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ERGODIC TRANSFORMATIONS FROM AN INTERVAL INTO
ITSELF1

BY

TIEN-YIEN LI AND JAMES A. YORKE

Abstract. A class of piecewise continuous, piecewise C1 transformations

on the interval J c R with finitely many discontinuities n are shown to have

at most n invariant measures.

1. The way phenomena or processes evolve or change in time is often

described by differential equations or difference equations. One of the sim-

plest mathematical situations occurs when the phenomenon can be described

by a single number and when this number can be estimated purely as a

function of the previous number. That is, when the number xn+x can be

written as xn+x = t(x„) where t maps an interval J c R into itself. For

x E J, let t°(x) denote x and t"+x(x) denote t(t"(x)) for n = 0,1.We

will sayp E J is a periodic point with period n if p = t"(p) andp ¥= rk(p) for

1 < k < n. We say p is a periodic point if p is periodic with some period

« > 1. In this paper we assume t is piecewise continuous and piecewise twice

continuous differentiable. We also assume that

à    t ^ > 1   where Jx — j x E /, — t(x) exists \.(1.1) inf
xŒJx

We will refer to the points of J — Jx as the points of discontinuity. For such a

transformation all periodic points of t are unstable. See, for example, [4]. For

x E J, let A(x) be the set of limit points of t"(x), that is,

N-Ï

Notice that t(A(x)) — A(x). We show that A(x) is the union of (one or more)

intervals of positive length for almost all x E J. Furthermore, there is a finite

collection of sets L,.Ln, where each L¡ (i = 1,..., n) is a union of

disjoint intervals, such that for almost all x E J, A(x) is one of the sets L¡.
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184 T.-Y. LI AND J. A. YORKE

The intersection L, n L, contains at most a finite number of points when

i ¥* j and each L¡ contains in its interior a point of discontinuities of r and/or

dt/dx. Hence as a corollary we have that if t has at most one point of

discontinuity then « = 1 and A(x) = A(y) for almost all x and.y in /.

A measure p is said to be invariant (under t) if for all measurable S c J,

we have p(S) = u(t-1(S)) where r~\S) = {x E J: t(x) E S). In [3],

Lasota and Yorke showed for the transformation t under study here there

exists an absolutely continuous invariant measure. This result generalizes

some previous results of Gel'fond [1], Lasota [2], Parry [5] and Rényi [6]. We

show in §2 that for each L¡ there exists a unique absolutely continuous

invariant measure p¡ which is invariant for t such that

p¡(L¡) = 1   and   p^Lj) = 0   for/ <£j.

Furthermore, any absolutely continuously invariant measure p can be written

as 2a,p, for appropriately chosen constants a,.

If t and t' have at most one point of discontinuity then there is a unique

absolutely continuous invariant measure for t. Hence t is ergodic on /. Other

properties of these transformations are discussed in [4].

The referee has pointed out that in [8] a similar result is -proved using

different techniques. They do not estimate the number of invariant measures

and so do not discuss conditions under which t is ergodic.

2. Let L1 denote the space of all integrable functions defined on the

interval [0,1] and let || • || be the L'-norm. Lebesgue measure on [0,1] will be

denoted by m. We say f E Lx is a function of bounded variation in L1 if /

equals almost everywhere some function of bounded variation. Let t: [0,1] -»

[0,1] be a piecewise continuous and piecewise c2-function with (x,,..., xk)

= J — Jx, the points of discontinuity of t and t'. We assume (1.1) holds for t.

The Frobenius-Perron operator Pr: Ll -* Lx is defined as a linear operator

such that for/ G L1, FT/is the function with

(2.1) ¡PJ={        f
JE Jr~\E)

for all measurable sets F. We say / is invariant (under t) or is an invariant

function (of FT) if

(2.2) ff=(       f
K    '                                        Je      Jt-¡(e)

for every measurable set F c [0,1]. Notice that/is invariant if and only if

PTf = / almost everywhere. It is well known that/ is invariant under t if and

only if the measure dp = f dm is invariant under t. In [3], Lasota and Yorke

prove that invariant functions of PT exist and every invariant function of Pr is

a function of bounded variation in L1.
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Definition 2.1. Let/ be a function defined on [0,1]. We call the set, on

\vhich the function / is nonzero, the support of / and denote it, spt /. Notice

that spt/need not be closed in our definition.

