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Abstract

In this paper, we study the long-time behavior of a fluid particle immersed in a turbulent fluid
driven by a diffusion with jumps, that is, a Feller process associated with a non-local operator.
We derive the law of large numbers and central limit theorem for the evolution process of the
tracked fluid particle in the cases when the driving process: (i) has periodic coefficients, (ii) is
ergodic or (iii) is a class of Lévy processes. The presented results generalize the classical and
well-known results for fluid flows driven by elliptic diffusion processes.
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1 Introduction

Turbulence is one of the most important phenomena in nature and engineering. It is a flow
regime characterized by the presence of irregular eddying motions, that is, motions with high level
(high Reynolds number) of vorticity. The key problem is to describe the chaotic motion of a
turbulent fluid. In practice this is done by tracking the evolution of a specially marked physical
entity (particle) which is immersed in the fluid. Clearly, such a particle must be light and small
enough (noninertial) so that its presence does not affect the flow pattern. In this way, the motion of
the fluid may be visualized through the evolution of this passively advected particle which follows



the streamlines of the fluid. In experimental sciences such a particle is often called a fluid particle
or passive tracer. The evolution of a fluid particle is described by the following transport equation

x(t) =v(t,x(t)), =x(0)==xo, (1.1)

where v(t,z) € R?, d > 1, is the turbulent velocity vector field which describes the movement of
the fluid at point € R? in space at time ¢t > 0 and x(¢) € R? is the position of the particle
at time ¢ > 0. However, as we mentioned, turbulence is a chaotic process. More precisely, the
velocity vector field of any fluid flow which advects the fluid particle should be a solution to the
Navier-Stokes equation. But, solutions to the Navier-Stokes equations for very turbulent fluids are
unstable, that is, they have sensitive dependence on the initial conditions that makes the fluid flow
irregular both in space and time. In other words, the velocity field v(¢,z) at a fixed point varies
with time in a nearly random manner. Similarly, v(¢,z) at a fixed time varies with position in a
nearly random manner. Due to this, a probabilistic approach to this problem might be adequate
and it might bring a substantial understanding of turbulence. Accordingly, our aim is to study
certain statistical properties of the turbulence through simplified random velocity field models
which possess some empirical properties of turbulent fluid flows. Based on the symmetries of the
Navier-Stokes equation, it is well known that random velocity fields of very turbulent flows (with
high Reynolds numbers), among other properties, are time stationary, space homogeneous and
isotropic. We refer the reader to [Cho94] and [Fri95] for an extensive overview on turbulent flows.
Now, instead of the transport equation (1.1) we consider the following It6’s stochastic differential

equation
dX; =V (t,Xy)dt +dBy, Xo = xo. (1.2)

Here, {V(t,7)};>0, yera 18 a d-dimensional, d > 1, random velocity vector field defined on a prob-
ability space (Q_V,SV,]P’V) which describes the movement of a turbulent fluid and {B;};>¢ is a
d-dimensional zero-drift Brownian motion defined on a probability space (2p,F5,Pp) and given
by a covariance matrix ¥ = (0y;); j=1,....a describing the molecular diffusivity of the fluid. Recall
that if for any T' > 0 there exist random constants Cpr and D7 such that

OiugT |V(t,£l?,(¢)v) - V(t7y>wV)‘ < CT(WV)|J: - y|’ T,y € Rda Py-a.s,
<t<

and
sup |V (t, 2z, wy)| < Dr(wy)(1 + |z|), zeR? Py-as,
0<t<T
then (1.2) has a unique solution (see [Oks03, Theorem 5.2.1]) defined on (Qy xQp, v xFp, Py xPp)
which can be seen as an elliptic diffusion process in a turbulent random environment.

The main goal is to describe certain statistical properties of the fluid flow (that is, of {X¢}+>0)
through the statistical properties of the velocity field {V(¢,)};> ere- In particular, we are
interested in the long-time behavior of {X;}+>o (clearly, for small times X; &~ xo). More precisely,
we investigate whether

Xnt Py x Pp-a.s.

n

Vit (1.3)

as n — 0o, for some V € R?, and, if this is the case, we analyze fluctuations of {X:}+>0 around
V', that is, we investigate whether

o (5209, 2w

n



as n —» oo. Here, 9, denotes the convergence in distribution, in the space of cddlag functions
endowed with the Skorohod J; topology (see [Bil68] or [JS03] for details), and {W;}i>o is a d-
dimensional (possibly degenerated) zero-drift Brownian motion.

