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ERGODIC THEORY, SEMISIMPLE LIE GROUPS,

AND FOLIATIONS BY MANIFOLDS

OF NEGATIVE CURVATURE

by ROBERT J. ZIMMER (1) (2)

!• Introduction.

If M is a manifold, a basic problem that has received considerable attention is

to examine the relationship between the topology of M, in particular its fundamental

group, and the possible Riemannian structures on M. One particularly striking example

of a result relating T^(M) to Riemannian metrics on M is the Mostow-Margulis rigidity

theorem which asserts that if M and M' are suitable locally symmetric spaces of finite

volume, then isomorphism of T^(M) and TTi(M') implies isometry ofM and M', modulo

normalizing scalar multiples. Thus, roughly speaking, for suitable M, TT^M) uniquely
determines any locally symmetric Riemannian structure on M.

If y is a foliation of a manifold (or more generally, of a measure space) one can

formulate analogous questions. For example, let T be a transversal to the foliation,

so that T has the structure of a measure space with an equivalence relation. We can

then enquire as to the relationship between this purely measure theoretic feature of

the foliation and the possible Riemannian structures that can be put on the leaves (these

structures varying measurably in a suitable sense as we move from leaf to leaf). In [36]

we proved an analogue of the Mostow-Margulis theorem in the context of foliations

by symmetric spaces. This theorem asserts that if (M,, <^) are two suitable ergodic

foliations in which each leaf is a Riemannian symmetric space ofnoncompact type and

rank at least 2, then isomorphism of transversals (as measure spaces with equivalence

relations) implies that the measurable foliations are isometric. This means that there

is a measure space isomorphism M^ -> Mg that takes almost every leaf of ̂  isome-

trically into a leaf of ̂  modulo normalizing scalars. Thus for suitable foliations, the

measure theory of the equivalence relation on a transversal uniquely determines possible

symmetric Riemannian structures on almost all leaves.

In particular a suitable (see below for precise conditions) foliation in which each
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38 R O B E R T J . Z I M M E R

leaf has constant negative sectional curvature will not be transversally equivalent {i.e. have

isomorphic transversals in the sense above) to a foliation by symmetric spaces of higher

rank. On the other hand, via an amenability argument, it is not hard to show that

these foliations by manifolds of constant negative curvature cannot be transversally

equivalent to the measurable foliation arising from a measure class preserving free

Reaction. The results of [39] imply that the latter assertion remains true if we replace

the condition of constant negative curvature by possibly varying negative curvature

bounded away from o. The central point of this paper is to show that the former

assertion is also true in this more general situation. Our main result (Theorem (5.1))

combined with [39] yields the following (see below for all terms involved).

Theorem. — Let ^ he an ergodic Riemannian measurable foliation with transversally

invariant measure and finite total volume. Suppose there is c< o such that for almost every leaf

all sectional curvatures K satisfy K < c. Assume further that almost all leaves are simply

connected and complete. Then

i) y is nonamenable, and in particular is not transversally equivalent to an W-action.

ii) y is not transversally equivalent to an ergodic irreducible Riemannian measurable filiation

with transversally invariant measure and finite total volume, such that (almost) every leaf is isometric

to a given symmetric space of noncompact type and rank at least 2.

In other words, the measure theoretic properties of the equivalence relation on

the transversal provide an obstruction to the possible Riemannian structures that can
be measurably assigned to the leaves.

This theorem implies a new result concerning orbit equivalence of ergodic actions.

We recall that if F^, i = i, 2, are groups acting ergodically on measure spaces S^, Sg

respectively, the actions are called orbit equivalent if (possibly after discarding null

sets) there is a measure space isomorphism S^-^Sg taking F^-orbits onto Fg-orbits.

For the theory of orbit equivalence for actions of amenable groups see [4], and for actions
of semisimple Lie groups and their lattices, see [36], [37].

Corollary (5.3). — Let I\ be a lattice in a simple Lie group G with R-7W^(G)^2,

and let Fg be the fundamental group of a compact manifold of negative sectional curvature (or more

generally a finite volume complete manifold with negative curvature bounded away from o). Then

FI and Î  do not have free, finite measure preserving^ orbit equivalent ergodic actions.

While Corollary (5.3) as stated follows directly from the main theorem, the

technique of proof of the main theorem can in fact be used to establish a more general

assertion about orbit equivalence of group actions. We describe this in the concluding

section of this paper, but it implies for example that Corollary (5.3) remains true under

the assumption that Fg is any subgroup of the fundamental group of a complete manifold

of finite volume and negative sectional curvature bounded away from o.

Fundamental groups of locally symmetric spaces of non-compact type are of course
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ERGODIC THEORY, SEMISIMPLE LIE GROUPS, AND FOLIATIONS 39

discrete subgroups of semisimple Lie groups and the Mostow-Margulis theorem can

equivalently be considered as a result concerning lattices in semisimple groups. Similarly,

the analogous results of [36] for foliations by symmetric spaces can be considered as

results about ergodic actions of semisimple Lie groups. In both cases, this formulation

allows one to bring the theory of semisimple groups to bear on the problems, and the

proof of these theorems are very Lie theoretic in nature. In particular, the study of

the relationship of the lattice subgroup or ergodic action to the action of the semisimple

Lie group on its maximal Furstenberg boundary is a basic feature of the proofs. For

the proof of Theorem (5.1)5 we also proceed by studying <c boundary behavior " but

the techniques we employ here are entirely different from those used in [36]. This

is necessitated in part by the fact that for manifolds of varying negative curvature there

is not necessarily a simple description in Lie theoretic terms, and thus for this foliation

we study behavior at infinity in terms of the geometry of asymptotic geodesies in each

leaf. Here we employ the formulation of the boundary at infinity for manifolds of

nonpositive curvature developed by Eberlein and O'Neill [5]. On the other hand,

for the foliations by symmetric spaces we can again use the relationship between an

ergodic action of a semisimple Lie group and the action on the Furstenberg boundary.

However, the type of information we develop here concerning this relationship is rather

different from that we used in [36]. In the latter case, we adapted certain techniques

developed by Margulis for proving arithmeticity of lattices [19]. In particular this

involved using ergodicity of certain actions to establish rationality of certain a priori

measurable maps defined on G/P, where G is a semisimple Lie group and P a minimal

parabolic subgroup. In the present situation, we again generalize to the framework

of ergodic actions a result of Margulis. This result of Margulis [21], which was the

basic step in his finiteness theorem, asserting finiteness of either the image or kernel

of a homomorphism defined on an irreducible lattice in a higher rank semisimple Lie

group, asserts that if F C G is such a lattice, then every factor of the action of F on G/P

(<( factor " in the sense of measurable quotients of ergodic actions) is of the form

G/P-»G/P' where P'DP. In other words, F-factors are already G-factors. The

generalization of this to ergodic actions we need here (and which we expect will be

useful in other contexts) is the following.

Theorem (4.1). — Let S be an irreducible ergodic G-space with finite invariant measure,

where G is a connected semisimple Lie group with finite center^ no compact j"actors, and 'R-rank

at least 2. Let P C G be a parabolic subgroup. Then every G-space X which is an intermediate

factor between S X G/P and S (i.e. we have G-maps SxG/P->X-^S) is of the form

X=SxG/P' where P'DP.

The essential ideas of the proof of this theorem are those used by Margulis in [21].

The connecting link between the boundary behavior of the foliation by symmetric spaces

and the foliation by manifolds of negative curvature is provided through the notion
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40 R O B E R T J . Z I M M E R

of an amenable action [31], and in particular through the fact that G acting on S X G/P

is amenable, if P C G is a minimal parabolic subgroup.

The outline of the paper is as follows. Section 2 establishes basic notions we will

need throughout the paper. In Section 3 we formulate a boundary theory for foliations

by manifolds of negative curvature, and in particular discuss the behavior of measures

on the boundary at infinity. Section 4 is devoted to the proof of Theorem (4.1)3 the

generalization of Margulis5 theorem. In Section 5 we complete the proof of the main

theorem.

This work was begun while the author was a visitor at I.H.E.S. The author

would like to express his thanks to the director and members of that institute for their

hospitality. We would also like to thank Dennis Sullivan in particular for useful

conversations concerning this paper.