The following property concerning the structure of the support of a

bounded variation function is essential for this paper.

Proposition 2.1. If fis a function of bounded variation then

p

spt/ = U K u M,      0 < P < oo,
n-0

where Kn are disjoint intervals, M is a countable set and

p

U K„nM=*0.
71 = 0

Proof. We only need to show that M is at most countable. Suppose this is

not the case. Then there exists m > 0 such that the set S = {x: f(x) > 1/m)

n M is uncountable. For, otherwise, the set M would be a union of count-

able sets. Since M contains no interior points the variation of / over any

interval containing 5 would be unbounded. Hence M is at most countable.

D
Let F be the set/ E L1 which is invariant under r (so F is a subspace). As

mentioned earlier, by [3], each/ in F represents a class of functions which is

equal almost everywhere to a function /0 of bounded variation. By

Proposition 2.1, we can write spt/0 as a disjoint union of countable intervals

{K„) and a set M which is at most countable. Let/, = /0 on U K„ andfx = 0

elsewhere. Then, /, equals /0 almost everywhere. Hence, we may assume,

without loss of generality, that every /in P is a function of bounded variation,

and its support consists of closed intervals.

Theorem 1. There is a finite collection of sets Lx,..., Ln and a set of

functions {/,./„} c F such that

(1) each L¡(1 < / < n) is a finite union of closed intervals;

(2) L¡ n Lj contains at most a finite number of points when i =£ j;

(3) each L¡ (1 < / < ri) contains at least one point of discontinuity Xj

(JE {1,..., k)) in its interior; hence n < k;

(4)/(*) = Ofor x E L„ 1 < i < n, and f(x) > Ofor almost all x in L¡;

(S)fLJi{x)dx«lforl<i<n;
(6) if g E F satisfies (4) and (5) for some 1 < i < n, then g = / almost

everywhere;

(7) every f E F can be written as f — 'E"_xaifi with suitable chosen (a¡).

Remark. Consider the simple transformation of the form
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186 T.-Y. LI AND J. A. YORKE

t(x) = 2x,      0 < x < 1/2,

t(x) = (2 - a) + 2(a - 1),   1/2 < x < 1,

where 0 < a < 1/2 (see Figure 1). In [7], S. Ulam pointed out that it was not

known even in this simple case whether there was a function invariant under

t. The complete answer to this problem is now clear. In fact, the existence of

an invariant function is guaranteed by Theorem 1 of Lasota-Yorke [3] and

the uniqueness (up to constant multiples) follows immediately from Theorem

1 stated above.

Before proving Theorem 1, we give the following definitions and a series of

lemmas.

Definition 2.2. We write "A c B a.e." if A, B c [0,1] and x G B for

almost all x in A. We write "A = B a.e." if both A c B a.e. and B c A a.e.

are satisfied. We say a set A is invariant (or is invariant under t) if A is a

measurable subset of [0,1] and t(A) = A a.e. (Notice this does not imply

t~x(A) = A a.e.)

Figure 1

We now list some obvious properties of invariant sets which are for later

reference. If A is an invariant set, then

(2.3) m(r{A)) = m(A),

(2.4) t(A)eA    a.e.,

(2.5) for any invariant measure u with dp=fdm (where f E L2 is

invariant), we have

p{r-x(A)-A) = 0.

If A, and A2 are invariant sets, then

(a)   r(Ax n A2) = Ax n A2   a.e.,

(2.6) (b)   t(Ax u A2) = Ax u A2   a.e.,

(c)   t(Ax — A2) = Ax — A2   a.e.
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These are all quite simple except possibly (2.5) which we obtain as Corollary

2.1.