Long-time behavior of {X;}:>0 of type (1.3) and (1.4) has been very extensively studied in
the literature. In particular, ergodicity of {X;};>0, under the assumption that {V'(¢,2)};>¢ zerd
is regular enough and has only finite dependency in time or space, has been deduced in [I_(K04a]
and [KK04b]. Regarding the analysis of fluctuations of {X;}:>0, yet in 1923 G. I. Taylor [Tay22]
noticed that if the velocity field {V (¢, x)};>¢ yere decorrelates sufficiently fast in time or space,
then the limit in (1.4) should have a diffusive character. A rigorous mathematical analysis and
proofs of this fact have occupied many authors. By assuming certain additional structural and sta-
tistical properties of the velocity field {V(t,7)};50 ycra (time or space independence, Markovian
or Gaussian nature, strong mixing property in time or space), Taylor’s observation has been con-
firmed (see [FK97], [FK99], [FKO01], [FK02], [FRP9S8], [FP96], [KP79], [KOO01], [MK99], [PSVT7T7],
[PV81] and the reference therein). Also, let us remark that the lack of long-range (temporal or
spatial) decorrelations of {V(t,2)}:>0 zege may lead to memory effects, that is, an “anomalous”
(non-Markovian) diffusive behavior (fractional Brownian motion, local times of certain Markov
processes, subordinated Brownian motion, exponential random variable) may appear as a limit in
(1.4) (see [Fan00, Fan01], [FK00a], [FKO00b], [FKO03], [KNR14], [NX13], [PSV77] and the references
therein).

In this paper, we consider a model in which the velocity field {V (¢, 2)};5¢ ,cra is space inde-
pendent and its time dependence and randomness are governed by a diffusion with jumps. More
precisely,

V(t,l’,wv) = U(Ft(wV))’ t>0, wy € Qy,

where v : RY — R?, d > 1, is a certain function (specified below) and {Fi}t>0 is an R%-valued
diffusion with jumps (Feller process) determined by an integro-differential operator (infinitesimal
generator) (A, D4) of the form

AF(@) = (b(e), V5 (&) + Sdive(s) VS (2)
+ /]R{d (f(y + ZL‘) - f(l‘) - <y7 vf($)>1{z|z\§1}(y)) V(:Ev dy)7 f €Da. (15)

Our work is highly motivated by the works of A. Bensoussan, J-L. Lions and G. C. Papanicolaou
[BLP78], R. N. Bhattacharya [Bha82] and G. C. Papanicolaou, D. Stroock and S. R. S. Varadhan
[PSV77] in which they consider a model with {F;};>0 being a diffusion process determined by a
second-order elliptic operator (A, D4) of the form

Af(@) = (b(a), VI (@) + dive(@)Vf(), [ €Da

and, under the assumptions that either {F}};>o is a diffusion on the d-dimensional torus R?/Z4
and v(z) = (Awi(z), ..., Awg()), for wi,...,wg € C*(RY/Z%), or {F;}i>0 is ergodic and v(z) =
(Awy (), ..., Awg(z)), for wy,...,wg € CX(R?), they derive the Brownian limit in (1.4). Here we
extend their results by investigating the long-time behaviors in (1.3) and (1.4) of {X;}>0 driven
by a diffusion with jumps.