2. Preliminaries.

We shall be dealing with the ergodic theory of group actions, equivalence relations,

and foliations, and we briefly recall some definitions. Let G be a locally compact

second countable group. By a G-space we mean a standard measure space (S, (i)

and a G-action S X G -> S which is a Borel function such that (JL is quasi-invariant

under the action, i.e. ^(Ag) == o if and only if [Jt(A) = o, where AC S is Borel and

g e G. The action is called ergodic if A C S is measurable and essentially G-invariant

{i.e. [ji(A A Ag) = o for all g e G) implies A is null or conull. We shall most often

in this paper be concerned with the situation in which the measure [L is finite and

invariant, i.e. pt(A^) == (JL (A) for all Borel A C S and g e G. If S is an ergodic G-space

and S' an ergodic G'-space, the actions are called orbit equivalent if (possibly after

discarding null sets) there is a measure class preserving Borel isomorphism S -> S' that

takes G-orbits onto G'-orbits. If G and G' are amenable discrete groups and S and S'

have finite invariant measure, and are properly ergodic {i.e. not transitive on a conull

set), then the actions are orbit equivalent. This was established by H. Dye when

G == G' == Z, and in general by Gonnes, Feldman, Ornstein, and Weiss [4], [26].

One has similar results for continuous amenable groups. On the other hand, the rigidity

theorem for ergodic actions of semisimple Lie groups [36] implies that if F C G, F' C G'

are lattices in simple Lie groups with finite center, and R-rank (G) >_ 2, then F and F'

do not have orbit equivalent free finite measure preserving ergodic actions unless G

and G' are locally isomorphic. In fact, if we consider ergodic actions of G and G'

in the centerfree case, then orbit equivalence implies conjugacy modulo an automorphism

of G. One of the points of this paper is to establish a new general result on orbit equi-

valence using methods different from those that have been applied to this question before.

Suppose now that (S, ^) is a finite measure space and that R C S X S is an equi-

valence relation that is an analytic subset [16]. For example, if S is a G-space, we

can take R C S X S to be R^ = {(^, sg) \ g e G}. The equivalence relation is called
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ERGODIC THEORY, SEMISIMPLE LIE GROUPS, AND FOLIATIONS 41

countable if each equivalence class is countable. For RQ this is obviously the case

if G is discrete. If R is a countable equivalence relation, by a partial automorphism

of R we mean a Borel isomorphism <p : A^->Ag, where A^C S are Borel, such that

for j^eA^, ^{y)^y» The measure (A on S is called invariant under R if for every

partial automorphism of R, (^((JL | A^) == (A | A^. Quasi-invariance is similarly defined.

If R = RQ, then \L is (quasi-) invariant under G if and only if it is (quasi-) invariant

under R^. This is immediate once one observes that by countability of G, for every

partial automorphism <p : A^-^Ag of RQ, A^ can be written as a countable disjoint

union of sets on each of which 9 acts by some element of G. A measurable set A C S

is called invariant under R if x e A, x r^y implies y e A, and a countable equivalence

relation with quasi-invariant measure is called ergodic if invariant sets are either null

or conull.

Countable equivalence relations with quasi-invariant measure arise naturally not

only from actions of countable groups but as transversals for continuous group actions

and foliations. Let (S, [ L ) be a measure space and R C S X S a (not necessarily coun-

table) equivalence relation on S. By a countable section for R we mean a Borel set

T C S such that T intersects (A-almost every equivalence class and the intersection

with each equivalence class is at most countable. Then R | T = R n (T x T) is a

countable equivalence relation on T. A measure v on T is called [i-compatible if for

ACT a Borel set, v(A) = o if and only if ^-([A]) === o where [A] is the saturation

of A under R, i.e. [A] = {x e S\ x^y for some y e A}. Such a measure v is quasi-

invariant under the countable equivalence relation R | T, and its measure class is uniquely

determined by the condition of pi-compatibility. If there is a ^-compatible measure

on one countable section, then one exists on every countable section and we then call [A

transversally quasi-invariant. We call (A transversally invariant if the measure induced

on countable sections can be chosen to be invariant for the equivalence relations on

the countable sections. Again, for this to hold it suffices to see that it holds on one

countable section. Furthermore, as countable equivalence relations with quasi-invariant

measure, any two countable sections are stably isomorphic [9], i.e. have subsets of positive

measure which are isomorphic as countable equivalence relations with quasi-invariant

measure. We then have the following theorem, due to A. Ramsay [27] andj. Feldman,

P. Hahn, and C. C. Moore [10].

Theorem (a. i). — Let G be a locally compact group and (S, (A) an ergodic G-space. Then

countable sections for RQ exist, and \L is transversally quasi-invariant.

We remark that if (A is G-invariant and the action is locally free (i.e. stabilizers

are discrete) then (A will be transversally invariant if and only if G is unimodular. This
follows from a more precise quantitative result of C. Series [30].

Suppose now that R C S X S is an ergodic equivalence relation such that each

equivalence class has the structure of a G°°-manifold of a fixed dimension n. This is
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the case for example if R = R^ where G acts locally freely on S and G is a Lie group,

since each equivalence class inherits a G^-structure from that of G. For such an

equivalence relation a countable section T C S is called a transversal if for each equi-

valence class L, T n L has no accumulation points in L and if there is a Borel iso-

morphism <p : T X D -> A where D is the open ball in R^ A C S is a Borel set with

TCA, such that

(i) <p(/, o) == t;

(ii) for each t e T, the map <P( : D -> S is a G°° diffeomorphism onto an open neigh-

borhood of t in the G^-structure of the equivalence class of t.

Such a set A is called a flow box.

Definition (2.2). — By a measurable filiation of a measure space (S, pi) we mean an

equivalence relation y C S X S such that

(i) \L is transversally quasi-invariant for 3^'.

(ii) Each equivalence class (hereafter <( leaf") of y has a G^-structure.

(iii) There exists a countable collection of flow boxes whose union contains [L-almost all leaves.

Every locally free ergodic action of a Lie group defines a measurable foliation [10],

[35]? ^d every ergodic C^-foliation of a manifold M does as well, where pi is Lebesgue

measure on M. Here the transversals can be taken to be transversal manifolds and

Lebesgue measure on these manifolds will be p-compatible. This latter remark fails

if the foliation is only assumed to be continuous, but there are many natural examples

of continuous foliations which will still be measurable foliations in the sense of defi-

nition (2.2) [40].

Definition (2.3). — We call two ergodic measurable filiations y, y transversally equivalent

if there are transversals T, T'/or y, ̂  respectively which are isomorphic as countable equivalence

relations with quasi-invariant measure. By the remarks preceding Theorem (2.1), this is equi-

valent to the assertion that fir any transversal T of ̂  and T' of^', T and T' are stably isomorphic.

If y is a measurable foliation of (S, (A) then for each s e S we can assign to s

the tangent space at s to the leaf of ̂  through s. We can clearly speak of smooth sections

of this bundle, Riemannian structures, etc., by demanding that they be smooth on the

leaves and measurable over all S. The latter condition can be simply defined by, for

example, pulling back from a flow box to T X D where the tangent bundle is just a

product and so measurability over T X D has an obvious meaning. By a Riemannian

measurable foliation we mean a measurable foliation with a Riemannian structure

(smooth on leaves, measurable over S).

Example (2.4). — (a) Consider a free ergodic action of V on (S, (i). Then

each leaf of R^n inherits the Euclidean Riemannian structure from R^ and thus is a

Riemannian measurable foliation in a natural way.
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( b ) Let G be a connected semisimple Lie group with finite center, K C G a

maximal compact subgroup. Let (S, (i) be a free ergodic G-space. Since K is compact,

S/K is a standard Borel space and we let v ==^(^,) where p : S ~> S/K is the natural

map. The equivalence relation RQ on S projects to an equivalence relation ^ on S/K

in which each leaf can be identified with X = G/K. Assigning the G-invariant metric

to X, each leaf of ^ inherits this metric [38] and hence y is a Riemannian measurable

foliation in which each leaf is isometric to the symmetric space X. (The local triviality
of y can be verified as in [38].)

( c ) Let M be a complete Riemannian manifold of finite volume, F =7^(3^1),

and for simplicity suppose the universal covering ;M is diffeomorphic to Euclidean space.

Then M is a Riemannian manifold in a natural way, and F acts properly discontinuously

and by isometries on M. Let (X, (A) be a free ergodic F-space. Form the product

action of F on X x M and let S be the quotient space S == (X x M) /F. Since F acts

properly discontinuously on M, S will be a standard Borel space, and since the action

on S is free, each {x}x M projects injectively into S, and these images define an equi-

valence relation on S which it is easy to verify is a Riemannian measurable foliation

in a natural way, each leaf being isometric to St. There is a natural map cp : S -> M

which is a covering map on each leaf, and the fiber over the base point in M is just the

r-space X. In fact, ^^{m) will be a transversal for each m e M and the equivalence

relation on it is clearly isomorphic to R p C X x X . Thus S is a "foliated bundle55

over M [14].

We now recall the definition of i-cohomology for ergodic actions and coun-

table equivalence relations. If S is an ergodic G-space and H is a standard Borel

group, a Borel function a : S x G -> H is called a cocycle if for all g, h e G,

^ gf
1
) = ̂  g)^^ f

1
)
 a9e

-
 Two cocycles a, (B : S X G -> H are called equivalent if

there is a Borel function 9 : S -> H such that for each g, a(^, g) == <p(j) (3(j, g)<f>{sg)~
1
 a.e.