Lemma 2.1. Let Abe a measurable set satisfying t(A) c A a.e. Then, for any

invariant function /, we have

(2.7) f /=0.
Jr-\A)-A

Proof. Since t(A) c A a.e., so A c r~x(A) a.e. Then,

J-r~\A)-A JT'\A) JA

Corollary 2.1. If A is invariant, then (2.7) is satisfied.

Write Xs for the characteristic function of a set S c [0,1].

Lemma 2.2. Let A be an invariant set. For any invariant function fi the

product (pointwise multiplication) f • XA is invariant.

Proof. Let S be any measurable set. Then,

(f-XA  =  f        / = /, / = /, ,       /

= f f+f       /-f       /•
JT-l'S)n(r-i(A)-A)        Jr-l'S)r\A        Jr-\S)nA

The last equality follows by Corollary 2.1.   □

For / G L2, we write P(f) = {x: f(x) > 0} and N(f) = {x: f(x) < 0).

We will often write P,N for P(f), N(f) when no clarification is needed.

Lemma 2.3. Iff is invariant, the sets P and N are invariant.

Proof. Write

t-1(F) = (r-1(F) n p) u (t-'(^) n P) u (t-'(F) n z)

where Z = {x: f(x) = 0}. Then,

(f=(       f=f f + f, / + /, />//
JP Jr-\P) Jr-l(P)nN Jt-\P)c\P JT-\P)C\Z JP

where the equal sign holds only if

»j(t-1(F) n P) - m(P)   and   m(r-x(P) n N) = 0.

That is,

T"'(F)DFa.e.   and   t-1(F) n N - 0a.e.

Hence, t(F) c F a.e. Let A = t(P) then r(A) c /4 a.e. By Lemma 2.1
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188 T.-Y. LI AND J. A. YORKE

f / = 0   and    f /=0.
JT~'(A)-A Jt-\P)-P

But P c r~\A) c t"'(P) a.e., it follows that

f f=f        f+f f~\        /=o.
Jr-'(A)-A JP-r(P) Jr-\A)-P JP-r(P)

Since/ > 0 in P - t(P), hence m(P - t(P)) - 0. Therefore t(P) = P a.e.

Similarly t(N) = N a.e.   □

Lemma 2.4. /// is invariant then f • XP and f- XN are invariant.

Proof. By Lemma 2.2 and Lemma 2.3 these functions are invariant,   fj

Lemmas 2.5 through 2.8 are for demonstrating how to "transform" a set of

linearly independent invariant functions into a set of invariant functions with

disjoint supports.

Lemma 2.5. Let /, and f2 be invariant and let Sx = spt fx and S2 = spt f2.

Then,

(2.8) Sx and S2 are invariant, and

(2.9) S, — S, n S2 and S2 - Sx n S2 are invariant.

Proof. Since spt/ = P(/) u N(f¡) for / = 1,2, by Lemma 2.3 and (2.6) we

easily see that both Sx and S2 are invariant. (2.9) is a direct result of repeated

application of (2.6).   □

Lemma 2.6. If fx and f2 are linearly independent functions in F with ||/,|| =

H/2II = 1 then there exist/,* andf2* such that

(a)/,* > 0,/2* > Oand ||/,*|| = ||/2*|| = 1;

(b) spt/j* and spt/2* are disjoint;

(c) for each i — 1,2, spt jj* is a union of disjoint intervals contained in

spt/, u spt/2.

Proof. If / = 1 or 2, we have P (/.) and N (/) are both nonempty, then we

may let

/,* = UA0)/||/.A0||   and   f2* = (/ V0)/||/ V0|]

where / V 0 = max{/,0} and / A 0 = max{ —f¡,0). We have the remaining

cases when /• > 0 or / < 0 for each 1. In the following construction we

assume / > 0 for each /, replacing / by —/■ if necessary. In this case, neither

/, > f2 a.e. nor/2 > /, a.e. is true, otherwise, since ||/,|| = ||/2||,/, - f2 a.e.

