whenever X is one of the Xy, u^(a(A:)) is defined and Theorem (6.1)

holds. The number T] is that appearing in the proof of Theorem (5.1)3 it satisfies

o<47]^—X6 as it should.

By reference to Appendix D one sees readily that if ^eFp, then u^(a(A:))C Fp.

(The main point is to check that u^(a(^))C F'. This follows from the inequality

| |T—T[ |<8 in the proof of Theorem (5.1), and application of Theorem (4.1).) In

particular, if X = X y , ^(oc(^)) is tangent to V^ for each J^u^(a(A:)). Also the filtration

V^C . . .CV^ has Cy"158 dependence on y as noted in Remark (5.2) b). (In the

C°° case, the dependence is C00 (cf. Section (5.3)); in the G" case the dependence is G":

use a complex extension of / and M as in the proof of Theorem (6.1).)

We come now to the proof of the theorem. For the fact that fr==r see

Remark D. 2 a).

By Remark (5.2) c ) , we know that a(/^A:) decreases at most like e~
KIW

. (This

asymptotic behavior is not changed by the mappings in the proof of Theorem (6.1).)

Here 5-y]/6<^) by (6.1), so that a(/^) decreases less fast than e'^. Therefore

for each k>o there are arbitrarily large integers f>o such that

(6.2) ke-^^^xY

Let xeF, X^<o, and \=\. If y^\ there is k such that, for all TZ^>O,

^(y^,/^)^^.

In particular there are arbitrarily large /^o such that, for n^o,

d{f{+ny,f{+nx}<_ke-ewe^<^flx)e^<^f{x)en'h.

Therefore f^^^} (^Y^))) hence

^'^U/-/uya(A)).
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The argument applied above to y^^ also applies uniformly to all J^f~
n
^nx{

(x
•{f

nx
))•

Thus, for each n^o there is f>n such that

f-^W^W^.W1^
and we may assume thaty^'^u^o^y^)) is contained in the open ball 'B{f^x, a(y^)).

In particular u!̂  is the union of an increasing sequence of < c disks 93
 f"

1
^ [^[f

1
^))

tangent to V^ at x. It readily follows that uS^ is the image of V^ by an injective

immersion tangent to the identity at x (see Hirsch [5], Chapter 2, Section 5). This

proves a) and b ) .

Remarks (6.4). — a) If^is replaced byy"1, F will be replaced by a set F", and

there is no reason to expect in general that F and r~ will coincide.

b) One sees easily that

u^=^eM: Hm^logrf(/^/^)<^)

==iyeM : lim sup-^log dC^x^f^^mmf.o, X^4-^)).
[ n->oo n j

In particular the manifolds

u^==^eM : limsup^logrf(/wx,/n>')<o|

may be called stable manifolds for /. They provide a foliation (discontinuous in general)

of the set F. Theorem (6.3) provides a variety of other foliations depending on the

choice of an y-invariant function X<o on F.

APPENDIX A. Proof of Theorem (1.1).

The assumptions a) and b) of the theorem imply that

/„+^/l++/l+^+•••+/l+°T"-16Ll.

Therefore !„= f/,(.x)p(<^) exists, finite or —oo, and b) gives ITO+B^IOT+I,,. The

sequence (!„) being subadditive, we have

(A.I) J™ ^JXWPW == inf^MpW.

For every positive integer N3 define

/WM=maxaM,-^N}.

It is easy to see that the sequences {f
w
)n>o again satisfy the subadditivity condition b)

of the theorem. Let us assume that the conclusions of the theorem hold for these sequences. Then

^(N) has a limit/(N) a.e. for each N, and there is /: M - ^ R u { — o o } such that

/^(^max^^-N}
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for almost all x. In particular

(A. 2} l i m - / — / a.e. andv / n->oo ̂ Jn J

ff{x)p{dx)=mfffW{x)p{dx).

Since the conclusions of Theorem (1.1) hold for {fn^)n>o by assumption, we have

ffW(x)p{dx)=infj^fW(x)p{dx).

Thus

(A.3) J/WpW=i^fJ^N'Mp(^)

=infJ^)p(^).

In view of (A. i), (A. 2) 5 (A.3), Theorem ( i . i) is a consequence of the following result.

Theorem (A.i). — Let {fn)n>o ^e a sequence of real functions such that

a) /,eLi(M, p);

b)/^n^^+/noTwa.e.;

c) there is N>o such that (fn{x)^{dx)^—nN.

Then there is a ^-invariant real function yeL^M, p) such that -f^ tends to f almost every-

where. Furthermore:

(A.4) Hm^^J/,Mp(^)==inf^J/^)p(^)

-J/WPW.

For a proof, see Derriennic [3].

APPENDIX B. Semi/lows.

In this Appendix, (M, 2, p) is a fixed probability space, and {^)^Q:M->M

is a measurable semiflow preserving p. (This means that (^,^)h>T^ is measurable

MxR+-^M, T° is the identity, T^^T^T^, and each ^ preserves p.) Almost every-

where means p-almost everywhere.

Theorem (B. i) (subadditive ergodic theorem).

Let the map {x, t) \->ft(x) : M X R+ - > R u { — 00} be measurable and satisfy the conditions:

a) integrability:

9,= sup /^eL^M.p), 92= sup /^o^eL^M, p)
Q<_u<^l Q<_u^l
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b) subadditivity:

/s+(</s+^oT8 a.e.

Then there exists a (r^) -invariant measurable function y^=M—^Ru{—00} such that

f+eLl(M, p),

l™^^ a•e•' and

l^ff^)^dt)=m{^f,{x)p(dx)=ff(x)p(dx).