The cocycle a is called an orbital cocycle if a(J, G^) = e a.e., where G, is the stabilizer

of s in G. Any homomorphism TT : G -> H defines a cocycle a^ : S X G -> H by

^C^) ^^(g)
9 Any orbit equivalence of free ergodic actions also defines a cocycle,

namely, if 6 : S -> S' is an orbit equivalence of a free ergodic G-space S with a free

ergodic G'-space S', then a : S x G ~ > G ' given by Q{s) .a(^,^) == Q{sg) is a cocycle.

If G == G' and a is a cocycle defined by an orbit equivalence, then a ̂  a^ for some

inner automorphism TC of G implies that the orbit equivalent actions are actually

conjugate ([36], Proposition (2.4)). If a : S x G - > H and Y is a (left) H-space, by

an a invariant function 9 : S -> Y we mean a Borel map 9 such that for all g e G,

^ <?)?(%) == 9M a9e
-
 This J^t means that 9 is a fixed point in the space F(S, Y)

of Borel maps S ->Y under the a-twisted action (^.y)(^) = a(j, g)^{sg). For example,

if G == H and a == a^ where id : G -^ G is the identity, then cp is a-invariant if and

only if 9 is a G-map (after we switch to the right action on Y).

Suppose now that R is a countable ergodic equivalence relation on S with quasi-

invariant measure. If H is a group, a Borel function a : R -> H is a cocycle if
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there is a conull set SoCS such that for all x , j y , z e S Q with (,y,j/), (j^)eR,

oc(;v,j/)a(^, ^) = a(^ <?). Gocycles a, (3 : R->H are called equivalent if there is a
Borel function <p : S -> H such that a(^,j) = <p(A:) (3(A:,jQ(p(j)-1 a.<?. Clearly the notions

ofcocycle and equivalence on R^, where G is a discrete group acting on S, and the

notions of orbital cocycle and equivalence for the action as defined in the previous

paragraph correspond. We can also speak of an a-invariant function 9:S->Y,

namely a Borel function 9 such that for almost all {x,jy) eR, a(;c,j/)9(^) == 9 (A:).

We recall that if G is a group, G is called amenable if whenever G acts by affine

transformations on a compact convex set there are G-fixed points. This notion can

be extended to a notion of amenable ergodic action or amenable equivalence relation

using a-invariant functions in place of fixed points [31], [32]. Namely, suppose S is

an ergodic G-space, E a separable Banach space, and a : S X G -> Iso(E) a cocycle,

where Iso(E) is the group of isometric isomorphisms. Suppose for each s eS we have

a compact convex set AgCE^, the latter being the unit ball in the dual of E, such

that {(.y, x) | x e AJ is a Borel subset of S X E^, and s ->A, is a-invariant in the sense

that a(,y, g)\g = \ a.e. The action ofG on S is called amenable [31] if for all (E, a, AJ
as above, there is an a-invariant y r S - ^ E ^ such that <p(.y) eA, a.e. Equivalently,

we can form ACL°°(S, E*), A == {9 | 9^) eA, a.e.}. Then A is a compact convex

G-invariant set in L°°(S, E*) = L^S, E)*. We say that such a compact convex

G-invariant set is a compact, convex set over S. Thus, while amenability of G demands

a fixed point in all compact convex sets, amenability of the action demands a fixed

point in all compact convex sets over S. While the definition may appear somewhat

technical, this is a very natural and useful class of actions from a variety of viewpoints.

(See [4], [31], [32], [33].) We summarize some basic properties. Proofs can be
found in [31], [33].

Proposition (2.5). — (a) Every ergodic action of an amenable group is amenable.

(b) An action with finite invariant measure is amenable if and only if the acting group is amenable.

(c) If X -> Y is a G-map of ergodic G'spaces and Y is an amenable G-space, so is X.

(d) The transitive action of G on G/H is amenable if and only if H is an amenable group.

(e) If r C G is closed and G acts amenably on X then the restricted action of T on X

is also amenable.

Proposition (2.6). — For free ergodic actions, amenability is an invariant of orbit equivalence.

If R is a countable equivalence relation with quasi-invariant measure, one can

define amenability of R analogously [32]. Here, amenability will be an invariant of

stable isomorphism. If R is a general ergodic equivalence relation with transversally

quasi-invariant measure, we say that R is amenable if and only if any one (and hence

by the remarks preceding Theorem (2.1), all) transversals are amenable. In particular,

we may speak of amenable measurable foliations. For a free action of a group G, Rg

will be amenable in this sense if and only if the action of G is amenable.
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3. Boundary Theory for Measurable Foliations.

If X is a symmetric space of noncompact type, say X = G/K where G is a semi-

simple Lie group without compact factors, and K is a maximal compact subgroup,

there are a variety of ways to compactify X or obtain a <( boundary 59 of X [3], [n],

[22], [29], [5]. The action of a discrete subgroup of G on the boundary of X plays

an important role in understanding some of the deep properties of the discrete subgroup.

For many (but not all) purposes, the proper choice of a boundary of G/K will be the

homogeneous space G/P where P C G is a minimal parabolic subgroup. For example,

if X is the hyperbolic yz-ball, so that G= S0(i, %), then G/P will be the boundary

n— i sphere [24]. If ^ is a measurable foliation of (S, [ L ) by symmetric spaces, one

would like to consider the space obtained by adjoining a boundary to each leaf. However,

in general, one cannot do this and still have a standard Borel structure on the resulting

space. Instead, for each point s e S, one can consider the boundary through the leaf

ofj, and consider the resulting " bundle of boundaries " on S. This, roughly speaking,

is the approach we will follow here, not just for foliations by symmetric spaces but for

foliations by complete simply connected manifolds of nonpositive curvature. If a

foliation by symmetric spaces comes from a G-action on S as in Example (2.4) ( b ) ,

the bundle of boundaries (except for passing from S to S/K) is the product space S x G/P

which of course has a natural G-action on it, and this was our " boundary object "

in the proof of rigidity of ergodic actions in [36].

We first recall some facts concerning a simply connected complete manifold H

of nonpositive sectional curvature, following Eberlein and O'Neill [5], [6]. As is well

known, H is diffeomorphic to Euclidean space. If a and (B are geodesies in H, a and [B

are called asymptotic ifd{(x.{t), (3(^)) is bounded for t>_ o. This is clearly an equivalence

relation on the set of geodesies, and we let H( oo) denote the set of equivalence classes.

If a is a geodesic, then a( oo) denotes its equivalence class in H( oo). H( oo) is a natural

boundary for H in the following sense. There is a natural topology (the " cone topo-

logy 59 [5]) on H==HuH(oo) which makes H homeomorphic to the closed unit ball

in K
1 and H(oo) homeomorphic to the boundary sphere. The extended geodesic

a : [— oo, oo] ->H is then continuous. See [5], [6] for details of the construction

and further results concerning it.

Now let y be a Riemannian measurable foliation of a measure space (S, (i). For

s e S, let 1*5 C S be the leaf through s. We assume henceforth that L^ is a simply

connected complete manifold of nonpositive curvature. We then have the tangent

bundle T(^) == U T(Lg)g where T(Lg)g is the tangent space to Lg at s, and as indicated

above (see also [35]), T(e^) is also a standard Borel space, and the natural map

p : T(e^) ->S is of course Borel. Let TC S be a transversal for the foliation, and v

a (A-compatible measure on T. For each .yeT, let B^CT(Lg)g be the open unit

ball (recall T(Lg)g has an inner product assigned to it), and B^ its closure. Let
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To(^)CT(^-) be given by T^^p-^T) and let B(^) = { y eTo(^) [ v eB^}.

Define B(<^) similarly. Let y: [o, i] -> [o, oo] be a homeomorphism with f(o) == o.

Let YrB^-^S be given by V{v) = exp,(/(||y|]J. y) where p(v)-== s and

expg: T(L)g—*-L^ is the exponential map with respect to the given Riemannian metric

on LS. We recall that for each s, exp^ is a diffeomorphism. Let Y^YIBg, so

that Y,:B,-^L, is a diffeomorphism. For {s, t) e^\ T = ̂  r\ (T X T), define

|B(J, ^) : B,->B, by (B(J, ^Y^oY^. By [5] (Theorem (2.10)), the diffeomor-

phism (B(j, t) extends to a homeomorphism B(->B^. To(<^) is a measurable bundle

of finite dimensional real Hilbert spaces over the measure space T, and a standard

argument allows us to measurably choose an orthonormal basis in each fiber. Equi-

valently, if the leaves are of dimension n, for each s e T we can choose a linear isometry

fg:T(Liy)g—^iy
1
' and this can be done measurably in s. Let BCR" be the unit

ball, B its closure. Let 0 : T x B ->S be given by <I>(J, v) = ̂ (/^(z/)), and define

a : y | T -> Diff^(B) by a(^, t) ==/,P(^ t}ft~ S where Diff^(B) is the set ofdifieomorphisms

of B that extend to homeomorphisms of B. We remark that Diff^(B) is a standard

Borel group (as is Diff(B), the group of all diffeomorphisms) and that a is a cocycle

on y | T. The space T X B is a measurable foliation in a natural way, where the leaves

are {^}xB, jeT, and on each {^}xB we have a Riemannian metric given by

<0g = (Tg ^s"1)*^^ *) )L where ( - , -)^ is the given Riemannian metric on Lg. We

summarize this discussion in the following proposition.