We have identified three sets of conditions for the driving diffusion with jumps {F}};>0 under
which the law of large numbers (LLN) in (1.3) and the central limit theorem (CLT) in (1.4) hold
for the process {X;}1>0. In the first case, in Theorem 3.1, the driving process {F}}+>o has periodic
coefficients (b(x), c(x),v(x,dy)). Here we also assume the existence, continuity (in space variables)



and strict positivity of a transition density function p(t,z,y) of {F;}i>0; see discussions on the
assumption in Remark 3.3. These assumptions imply implicitly that the projection of the driving
diffusion with jumps on the torus R?/Z? is ergodic. In Theorem 3.4, we simply assume that the
driving diffusion with jumps is ergodic, and establish the limiting properties in (1.3) and (1.4). Since
any Lévy process has constant coefficients (Lévy triplet), in Theorem 3.5 we establish the limiting
properties in (1.3) and (1.4) for a class of Lévy processes with certain coefficients properties which
relax the conditions from Theorem 3.1. Note that (non-trivial) Lévy processes are never ergodic,
hence, in the Lévy process case, the results in Theorem 3.4 do not apply. We also discuss the cases
when the driving diffusions with jumps are not necessarily ergodic in Section 6.

The main techniques used in [BLP78], [Bha82] and [PSV77] are based on proving the conver-
gence of finite-dimensional distributions of the underlying processes, functional central limit theo-
rems for stationary ergodic sequences and solving martingale problems, respectively. On the other
hand, our approach in proving the main results, Theorems 3.1, 3.4 and 3.5, is through the char-
acteristics of a semimartingale (note that the process {X;}+>0 in our setting is a semimartingale).
More precisely, by using the facts that {F;};>0 and {Bi}i>0 are independent and the regularity
assumptions imposed upon {F; };>0, and by the classical Birkhoff ergodic theorem, we can conclude
the limiting behavior in (1.3). To obtain the Brownian limit in (1.4), we reduce the problem to
the convergence of the corresponding semimartingale characteristics. Namely, since {F;};>0 is a
semimartingale whose characteristics is given in terms of its Lévy triplet (see [Sch98b, Lemma 3.1
and Theorem 3.5]), we explicitly compute the characteristics of { X;};>0 and show that it converges
(in probability) to the characteristics of the Brownian motion {W;}+>0, which, according to [JS03,
Theorem VIII.2.17], proves the desired results.

The sequel of this paper is organized as follows. In Section 2, we give some preliminaries on
diffusions with jumps. In Section 3, we state the main results of the paper, Theorems 3.1, 3.4
and 3.5. In Section 4, we prove Theorems 3.1 and 3.4, and in Section 5, we prove Theorem 3.5.
Finally, in Section 6, we present some discussions on the ergodicity property of general diffusions
with jumps and the limiting behaviors in (1.3) and (1.4) when the velocity field {V(¢,2)},54 ,epa
is governed by general, not necessarily ergodic, diffusions with jumps.

2 Preliminaries on Diffusions with Jumps

Let (Q, F,{P*}, cras {Ft}t=0, {0t }1>0, {M¢ }¢>0), denoted by {M;}>0 in the sequel, be a Markov
process with state space (RY B(R?)), where d > 1 and B(R?) denotes the Borel o-algebra on
RY. A family of linear operators {P;};>0 on By(R?) (the space of bounded and Borel measurable
functions), defined by

Pof(z) :=E*[f(M,)], t>0, z€R? fe By(RY,

is associated with the process {M;};>0. Since {M;};>0 is a Markov process, the family {P;}:>0
forms a semigroup of linear operators on the Banach space (By(R%),||-||so), that is, Pso P, = Pyyy
and Py = I for all 5, > 0. Here, ||-||o denotes the supremum norm on the space By(R?). Moreover,
the semigroup {P:}+>0 is contractive, that is, ||Pif]|co < ||f]loo for all ¢ > 0 and all f € By(R%),
and positivity preserving, that is, P,f > 0 for all ¢t > 0 and all f € Bb(]Rd_) satisfying f > 0. The
infinitesimal generator (A®, D 4) of the semigroup {P,};>0 (or of the process {M;}i>0) is a linear
operator A’ : D 4 — By(RY) defined by

. Bf-—f 7 . Bf—-f . .
bp. t . dy . t .
A°f = thmo — feEDp = {f € By(RY) .thmo " exists in || - ||oo ¢ -
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We call (A%, D 4») the By-generator for short.