Let n be the integral part of t. We have then

fn+l-^n<,ft<,fnJr^n

and, since cp^, cp^L1, we have

lim - cp. o T^ == lim - cp o T^ == o a.e.
n-^co -yi n->w 1^ ' "

by the ergodic theorem. The above theorem follows thus from the corresponding

theorem ( i . i).

(B.a) Cocycles.

A map (^, t)[->T^ from MxR+ to M^ (the real mxm matrices) will be called

a cocycle if

Ts+(_npf nrs
x — ^ ^ x ^ x '

We also assume that the cocycle is measurable MxR+ —"M^ and that the functions cp^, cpg

defined by

(B . I ) yiW- sup log^lT^I
O ^ M ^ l

(B.2) 92W- sup log^lT^/l]
O^M^I

are in ^(M, p). From Theorem (B.i) we obtain the existence, for ^==i , . . . ,^,

and almost all x, of

(B.3) Inn^loglKT^H.

We also have, for almost all x,

(B.4) lim sup' sup log HT^H^O.
I-^00 t 0^u<_l
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To see this, write t==n-{-v {n integer, o<^y^i) and observe that

NT^I+M (Ki|TM+u II IIT1'-^ II
II -•-T^+^II-^II ^T^^II • II -^(T^II

\\'-ru+v l\<^ \\'TU+V-I\\ ll^l [ [ /•f i,,'> r\
II-'-T^ldl-lll-^aa; 1 1 . 1 1 - L ^ + i ^ l l (H U-^-V^I)

yield

log+||T^M|[^92(T^)+9l(Tn+l^+9l(^+^).

(B.4) follows then from the ergodic theorem.

Using the existence of (B.3), and (B.4), the proof of the multiplicative ergodic

theorem in Section i is easily adapted to flows.

Theorem (B.3) (Multiplicative ergodic theorem).

Let (T^>o be a measurable cocycle with values in M^ [the real mXm matrices) such that

the functions 9^, (pg defined by (B.i), (B.2) are in L^M, p).

There is FCM such that rTCF for all t^o, and the following properties hold

if xeF:

a) lu^T^-A,

exists.

b) Let exp X^<.. . <exp X^ be the eigenvalues of A^ [where s=s[x), the X^ are

real, and^ may be — oo), and U ,̂ . . ., U^ the corresponding eigenspaces. Let m^ == dim U .̂

The functions x^\ m^ are ^-invariant. Writing Vw={o} and V!;)==^l)+ . . . ̂ -U^,

we have

lim ^log|[T^|| =X^ when ^eV^V^-^

for r = = i , . . . , s .

APPENDIX C. Local fields.

The multiplicative ergodic theorem extends to local fields (1), as noticed by Margulis.

If R is replaced by C, matrix transposition has to be replaced by Hermitean

conjugation in Theorem (1.6). In general, replacing mxm complex matrices by

2772X27% real matrices reduces the complex case to the real case. (Let i h > ( |,
. / i \ \ \ V i/•"(-. ))•

We shall not discuss ultrametric local fields, foi which see Raghunathan [15].

APPENDIX D. Continuous maps.

Let M be a metrizable compact space, T : M-^M a continuous map, n : E—^M

a continuous 772-dimensional vector bundle over M, and T : E->E a continuous vector

bundle map over T.

(1) For definitions, see WEIL [22].
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Proposition (D.i). — There is a Borel set FCM such that rFCr, and o(r)==i

for every ^-invariant probability measure a on M. Furthermore, for each xeF, there is a ^-ergodic

probability measure p .̂ such that

^•^ ^Lt^^^
for all continuous <p : M—^R, and

Hm l̂og ||(T |̂| = hm^Jlog ||(y|| p,(̂ ) == inf^Jlog|[(T^|[ p )̂

y^r <7== i, . . ., w, 2^7^ z^ A^^ written ^^=T{f^:n~lx) . • • • .T(^).

Let r^ consist of those xeM. such that

^W-n1""^10^ 11(^)^1

exists, and

(D.2) F^)=F?(T^

for y = i, . . ., m. Then I\ is a Borel set and cr(I\) == i for every invariant probability

measure a by Theorem (1.1). We write r'= H T^FI.
n^O

Let Fg be the set of all xeM. for which there is a r-ergodic probability measure p^

such that
j n-l

vague lim-S S^=p^.
n-^oo ^A ; = o

Then 1̂  is a Borel set, Tr^cr^ and (r(r2)=i for every T-invariant probability

measure cr. This follows from the Bogoliubov-Krylov theory (see Jacobs [7]). Further-

more, if a is a T-invariant probability measure we have, by (D.2), for cr-almost

all ^er'nrg,

(D.3) FW-JF^P^)-

We define continuous functions FJ^ by

F^)-max{log |(T^)^||, -f}.

From Theorem (1.1) we get:

jF^P.W=J"^Jlog \\W\\ P.W

JF^WP.(^)=lim lim1 \^x)p,{dy)
n -><x> /->oo ^J (nv / k a ; v • - ^ /

== lim lim lim i f 1 S Fj,(r^).
TO-^oo^ooN-^oo ^J ^^=0 n

Therefore the set F of those ^er'nFa for which (D.s) holds is Borel, rFC F, o(r)== i,

and Proposition (D.i) holds.
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Remarks (D.2). — a) The proof of the proposition gives r r==r when T(x) is

invertible for all x.

b) Since E can be trivialized by a finite Borel partition of M, a multiplicative

ergodic theorem follows from Proposition (D. i) and Proposition (1.3). The arbitrariness

in the choice of norm on E is without consequence for the definition of the spectrum

of (r, T) at xeF, and the associated filtration of E(A:).
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