Proposition (3.1). — Let y be a Riemannian measurable foliation of a measure space (S, [L)

so that (almost) every leaf is a simply connected complete manifold of nonpositive curvature and

dimension n. Let T C S be a transversal and v a ^-compatible measure on T. Let B be the

unit ball in K1 and B its closure. Then viewing T x B as a measurable filiation by leaves {s} X B,

there exist:

(i) a Riemannian structure on T X B (smooth on leaves^ measurable over TxBJ, for which

we denote <0g the Riemannian structure on B induced by the leaf {s} X B;

(ii) a smooth map 0 : T x B ~> S $ and

(iii) a cocycle a : ̂  \ T —> Diff^(B), such that

(a) for each s eT, 0,: B -^L^, 0^(z/) === $(J, y) is an isometry of Riemannian manifolds

where B has the metric <0g, and ^(o) =s\

b) for s, t eT, s^t, we have <D( = Og o a(^, <), and hence in light ofo), a(^, tY^s== ̂ f

We remark that in particular we can view a as a cocycle 3F \ T -> Homeo(^B),

and it is properties of this " boundary cocycle " on which we will be focusing. The

formalism of Proposition (3.1) allows us to describe the situation in which (almost)

all leaves are isometric.

Theorem (3.2). — Let y be as in Theorem (3. i), with y ergodic, and assume all leaves

ofy are isometric to a Riemannian manifold X on which the isometry group, say G, acts transitively.
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Then there is an ergodic G-space (M, (Ji) such that y is isometric to the foliation on M/K as

described in Example (2.4) (b), where KCG is a maximal compact subgroup.

Proof. — Let (T, v), a be as in Proposition (3.1). Let J( be the set ofRiemannian

metrics on B. Then Diff(B) acts naturally on Ji. Let JK^ be the subset of Jl for

which (B, (o), co e^x? ^ isometric to X. Then JK^ is an orbit in JK under Diff(B),

and we fix an element ^QEJK^. Our hypotheses imply that for almost all ^eT,

^^^o where <o : T ->J( is as in Proposition (3.1). The Borel structure on JK^

is standard and we have a map Diff(B) -^JK^, <p -> (p^coo)- ^Y Kallman's sharpening

of the classical von Neumann selection theorem ([15], Proposition (7. i)), there is

a Borel section q of this map, and we can assume q{^o) = id. Let h: T -> Diff(B)

be h = q o co. Thus ^(^"((Oo) == ^c Define a cocycle y : <^ | T ->• Diff(B) by

y(.y, t) = A(J)a(^, t)h{t)~
1
. Then y(^ ^(^o) = ̂  and so y(^ ^) all lie in the isometry

group of (B, (o^), which we identify with G. In other words ^:^\T->G is a
G-valued cocycle.

Now consider the function /:T->S given by f(s) =<S>,{[h{s)]{s)). Observe

that f{s) e L^ for all s e T. Since S can be covered by countably many flow boxes,

by passing to a subset T^ C T of positive v-measure, we can assume/(T^) lies in a single

flow box. Let us call T the transversal of this flow box and p the projection of the flow

box onto T. The map p of: T^ ->T is countable-to-one since it preserves the equi-

valence relation on transversals, and hence there is a Borel set T^CT^ of positive

measure on which p of is injective. It follows that T' =/(To) is a transversal (recall

the ergodicity assumption on e^) and /] To : To ->T' is a Borel isomorphism preserving
the equivalence relation defined by the leaves. Finally, define the cocycle

y':^|T'^G by Y'^^-Y^-1^),/-1^)),

and a function

$':T'xB-^S by O'^.^^O^-1^),^/-1^))-1^),

so that O^O^oAC/-1^))-1.

It is a straightforward unraveling of the definitions to see that:

a) <S>^: (B, o)o) -^ Lg is an isometry;

b) 0,(o)=^;

c ) for x.yeT, xr^y, <D; = (̂  o Y'(A:,J/).

In other words, we have the same conclusion as in Proposition (3.1) except that now

the cocycle in question takes values not in Diff^(B), but in G, the isometry group of (B, o^).

As is well known, G is a Lie group and the stabilizer of a point is a maximal

compact subgroup K. We claim that for a fixed x eT', {yC^jO \y eT',j^.y} has

no accumulation points in G. This follows by observing that from b) and c ) above,

j»== Oy(o) = 0^(Y'(^,j)(o)). Since T' is a transversal, L^nT' has no accumulation

points in L^, and hence (O^)"1^ nT') has no accumulation points in B. It follows
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that {y'C^Ko) I^^A:} has no accumulation points in B, verifying our assertion. This

enables us to construct the required ergodic action of G using the Mackey range cons-

truction [i8], [27]. Namely, consider the equivalence relation on T'x G given by

(•^^^(j^) if and only if xr^y and h= {Y{x^))~
l
g. Let M be the space of

equivalence classes in T' x G under this equivalence relation. By the observation on

nonexistence of accumulation points for y in G, M is a standard Borel space. Let

^ : T ' x G — ^ M be the natural map, and m==^(v 'xX) where v' is a (A-compatible

probability measure on T' and X is a probability measure on G in the class of Haar

measure. G acts on T' x G by {x, g). h == [x, gh) and this action permutes the equi-

valence classes of the above relation. Thus there is an induced action of G on M, and

it is not hard to see that (M, m) is an ergodic G-space on which G acts freely.

We now claim that the foliation on M/K as described in Example (2.4) ( b ) is

isometric to e .̂ Here we take K to be the stabilizer of o e B in G. Let 6 : T' x G -> S

be given by 6(^3 g) = <S>\x, g.o). Then

9(^ Y'(^)-\?) == ^y o Y'^jO-^.o)

=<D^.o)=6(^).

Thus 6 induces a map M -> S which clearly factors to a map M/K -> S. It is straight-

forward to check that this is an isometry of the Riemannian measurable foliations of

these spaces, and this completes the proof.

The geometric version of the rigidity theorem for ergodic actions [36] concerns

foliations by symmetric spaces X = G/K of the form S/K where S is an ergodic G-space

and G is a centerfree semisimple Lie group. By Theorem (3.2), any Riemannian

measurable foliation for which the leaves are isometric to X is of the form S'/K' where

S' is an ergodic G'-space, S' == Iso(X). It is well known that G is a subgroup of finite

index G'. It follows that any foliation with leaves isometric to X has a finite extension

that comes from a G-action, where finite extension is taken in the following sense.

Definition (3.3). — Suppose (^r, M) and ( '̂, M') are ergodic Riemannian measurable

filiations. We say that (e '̂, M') is a finite Riemannian extension of (^r, M) if there is a finite-

to-one smooth map of measurable filiations M' -> M that maps each leaf of y isometrically

onto a leaf of y.

Example (3.4). — If S, S' are free ergodic G-spaces and S' is a finite extension

of S (in the sense that there is a finite-to-one measure class preserving G-map S' -^S),

then the foliation y on S'/K. is a finite Riemannian extension of the foliation 3^ on S/K.

Corollary (3.5). — Suppose G is a connected semisimple Lie group with trivial center,

K C G a maximal compact subgroup, X = G/K, and ^ a Riemannian measurable filiation

in which (almost) every leaf is isometric to X. Then ^ has a finite Riemannian extension of

the firm S/K where S is an essentially free ergodic G-space.
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Proof. — Let G' be the group of isometrics of X. By Theorem (3.2)3 we can

assume ^ is of the form (^, S'/K') where S' is an ergodic G'-space. Restrict the

G'-action to G, and consider S'/K. We clearly have a finite-to-one map S'/K -> S'/K',

and S'/K has a foliation on it which is a finite extension of .̂ The G-action on S'

need not be ergodic; however there are only finitely many ergodic components.

To see this, we simply observe that G'/G must act ergodically, and hence transitively,

on the space ofG-ergodic components. Let E C S' be one of these ergodic components.

It clearly suffices to see that the image ofE in S'/K' contains almost all leaves. However

G^' == G-' and hence K' acts transitively on the space of G-ergodic components in S,
and it is easy to see that this suffices.