A Markov process {M;}+>0 is said to be a Feller process if its corresponding semigroup {P;}+>0
forms a Feller semigroup. This means that the family {P;}:>o is a semigroup of linear operators
on the Banach space (Coo(RY), || - ||oo) and it is strongly continuous, that is,

. B _ d
Jim [|Pf = fllo =0, € CoolRY).

Here, Cso(RY) denotes the space of continuous functions vanishing at infinity. Every Feller semi-
group {P;};>0 can be uniquely extended to By(R?) (see [Sch98a, Section 3]). For notational sim-
plicity, we denote this extension again by {P;};>0. Also, let us remark that every Feller process
possesses the strong Markov property and has cadlag sample paths (see [Jac05, Theorems 3.4.19
and 3.5.14]). This entails that {M;}i>0 is progressively measurable, that is, for each ¢ > 0 the
function (s,w) — Ms(w) on [0,#] x R? is measurable with respect to the o-algebra B([0,]) x F,
where B([0,t]) is the Borel o-algebra on [0, ] (see [Jac05, Proposition 3.6.2]). In particular, under
an appropriate choice of the velocity function v(z), the process {X;}:>0 in (1.2) is well defined.
Further, in the case of Feller processes, we call (A%, D g0) := (A%, D 4» N Co(RY)) the Feller gen-
erator for short. Note that, in this case, Dgx C Cxo(RY) and A®(Dyx) C Cxo(RY). If the set of
smooth functions with compact support Cg° (Rd) is contained in D 4, that is, if the Feller generator
(A%, D yoo) of the Feller process {M;}¢>( satisfies

(C1) CX(R?) C D yeo,

then, according to [Cou66, Theorem 3.4], AOO|C°°(R¢5) is a pseudo-differential operator, that is, it
can be written in the form

Al @) = = [ ol (e, @2.1)
where f(€) := (27T)_*J Jra e~ &) f(x)dz denotes the Fourier transform of the function f(x). The

function g : R4 x R* — C is called the symbol of the pseudo-differential operator. It is measurable
and locally bounded in (z,§) and continuous and negative definite as a function of . Hence,
by [JacO1, Theorem 3.7.7], the function & — ¢(z,¢) has, for each € RY, the following Lévy-
Khintchine representation

. 1
0(2,) = ale) = i6,ba)) + 5 (&c@) — [ |

(Y e ) o dy), (22)

where a(z) is a nonnegative Borel measurable function, b(x) is an R%-valued Borel measurable
function, c(x) = (¢;j(2))1<; j<g 18 a symmetric nonnegative definite d x d matrix-valued Borel

measurable function and v(x, dy) is a Borel kernel on RIx B (]R‘i), called the Lévy measure, satisfying
v(z,{0}) =0 and /min{l, lyl*Yv(z, dy) < oo, € RY.
R4

The quadruple (a(zx),b(z),c(z),v(z,dy)) is called the Lévy quadruple of the pseudo-differential
operator AOO\COQ(RJ) (or of the symbol ¢(z,&)). In the sequel, we assume the following conditions
on the symbol ¢(z,§):

(C2) |lg(-,)|oo < c(1 + [€]?) for some ¢ > 0 and all £ € R ;
(C3) ¢(z,0) = a(zx) = 0 for all z € RY.



Let us remark that, according to [Sch98b, Lemma 2.1], condition (C2) is equivalent with the
boundedness of the coefficients of the symbol ¢(z, &), that is,

lalle + 0 + el + || [ min{1a2dot )| <.
Rd 00
and, according to [Sch98a, Theorem 5.2], condition (C3) (together with condition (C2)) is equiv-
alent with the conservativeness property of the process {M;}:>o, that is, P*(M; € R?) =1 for all
t > 0 and all x € RY. Also, by combining (2.1), (2.2) and (C3), it is easy to see that A%, on
C>°(R%), has a representation as an integro-differential operator given in (1.5).