Hence, neither (/, - /2) V 0 nor (/, - /2) A 0 is equal to zero almost

everywhere. The lemma is proved by letting ff = ((/, -/^ V0)/||(/, - f-f)

V 0|| and J* = ((/, - f2) A 0)/||(/, - f2) A 0||.   D

Lemma 2.7. Let {/,, . . . ,fm] be a subset of F with disjoint supports and

II7/II = L fi>" far  all   1 < / < m.  If fm+x   is  linearly   independent  of
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ERGODIC transformations 189

{/,,... ,fm) then there exists a set of nonnegative functions {ff,... ,/*,+i} C

F with disjoint supports and \\Jf\\ = 1 for 1 < i < m + 1.

Proof. Without loss of generality we may suppose /m+, > 0 a.e. For if

both P(fm+l) and N(fm+X) are nonempty, then either/+ =/„,+, VO or

/" = fm+ ! A 0 is linearly independent of {/,,... ,fm). Otherwise,

m m

r - 2 ajp   r - 2 v,
i=i »--i

implies /m+, =/+ -/" = 27_,(a,. - 6,)/ and/m+, is linearly dependent of

Let Sx = U fil SP1/ an<i ̂ 2 = spt/m+i- Consider the following cases:

(1) S, and S2 are disjoint. In this case the lemma is obvious. /,* may be

chosen as/for 1 < / < mandf^+x =/m+,/||/m+,||.

(2) Sx c S2 and Sx ¥= S2. By repeated application of (2.6) and Lemma 2.5,

S2 - Sx is invariant. Hence, by Lemma 2.\,fm+l-X(SS¿ is invariant and

the lemma holds for/* = / for all 1 < / < m and

/£+i = (fm+i' X(s2-s,))/\\fm+i' X^-soh

(3) S2 - Sx = 0 and S2 Ç Sx. There exists a function, say /,, such that

A = spt/, n S2 * 0, and /, +fm+l in A. Let f'x = (/, -XA)/\\fx • XA\\. By
applying Lemma 2.6, we have ff and /*+, with ||/*|| = ||^+I|| = 1 and

disjoint supports. The results of the lemma follow by letting ff = fi for all

2 < / < n.
(4) Sx = ^j. Suppose for each 1 < / < m, there exists a, ^ 0 such that

/n+r^Spt/ = «/¡-Then,
m m

/m+1 *"  ^i fm + l' Xsptf¡ ~  Zj aifi-
1=1 (=1

This is impossible since fm+x is independent of {/,,...,/„,}. Hence there

exists a j G {1.m) such that /m+, • ̂ t^/||/m+I • Xsptfj\\ and ^ are

linearly independent functions with disjoint supports. By Lemma 2.6 there

exists/*,+, > 0 andf* > 0 in F with disjoint supports and ||/*,+i|| = \\ff\\ =

1. Hence, the lemma is proved by choosing/* = /• for / i= j.   □

Lemma 2.8. /// G F and spt/= \Jpk^Ik, 1 < F < oo, where all Ik are

closed intervals, then

(a) there exists k0 > 0 such that Ik<¡ contains at least one discontinuity x,,

/ G (1.k) in its interior;

(b)p < oo.

Proof, (a) Suppose for each Ik, Ik does not contain any discontinuity x¡ in

its interior. Choose any kx with 0 < kx < p. Then, since Ik contains no x, in

its interior, t is strictly monotonie and continuous in Ik with |t'| > 1. So,
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190 T.-Y. LI AND J. A. YORKE

m(T(Ik)) > m(Ik) and T(Ik) *= Ik¡. By Lemma 2.4,

p i  p      \       p

Ut(/*) = t   IJ7J= U7,a.e.
k~0 \*-0      I       Jt«0

Hence, r(Iki) c U k- \h a-e- ®n me ot^er hand, r(Ik¡) is an interval and the

Iks are disjoint. So, if r(Ik) n Ikl ¥* 0 for some &2 ̂  kx then t(7Ai) = /^

and m(Ik^ > m(Iki). By repeating the same argument, we may construct a

sequence of /¿.'s with strictly increasing measures which are bounded below

by m(Ik ). This, is impossible since all Ik's are disjoint and all of them are

contained in finite interval [0,1].