Remark. — With ^ as in Theorem (3.5), we call ^ irreducible if the G-action
on S can be taken to be irreducible.

We now return to the general situation in Proposition (3.1) of a foliation by

simply connected manifolds of nonpositive curvature. We shall also assume that we

are in the situation of a transversally invariant measure, rather than just a transversally

quasi-invariant measure. In this case, fixing compatible invariant measures on the

transversals (in the ergodic case this is unique up to a scalar multiple), we can define

a measure on S as follows. If B ^ T x Dn is a flow box, then on each {s} x D'1 there

is a volume form defined by the Riemannian metric on Lg, and this defines a measure ̂

on {j^xD^ If v is the compatible invariant measure on T, we have a measure (ig

on B given by [ig == j pi^v. By transversal invariance, if we are given two flow boxes B, B',

then ^g=(ig, on B n B'. Thus {[L^} piece together to define a c-finite measure [L

on S (having the same saturated null sets as the original measure on S). This cons-

truction is in the same spirit as the Ruelle-Sullivan current [28].

Definition (3.6). — If^ is a Riemannian measurable foliation of S with transversally

invariant measure, we say that (^r, S) has finite volume if the measure [L constructed above satisfies

(Ji(S)< oo. We can then assume pi(S) = i, and we then call [L the canonical measure on S.

If G is a semisimple Lie group, (S, (i) a free ergodic G-space with (A(S) = i, and

y the foliation of S/K by symmetric spaces, then the canonical measure on S/K is

just p^{[L) where p : S -> S/K is projection. This follows, for example, from Series5

local description of an invariant measure [30]. We also remark that a finite Riemannian

extension of a Riemannian measurable foliation with finite volume also has finite volume.

We shall now examine the behavior of the boundary cocycle a : y \ T -> Homeo(^B)

given by Proposition (3.1). Let M(BB) be the space of probability measures on BB,

so that Homeo(3B) acts on M(BB). We recall that a function [L : T -. M(8B) is called

a-invariant if for almost all s, t eT with sr^t, a(j-, ^)^(^) = [L,. The main result

we need concerning behavior of a acting on M(^B) is the following. Most of the

remainder of this section will be devoted to its proof.
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Theorem (3.7). — Let y be an ergodic Riemannian measurable filiation of S by simply

connected complete manifolds such that the sectional curvature K of the leaves satisfies K <_ c < o

for some c. Assume ^ has a transversally invariant measure and finite total volume. Let T, a

as in Proposition (3.1). Then for any ergodic suhrelation RC^|T and (a | ̂ -invariant

function [L : T -> M(^B), we have [L^ is supported on at most two points for almost all s.

For the proof, we shall find it convenient to introduce an analogue of the classical

notion of limit set [5].

Definition (3.8). — We use the notation of Proposition (3.1) . Fix peB. If b e £B,

we say that b eLy(a), the limit set of a with respect to p, if for any ACT, v(A)> o, for

almost all seA there is a sequence ^eA, s^t^ such that a(^, t^)p —>h.

Proposition (3.9). — If p, ?eB, then Ly(a) == L^(a). Thus we can speak of

L(a) == Lp(a), the limit set of a.

Proof. — For jeT, let <4(-, •) be the metric on B defined by the Riemannian

metric on {^}xB. Given A, v(A)>o, we can write A = U A ^ , (A(AJ>O, such

that d^(p, q) is bounded for s e A^. Suppose b e Lp(oc). Then for almost all s e A^, we

can find <,eA^ such that s^tj and v.[s^t^p->b. Now rf,(a(.y,^, cx.(s,tj)q) == d^.{p, q)

(by conclusion (b) in Proposition (3.1)) which is bounded. Therefore by the law of

cosines in (B, coj (see [6], top of p. 496), v.[s,t^q->b. Thus Lp(a)CL^(a), and

the reverse inclusion follows similarly.

The argument of the above proposition also shows the following technical fact
that we shall need.

Lemma (3.10). — Suppose p : T-^B is Borel such that d^(p{s), o) is bounded. Then

a(.y, tj) (o) -> b if and only if a(j, <,) (^(<,)) -> b.

The following is basic.

Theorem (3 .11) . — Suppose y has transversally invariant measure and finite volume.

Then L(a) == BB.

To prove Theorem (3.11) we need to use the geodesic flow on y. Namely,

let Ti(^) be the unit tangent bundle of T^). Then the geodesic flow of ^ is a well

defined R-action on Ti(^).

Lemma (3.12). — The geodesic flow on T^(e^) is finite measure preserving^ and hence

recurrent [12]. There are no periodic points under this flow. Moreover as t->oo, a geodesic

leaves all compact subsets of a leaf,

The fact that the geodesic flow is measure preserving follows as in the case of the

geodesic flow on a manifold [40]. The last two statements are clear.
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Proof of Theorem (3.11). — We first remark that by passing to a subset ofT, we may

assume that there is an open ball D C B centered at o such that $ | T x D : T x D - > S

is a flow box. We may further assume (again by passing to a subset) that d^o, ^D)

is bounded for / eT. Take p = o e B and let b e BE. For each s eT x D, s = {t,jy),

there is a unique geodesic 9^)3 a eR, in the Riemannian manifold (B, GO() such that

<p,(o)==j/ and 9/00) =6 [5], [6]. Let F^j, v), s e S , z/eT(L,),, aeR, represent

the geodesic flow. For s eT x D, let ^ = 9/0) and

(^=={.eT(B)J|H|=i and |]^-,|| < i/^}.

We can consider O : T x D -> S as a map on the tangent bundles of these measurable

foliations as well. Let D^ be a decreasing sequence of open balls in D such that

riD^ =={o}, and let ACT have positive measure. Now for each n apply recurrence

of the geodesic flow to the set

0( U {{s,v)\veW,}).
sGAxDn

(We recall that recurrence of an R-action means that for any set of positive measure W, for

almost all z eW there exist a^ eR, ^->oo such that z.a^ eW. Here we can in fact

suppose a^ are integers.) Thus, for almost all t e A, we can find p^(t)^ q^{t) e D^, t^^ t,

^eA, ^(^)e(^)(^^, ^W
e
W^q^)), and a sequence a^t) of positive integers

with a,(f) -^oo as n -> oo, such that F^(<D(^ p,{t), w,{t))) == 0(^, q,(t), z,{t)).

Thus we have F^) o O((A»(^ ^nW == °^(?nW. ^nW)- since ^ is an isometry, we
have, letting F^ represent the geodesic flow in (B, co^)

^(F^)(AW, ^n(^))) = [̂  o a(^, ^)](^(^), ^(^))

(using b) of Proposition (3.1)). Hence

F^)(A(^). ̂ nW = ̂  QW, ̂ )).

As n->oo, we have p^(t) ->o, z^(^) ->^o)? ^nW ~^ ^^ and hence by [5] (Pro-

position (2.13)), the projection of ^^{PnW^nW
 to ^ converges to b. Thus

lim a(^, t,)(?n(^)) == ^* Since d^qj^)yp) is uniformly bounded over f, n it follows from
n ->• oo

Lemma (3.10) that oi{t,Qp->b. Therefore 6eL(a), completing the proof of

Theorem (3.11).

We now turn to the proof of Theorem (3.7).

Proof of Theorem (3.7). — For each s eT and points b^ b^ e B — { 0 } there are

unique geodesies in (B.CO,), 91, ̂  with 91(0) = o and 9^) == &„ ^e(o, oo] [5].

Let A^&i, 63) be the angle formed by 91(0). Let ^B be a compact neighborhood of ^B
__ /^/ /K/ f^

in B with o ^ <?B. Then A8: ^B x <?B -> [o, 7r] is a continuous function [5] (p. 55),
r^ /N^

and since s->Ug is measurable, the map T->C(^B x £B; R), j-^A8 is measurable.

Similarly, for any y e B we can form the functions A^ where geodesies and angles are

based atj? instead of o. We also have a measurable map T->M(^B), S->[L^ By
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the^ergodicity of the subrelation R C ̂  \ T, measurability of A8 and (JL,, and compactness

of B, it follows that for almost all s eT, there is a sequence ^ eT of distinct points,
(j, ^) e R, such that

(i) ^->^; /^/ /^/
(ii) A^-^A5

 uniformly on BE x ^B; and

(iii) a(j, ^)(o) -^p, a(^ ^"'(o) —? for some p, q e BE.