Throughout this paper, {F;};>0 denotes a Feller process satisfying conditions (C1), (C2) and
(C3). Such a process is called a diffusion with jumps. If v(x,dy) = 0 for all z € R?, then {F}};>0
is just called a diffusion. Note that this definition agrees with the standard definition of elliptic
diffusion processes (see [RW00]). )

Further, note that in the case when the symbol ¢(x,£) does not depend on the variable 2 € R?,
{M.}+>0 becomes a Lévy process, that is, a stochastic process with stationary and independent
increments and cadlag sample paths. Moreover, unlike Feller processes, every Lévy process is
uniquely and completely characterized through its corresponding symbol (see [Sat99, Theorems
7.10 and 8.1]). According to this, it is not hard to check that every Lévy process satisfies conditions
(C1), (C2) and (C3) (see [Sat99, Theorem 31.5]). Thus, the class of processes we consider in this
paper contains the class of Lévy processes. Also, a Lévy process is denoted by {L:}+>0. For more
on diffusions with jumps we refer the readers to the monograph [BSW13].

Finally, we recall relevant definitions of ergodicity of Makov processes. Let (2, F,{P*},cs,
{Fit>0, {0t }+>0, {Mi}+>0), denoted by {M;}+>0 in the sequel, be a Markov process on a state space
(S,S). Here, S is a nonempty set and S is a o-algebra of subsets of S. A probability measure
m(dx) on S is called invariant for {M;};>o if

/PI(M,: € B)r(dz) =n(B), t>0, BeS.
S

A set B € F is said to be shift-invariant if 6, !B = B forall t > 0. The shift-invariant o-algebra
7 is a collection of all such shift-invariant sets. The process {M;};>0 is said to be ergodic if it
possesses an invariant probability measure 7(dx) and if Z is trivial with respect to P™(dw), that is,
P™(B) =0 or 1 for every B € Z. Here, for a probability measure p(dx) on S, P#(dw) is defined as

P (dw) ::/SIF’I(dw),u,(dx).

Equivalently, {M;}+>0 is ergodic if it possesses an invariant probability measure m(dz) and if all
bounded harmonic functions are constant m-a.s. (see [MT09]). Recall, a bounded measurable
function f(x) is called harmonic (with respect to {M;}i>0) if

[Pt e dfw) = f@), 2. t=0

The process {M;}+>0 is said to be strongly ergodic if it possesses an invariant probability measure
m(dr) and if
li P*(My € -) — w(- =
i [[B°(M; € )~ n()llrv =0, z €8,

where || - ||7v denotes the total variation norm on the space of signed measures on S. Recall that
strong ergodicity implies ergodicity (see [Bha82, Proposition 2.5]). On the other hand, ergodicity
does not necessarily imply strong ergodicity (for example, see Remark 3.7).



3 Main Results

Before stating the main results of this paper, we introduce some notation we need. Let 7 :=
(t1,...,77) € (0,00)¢ be fixed and let TZ8 =7 X ... X 73ZL. For x € R?, we define

Ty ::{yeRg:m—yETZ‘j} and Rd/TZd::{xT:xERd}.

Clearly, R?/7Z% is obtained by identifying the opposite faces of [0, 7] := [0,71] X ... x [0, 7. Next,
let I, : R* — [0,7], II,(z) := z,, be the covering map. A function f : Rd — R is called
7-periodic if foll, (z) = f(x) for all x € R?. For an arbitrary 7-periodic function f : RY —s R, by
fr(x7) we denote the restriction of f(x) to [0,7].

We now state the main results of this paper, the proofs of which are given in Sections 4 and 5.

Theorem 3.1. Let {F;}i>0 be a d-dimensional diffusion with jumps with symbol q(z,&) which, in
addition, satisfies:

(C4) the function x — q(x,§) is T-periodic for all & € R‘i, or, equivalently, the corresponding
Lévy triplet (b(x), c(x), v(z,dy)) is T-periodic;

(C5) {Fi}i>0 possesses a transition density function p(t,x,y), that is,
(s / F@p(t . y)dy, t>0, 2R, e ByRY,

such that (x,y) — p(t, z,y) is continuous and p(t,x,y) >0 for allt > 0 and all x,y € RA.