(b) By (a), there exists k0> 0 such that Ik(¡ contains at least one x} in its

interior. Let

D — ik E {1,..., P }: Ik contains Xj for some/}.

Then D is finite, since there are only finitely many points of discontinuities.

Let r be such that Ir is the shortest interval in the collection of intervals:

Notice that {T(Ik))keD consists of finite pieces of intervals. Let S be the

union of those intervals Ik for which m(Ik) > m(Ir). Then S contains finitely

many intervlas and it is obvious that t(S) c S a.e. since if m(Ik) > m(Ir)

and Ik does not contain any discontinuity xJt then w(t(7a)) > m(Ik) > m(Ir).

By Lemma 2.1,

(2.10) f /=0.
•fr-l(S)-S

Suppose there exists interval K with K c spt/— S. Choose 7, to be the

largest such interval. Since K contains no discontinuity Xj, we have r(K) is an

interval of length greater than m(K). Hence t(K) c S and K c r~\S). By

(2.10), ¡¡J= 0. This is a contradiction since K is in the support of /.

Therefore S = spt/ and P < 00.   □

Proof of Theorem 1. By Lemmas 2.7 and 2.8, there exist at most n

functions in F with disjoint supports and the support of each function

contains at least one discontinuity x, in its interior. Let 77 = {/,,... ,/„} be

the set in F, which has the maximum number of functions having the above

properties and ||/|| = 1 for/ E 77. Let L¡ = spt/. Then (1), (2), (3), (5) of

Theorem 1 are satisfied. Suppose for some i£(I.n), f¡ assumes both

positive and negative values on subsets of L¡ with positive measures. Then, by

letting/.1 = / V 0 and/-2 = / A 0, we may increase the number of functions

in 77 by 1. This is a contradiction. Hence, by replacing/ by —/ if necessary,

we may assume/ > 0 on L¡ for all 1 < /' < n. In order to prove (6), let g E F

satisfy (4), (5) for some /£{!,...,«}. If g¥*ft almost everywhere, then
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both (g — f¡) V 0 and (g - f¡) A 0 are not equal to zero almost everywhere.

This is impossible since H has the maximum number of functions in F having

disjoint supports. Hence (6) is proved. If / G F and /is linearly independent

of H, then, by Lemma 2.7, we may again construct « + 1 functions in F with

disjoint support. Hence/ = 2"_,a^- with suitable choice of a/s.   □

3. Let {L,}"_, be the collection of sets stated in Theorem 1. In this section

we relate the limit set

A(x) = fi   {rn(x)CN
N-l

to the sets {L,}.

Theorem 2. For almost every x EJ, A(x) = L¡ for some i E {1,..., n).

Proof. Let

£,. = Ü T-*(L,.)
*=o

where r~°(L¡) = L¡. We first prove that U?_i£, = J almost everywhere.

Suppose this is not the case. Then, there exists an interval [a,b] cJ —

U "_i£,. Let/ = X[ab]. By a theorem of Lasota and Yorke [3],

i   m — l

1    2   Prf
m   k-0

converges to a function g =£ 0 in the Lx norm and g is invariant under t. Let

A? = sPt *• Without loss of generality we may suppose g > 0 in L0. Then,

m(L¡ n Lq) = 0 for i = 1,..., n. For, if A c L¡ for some i'G{l.n),

then t-*G4) c £, for all k = 0,1_Hence,

fpr*f-fprkf-f       /=0
•^ JA Jr-"(A)

for all A = 0,1-Therefore fAg = 0, and w(^ n L¡) = 0. This is a con-

tradiction to condition (7) of Theorem 1. Thus, we. have J = U?_,£, a.e.

Now, for almost every x in L, by applying the Birkhoff Ergodic Theorem, we
have

i  «-i -

Hence, A(x) = ON-i{Tn(x)}n_N c L,. Since A(x) is invariant under t,

therefore A(x) = L,. For, if not, / restricted on A(x) would be an invariant

function which cannot be written as a linear combination of {/,.../,}.   □
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