Following the notation of [5], p. 63, if WCE, we denote by

A^W) = sup {A
8
^ b,) [ 6, e W, b, + 0}

and A5^, W) - sup {A8^, ^) | ^ G W, b^ + 0}

(assuming of course b =(= o, W+ {o}). Suppose now that VC BE is a compact subset

with pi=y. We have, for s^t^ A^(a(j, ^J-'V) == A^^^(V) by the isometric

nature of a(^, ^), and since a^, ^)(o) ->j&, we have by [5], Proposition (4.7) that

A^(a(J, Q~
1
^) -> °? as ^ -> oo. We can write

A^oc^, ^)-1V) = A^a^, ^)-1V) + [A^a^, O-'V) -A^a^, 0-^)],

and since A^-^A8 uniformly on BB x BE, we have A^oc^, O"^) ->o. Passing to a

subsequence, we can assume the sets a(^, ^"^V converge, and since A^oc^, ^"^V) -> o,
a( j>50-lV converges to a point, say j/e BB. We also have

A^a^, ̂ (o), a(., 0-^) ^A^^j/)

/^/ /^/ ^/
since A^-^A8 uniformly on BE x ^B, and a(^, O'^o) e BE for % sufficiently large.

However, A^(a(j, O-^o), a^, O-'V) = A^^)(O, V), and again by [5] (Propo-

sition (4.7)), this converges to o. Thus A\q,jy) = o, and this implies y = ^.

Let s > o and Eg the closed s-ball in ^E around y (with any suitable metric

on BE). Let / , :BE->[o,i] with /, = i on E^ and /, = o outside E,. Then

for n sufficiently large Za(^)-v^/e. so

J/,^^^(a(.,^)-lV)=^(V),

by a | R-invariance of (JL. Eut ^->{JL,, so J/A^^(V). Hence ^(E,)^(V).

Summarizing, we have the following stiuation. There are points p, q e BE (possibly

equal) so that for every compact set V C BE with ^ ^ V, and every s > o, we have

^(Bg)^: |^(V). It is then a straightforward exercise to show that (JL^ is supported
on {j&, q}, and this completes the proof of Theorem (3.7).

4. Intermediate Subalgebras for Actions of Semisimple Lie Groups: An

Extension of a Theorem of Margulis.

In the previous section we exhibited a type of boundary behavior for foliations

by manifolds of negative curvature bounded away from o. In this section we prove
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some results concerning the boundary behavior of a foliation by symmetric spaces of

higher rank. In Section 5 we will exhibit the incompatibility of these types of behavior

with a transversal equivalence. The result we prove in this section is an extension of

the following result of G. A. Margulis. Let G be a semisimple Lie group of R-rank

at least 2, and FCG an irreducible lattice. Let PCG be a minimal parabolic

subgroup. If P' is another parabolic subgroup, then there is a measure class preserving

r-map G/P-> G/P'. Margulis proves in [21] that every measurable F-space factor

of G/P is of this form. The generalization we need is the following. Let S be an

irreducible ergodic G-space. (We recall that irreducibility asserts that H is ergodic

on S for every noncentral normal subgroup H C G.) Then we have a measure class

preserving G-map SxG/P-^S. If P'CG is another parabolic subgroup, we

clearly have an intermediate G-space, i.e. we have measure class preserving G-maps

S X G/P -> S X G/P' -> S. Our extension of Margulis9 result is that these are the only
intermediate factors.

Theorem (4.1). — Let G be a connected semisimple Lie group with no compact factors,

trivial center, and 'R-rank (G) ̂  2. Let X be an irreducible ergodic G-space with finite invariant

measure. If Y is an ergodic G-space for which there exist measure class preserving G-maps

X X G/P ->Y -> X whose composition is the projection, then there is a parabolic subgroup P' C G

such that Y is isomorphic as a G-space to X x G/P' in such a way that the maps X x G/P -^Y

and Y->X are identified with the natural ones (modulo null sets, of course).

The proof of this theorem relies heavily on Margulis5 arguments. In fact, when
X == G/r, Theorem (4.1) is easily seen to be equivalent to Margulis5 theorem.

Before beginning the proof, we recall some of the structure of parabolic subgroups,

for ease of reference following in large measure Margulis5 notation in [21]. We shall

also write our actions on the left for the course of this proof. Let S be a maximal R-split

Abelian subgroup in G. Then one has the associated standard parabolic subgroups

with respect to a choice of ordering on the set of roots of G relative to S, and every

parabolic subgroup is conjugate to a standard one. If Pg is any standard parabolic,

let PQ be the opposite parabolic and V"o, Vg be the unipotent radicals of PQ and Pg

respectively. IfR^ is the reductive Levi component ofP^, it is also the Levi component

of Po_and we have Po-RoIXVo, Po=RoKVo. The natural map G-.G/PQ

takes VQ diffeomorphically onto an open subset of G/Pg of full measure, and thus for

many purposes involving measure theory on G/P^, we can view G/PQ w V^ as measure

spaces. If P is the minimal parabolic, we have a natural map G/P -> G/P^, and we

want Jo interpret this map in terms of V and V^. We have PCPo=RolxVo , and

VoCV. Let L o = R o n V = = P o n V . We then have V=LotXVo, and the_natural

map G/P-^G/PQ is identified modulo null sets with the projection map V-^VQ.

Margulis5 argument depends upon choosing an element s e S such that V behaves

nicely under conjugation by s, where " nicely 55 refers to the decomposition V = LQ tX VQ.
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More precisely, Margulis needs s e S such that conjugation by s leaves Lo pointwise

fixed and contracts Vg. So given Po, we let So be the subgroup So = Z(Rg), the center

ofRo, and let So (denoted by Ro in [21]) be So == {s e So | Int(^) contracts Vg and Int^)"1

contracts V^} where Int(^) is conjugation by s. (By contraction we mean that for any

open neighborhood of the identity and any compact set, sufficiently high powers of the

automorphism all bring the compact set within the given neighborhood.) If Pg = G,

then of course So is trivial. On the other hand, if PQ + G, then it is not hard to see

that So =(= 0. Margulis (and we as well) need So =[= 0 for parabolics PQ which are

minimal among those containing P but not equal to P. This accounts for the assumption

that R-rank (G) ̂ 2, for of course we have R-rank (G) == i if and only if such a Pg
is in fact G.

Still following Margulis9 notation, if GCV, we let ^o{G) ==Vo. (G nLo). We

then have the following important lemma of Margulis.

Lemma (4.2) (Margulis [21] (Lemma (1.4.2))). — If seSo ^d CCV is

measurable, then for almost all u eV, the sequence {snuCs~n}y^^o converges in measure to ^o{uC).

In [21], Margulis then uses ergodicity of the integer action defined by powers

of s, via the consequence that for almost all ueV, {Tus^}^^ is dense in G, where

FOG is an irreducible lattice ([21], Lemma (1.9)), to deduce the following ([21],

Lemma (1.14.1)). If B(G/P) is the measure algebra of G/P and BCB(G/P) is a

r-invariant d-subalgebra, and GeB, then for almost all ^eV, g^o{uC)e'K for

all geG.

Here we have identified B(G/P) with B(V), the measure algebra of V. We are

again assuming So 4= 0. We will need an analogous result in our situation which we

now formulate.

We have maps XxG/P—»-Y->X, and passing to measure algebras we have

B(X)CB(Y)CB(XxG/P). Let B==B(Y), so that B is a G-invariant sub-Boolean-

(y-algebra ofB(X x G/P) which contains B(X). Thus a standard argument concerning
.»/T\

direct integrals ofAbelian von Neumann algebras shows that we have B == B^;, where

B^CB(G/P) is a sub-Boolean-cr-algebra, and the {BJ are uniquely determined up to

null sets in X. G-invariance of B means that for each g^G, ^.B^=B^ for almost

all x. By a standard technical result [17] we can choose B^p such that on a fixed conull

set of x, g.^== B^ for x in the conull set.

Lemma (4.3). — Assume X is an irreducible ergodic G-space, Po^P a parabolic with
___ /*ffi

So =(= 0. Identify V with G/P as measure spaces. Let GeB, C == Gp. Then for almost

all {x, u) e X x V, we have g^o{uC^) e ̂  for all geG.

Proof. — We begin by recalling that we can identify B(G/P) as a closed subset

of L°°(G/P) = L^G/P)* with the weak-*-topology. Thus B(G/P) is a compact

54



ERGODIC THEORY, SEMISIMPLE LIE GROUPS, AND FOLIATIONS 55

metrizable space, say with metric d. Let p be the Hausdorf metric on ^, the set of

closed subsets of B(G/P), so that (^, p) is a compact metric space. Since X->^,

x -> B^ is measurable, for each positive integer N we can write X == U X^ (a finite

union) such that for ^.jeXf, p(B^, By)< i/N. Let .ye So. For each N, i, let
z
?

:
=={{^g)

(
=^xG\{c(.gs-

n
\n>,o, oceG with a .^eX?} is dense in G}. The

action of G X Z on X x G given by (a, n). (^ g) == (a. A:, a^-") is easily seen to be

ergodic owing to the ergodicity of^} on X, which in turn follows from Moore's ergo-

dicity theorem [23] (cf. [34], Theorem (5.4)). From this we deduce that Zf is conull

in Xf x G, and hence that Z^^ == U Zf is conull in X x G. (We remark that we can

assume n>_o in the definition of Zf since for an ergodic integer action with finite
invariant measure, one in fact has ergodicity of Z4'.)

Now let U^ == 7^ n X x V. We claim that U^ is conull in X x V where the

latter has the measure \L X (Ay? W being Haar measure on V. If x e X with {x, g) e Z^

for almost all g, then for almost all u eV, we have {x, up) e 7^ for almost all p e P.

But the argument of [21], Lemma (1.9) shows that for all x, gP n { A e G | {x, h) e Z^}

is a closed set. It follows that U^ is conull in XxV. Let U == (TU ,̂ so that U
is also conull in X x V. N

We have identified G/P with V, and thus, as in [21], (i . 14), we have a corres-

ponding action of G on V, {g, u) ->gou. Under this action we have s o u = sus~
1

for jeS, and u ' o u ^ u ' u for M'eV. Identifying B(G/P) with B(V) and B, as a

subalgebra of B(V), G invariance implies that for almost all A? e X, B^ ^ = a o B^ for

almost all a e G. Now let G==J®G,, G^eB^, and fix geG. Let

W = {{x, u) e X x V | J^G^"" converges in measure (Jiy to ^o^Oc)}?

which by Lemma (4.2) is conull. If (^, u) eU nW, we can choose a sequence o^ e G
and a sequence of positive integers n^ -> oo such that

(i) oc^-"- ,̂ and

(ii) p(B,,B^J->o.

Let ^g^a^"^, so that ^^g^u, and gn-^g' For almost all x we have
/*ffl

o^ o €„ e B^ 3; by invariance of J B^. But

^ o G, = (&^) o G^ = ,?„ o (^G^) -> ^ o +o^CJ since (^, «) eW.

But we also have by (ii) that d{^ o G^, BJ -> o. Since a^ o C^ converges, the limit
must be in B^. This proves the lemma.

We are now ready to prove Theorem (4.1).

Proof of Theorem (4.1). — The theorem is equivalent to the following assertion: IfB is

a G-invariant sub-Boolean-cr-algebra, B(X) C B C B(X x G/P), then B = B(X x G/Po)
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for some parabolic PQ. Let Bg be a maximal Boolean cr-algebra in B(X x G/PJ which

satisfies

(i) Bo=B(XxG/Pi) for some parabolic P^, and

(ii) B(X)CBoCB.

We want to show that By == B, and suppose to the contrary. Let G C B — Bg

and write G == I Gg. Then for A: in a set of positive measure, we have C^ ^ B(G/P^).

Arguing as in [21], Theorem ( i . 14.2), we note that P^ is generated by P and L^ where

as above, L ^ = P ^ n V , and P^ runs over the standard parabolics with PCP, ;CP^,

and there are no parabolics between P and P^. It follows that for some parabolic Pg,

PCP^CP^ , with no parabolics between P and P(), we have for x in a set of positive

measure that G^B(G/Po). Once again, identifying B(G/P)^B(V), the sub-

(7-algebra B(G/Po) CB(G/P) is identified with j&*(B(Vo)) where p : V = L Q X Vp -.VQ

is projection. Thus for any x with C^ <^*(B(Vo)), we have for a set of u eV of positive

measure that Lg n uCy^ is neither null nor conull in Lo. From this remark, Lemma (4.3),

and Fubini's theorem, we deduce that there exists u e V such that

(i) for x in a set of positive measure, Lo n uC^ is neither null nor conull in Lg; and

(ii) for almost all x, ^ o ^(z/GJ eB^; for all g e G.

We observe that (i) implies ^o(^GJ ^B(G/Po), and in particular, +o(^CJ ^B(G/PJ.

Fix u e V satisfying (i) and (ii).

Let Bi(^) be the Boolean c-algebra in B(V) = B(G/P) generated by B(G/Pi)

and [g o 4'o(^GJ [ g e G}. Then by Lemma (4.3), Bi(;v) C B^ a.e., and by condition (i),

B^(^) 3B(G/P^). However, B^(^) is clearly a G-invariant subalgebra of B(G/P), and

(using the fact that all G-invariant subalgebras of B(G/P) are of the form B(G/H)

for some H, and finiteness of the number ofconjugacy classes of parabolics), this implies

that for a set of x of positive measure, B^(^) = B(G/Pa) where Pg is a parabolic with

P C P g C P ^ and Pa+Pr Thus we have B(G/Pa)CB^ for x in a set of positive

measure, and since ^.B^=B^, ergodicity of G on X implies that B(G/P2) C B^ a.e.

But this contradicts the maximality assumption on B(X X G/P^), completing the proof

of the theorem.

We conclude this section with an observation concerning measures on G/Pp inva-

riant under certain subgroups of G where P() C G is a (proper) parabolic subgroup.

Let A C G a noncompact Abelian group. By amenability of A, A fixes a point

XeM(G/Po), the latter being, as above, the space of probability measures on G/P().

We now wish to observe that if R-rank(G) ̂  2, we can choose A and X so that X is

nonatomic, and so that a further technical condition is satisfied.

Proposition (4.4). — Let R-rank(G)^2, and X an irreducible ergodic G-space with

finite invariant measure. Let PQ C G a proper parabolic subgroup^ and Y C X x G/Pg a
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((A X ^Yconull set, where [L is the given measure on X and v is quasi-invariant on G/PQ . Then there

is a noncompact Abelian subgroup A C G and a nonatomic probability measure \ on G/PQ such that

(i) X isA-invarianf, and (ii) for almost all x e X, X(YJ = i ̂ r<? Y, == {j/ e G/PQ | (A:,J/) eY}.

Proo/'. — Since R-rank(G) ̂  2, it is easy to see that there is a nontrivial subgroup

ACS (where S is as above, a maximal R-split Abelian subgroup of P) such that

G(A)/G(A) nPo is of positive dimension, where C(A) is the centralizer of A in G.

Since A leaves [G(A)/G(A) n PJ C G/PQ pointwise fixed, were it not for condition (ii)

we could simply choose X to be a suitable measure supported on G(A)/C(A) n P^.

To deal with this technical point, suppose Z C G/PQ is conull. Then for each c e C(A),

we have Po^eZ for almost all g e G. Thus for each ceC{A), we have Po^eY

for almost all {x, g) e X x G. By Fubini's theorem, there exists g e G such that for^

almost all xeX, Po^eY^ for almost all ceC(A). In other words, [Po^LT^eY,

for almost all c e C(A). Thus, using the group g~
l
Ag instead of A, we can ensure that

condition (ii) holds as well.

5. Completion of the Proof.

We now prove the main result.

Theorem (5.1). — For i= i, 2, let ̂  be an ergodic Riemannian measurable foliation

°f (x^ P-i) wltfl transversally invariant measure and finite total volume. Assume ̂  is an irre-

ducible foliation by symmetric spaces of noncompact type and rank at least 2, and that the sectional

curvature k of ̂  satisfies k < c < o for some c. Then J^ and ̂  are not transversally equi-

valent. (We also assume almost all leaves of ̂  are complete and simply connected.)

Proof. — Let T, be isomorphic transversals of e^. By irreducibility (see remark

following Corollary (3.5)), T\ hag a finite extension T^ that is a transversal to a foliation

of the form S/K where S is an irreducible ergodic G-space, G is a connected semisimple

Lie group with trivial center and no compact factors, and K C G is a maximal compact

subgroup. Using Proposition (3.1), it is easy to see that ^ has a finite extension

(Definition (3.3)) with a transversal isomorphic to T^. Namely, owing to the iso-

morphism to TI and Tg, we have a finite extension p : T^ -^Tg. Let a : Tg -> Diff(B)

be the cocycle given by Proposition (3.1), and let p : T^ -> Diff(B) be the cocycle

P^i? Q = ̂ {PW^PW)
9 ^t X2 be the quotient of T^ x B by the equivalence relation

(^i, &i)^(^, b^) if and only if t^t^ and (B(^, t^b^= b^. Then it is straightforward

to check that Xg is a finite extension of Xg and has transversal T\. We may thus assume

without loss of generality that ̂  itself is of the form X^ = S/K. We can also assume

that TI is the bijective image of a transversal (which we also denote by T^) to the
G-action on S. (See [24], Section 2, e.g.)

Let FCS be a flow box for the G-action around the transversal T^. We can

find a Borel map 9 : S -> T^ (defined a.e.) such that 9 preserves the equivalence relations
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and such that 9] F is simply projection onto Tr Let 6 : T\ ->Tg be the isomorphism

of equivalence relations and let a : T^ -> Diff(B) be chosen as in Proposition (3.1).

Let (B : S X G -> Homeo(BB) be defined by (3(J, g) == 0(6(9^)), 6(<p(^))), so that (B is

also a cocycle. Let (3 : S X G/P X G -> Homeo(3B) be (B(^ ̂  ^) = (3(j, g), so that (S is

a cocycle on the ergodic G-space S X G/P. However, by Proposition (2.5)3 S X G/P

is an amenable G-space, and hence there is a measurable map [L : S x G/P -> M(8B)
/^>

such that (3((.?, x), g)[L(sg, xg) == pi(^ x). More precisely, for each g e G,

(*) (S(J, ^)(JL(^, xg) == {ji(.y, A:) for almost all (^ A:) e S X G/P.

Lemma (5.2). — For almost all (.$•, x) e S X G/P, (Ji(J, x) is supported on at most two

points of BB.

Proof. — The argument of the proof of [31], Theorem (1.9) shows that (*) implies

that for almost all x e G/P, we have for all h e P

P(^ g~lhg)^sg-lhg, x) = [L{S, x)

for almost all s e S, where [g] = x e G/P. In other words, for almost all x, s -> (Ji(^, x)

is a p | (S X ,§^-lP§r) -invariant function. Since g~
l
Pg is ergodic on S, to prove the lemma

it suffices to show that for any subgroup H C G acting ergodically on S, that a (3 | S X H

invariant function y : S -> M( ̂ B) takes values in the set of measures supported on at most

two points. Recall the flow box F == T^ x D. Define an equivalence relation Rg on T^

by ^1^2 if and only if there exist d ^ ^ d ^ e D and A e H such that (^, d-^) .A = (^, d^).

This is clearly a subrelation of the relation on T^ defined by the G-action, and RH is

easily seen to be ergodic since F has positive measure in S and H is ergodic on S. It

follows that for almost all rfeD, vl^i^^} corresponds under the isomorphism
6 : T^—^Tg to an a-invariant function T2->M(^B) and hence has its image in the

set of measures supported on at most two points by Theorem (3.7). Hence for almost

all s e F, yM ls supported on at most two points, and by ergodicity ofH and (3 | S X H

invariance, y(J) is so supported for almost all s e S. This proves the lemma.

Returning to the proof of the theorem, let n{s, x) be the number of atoms ofpi(^, x).

By ergodicity and (B-invariance, n{s, x) will be essentially constant, say n(s, x) == n a.e.y

where n == i or 2. We can therefore suppose that the map (JL : S X G/P -> M(SB) is

a map (JL : S X G/P -> (^B^/S^, where S^ is the permutation group on n letters, and

equation (*) still holds.

Define an action of G on Sx^BB^/SJ by (s, [L) .g == {sg,^{s, g)-
1
^), and

we denote the space by SXpl^fiB^/SJ when it is endowed with this action. Let

/: S X G/P -> S x [(BB^/SJ be defined by /(J, x) = (J, (A^, x)). Then

/c% xg) = (% ̂ g, ̂ ))=: te pc^rvc^x))== (^ ̂ x)) •<? =/(^x) •<?•
In other words,/ is essentially a G-map. Thus if we let v =/*(^s x ^G/p)? we have
a sequence of G-spaces S X G/P -> S Xp [(^B^/SJ -^S. Thus by Theorem (4.1),
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S Xp [(BB^/SJ is essentially isomorphic to S X G/PQ for some parabolic PQ. Thus there

is a conull G-invariant set Y C S X G/P^ and an injective G-map h: Y -> S Xp [(^B)"/SJ

such that pioh==p^ where ̂  is projection of S X [(^/SJ onto S and ^3 is projection
of S X G/Po onto S.

Suppose Po=G. Then A is a G-map h: S -> S Xp [(BB^/SJ, .̂ ̂  (the second
coordinate of A) is a (B-invariant function S--> (BB)^. Identifying (BB)^ as a

subset of M(BB), and arguing as above, this implies there is an a-invariant function

Tg-^M^B) which is impossible by the proof of Theorem 2 of [39]. Thus, we can

assume Po =t= G. Then choose A C G and X e M(G/Po) as in Proposition (4.4),
where Y in Proposition (4.4) is chosen as in the previous paragraph. Once again,

we choose a flow box F == T^ x D for the G-action on S and define an equivalence

relation RA on TI by t^t^ if and only if there exist d^d^eT^ and aeA such that

{t^d^.a=(t^d^. As with RH above, this will be (by [23]) an ergodic subrelation

on Ti. For almost all s, h,: G/Po -> (BB)^ defined a.e. by h,{x) == h^s, x) is injec-

tive, and using Fubini's theorem, we see that for some d e D, the map T^ -> M(( ̂ B^/SJ,
s
~

>
^(8,d))^

 is a (3 | RA-mvariant function with (A^),X nonatomic by injectivity
of hy. Hence, via the isomorphism 6, there exists an a [ R'-invariant function

H : Tg-^ M^aB^/SJ with R'CR an ergodic subrelation and H(^) nonatomic for

almost all t eTg. From this it is easy to see that there is an a [ R'-invariant function

H': Tg -> M^BB)") with H'(^) nonatomic for almost all t. For each z, let p, be pro-

jection on the i-th factor of (BB)". If a measure on (^B)" projects to an atomic measure

under all ̂ , it must be atomic. Therefore, for some 2, the measure (A)^(H'(^)) will

be nonatomic on BB for a set of t eTg of positive measure, and t -> (A),(H'(^)) is

a [ R'-invariant. This contradicts Theorem (3.7), completing the proof.

Corollary (5.3). — Let I\ be a lattice in G, a connected^ noncompact simple Lie group

with trivial center and R-rank at least 2. Let Î  = -n;i(M) where M is a finite volume Riemannian

manifold, complete, and with negative sectional curvature bounded away from o. Then I\ and 1^

do not have orbit equivalent free ergodic actions with finite invariant measure.

Proof. — If I\ is torsion free, we can apply Theorem (5.1) to the foliated bundle

of Example (2.4) ( c ) derived from the ^-actions. If not, then I\ has a torsion free

subgroup of finite index, say FQ. It is easy to see that Rp^, the relation defined by the

restriction of the I\ action to I^, is isomorphic to a transversal of a finite extension of

the foliated bundle defined by the Fraction. Thus the result in general follows from
the torsion free case.

6. Concluding Remarks.

We now indicate how the techniques of the proof of Theorem (5.1) can be used
to generalize Corollary (5.3).
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Definition (6.1). — Suppose F is a discrete group. We say that F is of type (H) (for

hyperbolic) if there is a compact metric space Y on which F acts continuously such that

(i) The stabilizer in F of every point in Y is an amenable subgroup of F.

(ii) For any e > o, there is a finite subset F C F such that for all y e F -- F, there

are open subsets Vi, VgCY of diameter at most e such that Y(Y—Vl) ^Vg.

We remark that if F = T^(M) where M is a complete manifold of finite volume

and negative sectional curvature bounded away from o, then F is of type (H) where

Y is the boundary of the universal covering ofM. (For condition (i) in Definition (6.1),

see [41], Corollary (3.3).) Furthermore, any infinite subgroup of a type (H) group
is type (H).

We then have the following generalization of Corollary (5.3).

Theorem (6.2). — Let I\ be as in (5.3), and suppose I\ is of type (H). IfS, is a free

ergodic T^-space with finite invariant measure {i = i, 2), then the Traction on Si and the Fraction

on Sg are not orbit equivalent.

Proof. — Let a : Sg X Fg ->• Fg be the projection on the second coordinate, and

R the equivalence relation on $2 defined by the Fraction. We can identify a with
a cocycle R — ^ F g .

Suppose the actions are orbit equivalent. Arguing as in the final two paragraphs

of the proof of Theorem (5.1), we deduce that there exists either

a) a F^-map h: 83 -> M(Y); or

b) an ergodic subrelation R^R and an a | RMnvariant function h: Sg -> M(Y)

such that h{s) is non-atomic for a.e. j eSg.

In case a), the existence of a Fg-invariant measure for Sg implies the existence

of a Fg-invariant measure on M(Y), and since M(Y) is a compact convex set, this implies

the existence of a Fg-fixed point in M(Y). In other words, there is a Fg-invariant

measure on Y. But from condition (ii) of Definition (6. i), it follows that this measure

must be supported on at most two points, and from (i) of Definition (6.1), we then

conclude that Fg is amenable. Hence, the Fraction on Sg is amenable, and by orbit

equivalence, so is the Fraction on Si. However, this is impossible since F^ is not

amenable and has a finite invariant measure on S^. This shows that case a) is impossible.

We next observe that using condition (ii) of (6. i), we can show by an argument

similar to the proof of Theorem (3.7) that case b) is impossible as well. Namely, as

m (3.7)5 we have that for any such function A, h{s) must be supported on at most two
points.
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