Then, for any probability measure o(dx) on B(R?) having finite first moment, any initial distribution
p(dz) of {Fi}1>0 and any T-periodic w', ..., we € CZ(R?),

X PY, xP%-a.s.
AN v (3.1)

n
as n —» 00, and, under P}, x P} (dwy, dwp),

{né <Xt _ w) }tZO L Wik, (3.2)

n

V- </R sro(de), ..., /R xdg(dx)> . (3.3)

Here, C’{f(Rd), k > 0, denotes the space of k times differentiable functions such that all derivatives
up to order k are bounded, V(t,r,wy) = (Aw(Fy(wy)),. .., Awl(F;(wy))), where the operator A
is defined by (1.5), and {Wi}i>0 is a d-dimensional zero-drift Brownian motion determined by a
covariance matrix of the form

as n — 0o, where

C:= <07;j +/[077] [<Vwi<$7)ac($7)ij(m‘r)>

+ / (wiy + 2r) — W) (WY + @) — wi(z,)) vz, dy)]wT(d:nT)> . (3.4)
R4

1<i,j<d

where w,(dz;) is an invariant measure associated with the projection of {F;}i>0, with respect to
I (x), on [0, 7].



Remark 3.2. Two nontrivial examples of diffusions with jumps satisfying the conditions in (C5)
can be found in the classes of diffusions and stable-like processes. If {Fi}:>0 is a diffusion with
Lévy triplet (b(z),c(x),0), such that inf__pa(€, c(2)€) > ¢|¢[?, for some ¢ > 0 and all £ € R9, and
b(x) and c(z) are Holder continuous with the index 0 < 8 < 1, then, in [She91, Theorem A], it has
been proven that { F}}+>0 possesses a continuous (in space variables) and strictly positive transition
density function. Note that, because of the Feller property, A®(C*(RY)) C Cuo(R?), hence b(z)
and c(x) are always continuous functions.

Let o : R — (0,2) and 7 : R? — (0,00) be arbitrarily bounded and continuously differen-
tiable functions with bounded derivatives, such that

0 < inf a(z) < sup a(z) <2 and inf y(z) > 0.
z€R4 reRd z€RC

Under these assumptions, in [Bas88], [Kol00, Theorem 5.1] and [SW13, Theorem 3.3.] it has been

shown that there exists a unique diffusion with jumps, called a stable-like process, determined by a
symbol of the form

g(w, &) = y(x)[¢]*™

which satisfies condition (C5). Note that when «(z) and «(z) are constant functions, we deal with
a rotationally invariant stable Lévy process. O

Remark 3.3. In (C5) we assume the existence, continuity (in space variables) and strict positivity
of a transition density function p(t,z,y) of {F;}+>0. According to [Sanl4b, Theorem 2.6], the
existence of p(t,x,y) also follows from

/exp [—t inf Req(z,§)|dé <oo, t>0, z€ Rg, (3.5)
R4 zERY
under
sup [Im gz, £)| < ¢ inf Req(z,€) (3.6)
zeRd z€R?

for some 0 < ¢ < 1 and all £ € R% According to [Fri64] and [Sat99, Theorems 7.10 and 8.1],
in the Lévy process and diffusion cases, in order to ensure the existence of a transition density
function, (3.6) is not necessary. Further, note that (3.5) and (3.6) also imply the continuity of
(z,y) — p(t,z,y) for all t > 0. Indeed, according to [SW13, Theorem 2.7], we have

sup

E* {eig(Ft_w)” < exp [t inf Re q(x,%)} , t>0,¢€ R, (3.7)
R 16

z€R4

Thus, from (3.5) and [Sat99, Proposition 2.5], we have

p(t, x,y) = (27) 1 /

e kg [eiﬂFt*x)} d¢, t>0, z,y € R% (3.8)
]Rd

Next, by [Sch98a, Theorem 3.2], the function z —— E* [eif(Ft*z)} is continuous for all £ € RY.
Finally, the continuity of (z,y) — p(t,x,y), t > 0, follows directly from (3.5), (3.7), (3.8) and the
dominated convergence theorem. On the other hand, the strict positivity of the transition density
function p(t,z,y) is a more complex problem. In the Lévy process and diffusion case this problem
has been considered in [BH80], [BRZ96], [Fri64], [Sha69] and [She91]. In the general case, the best
we were able to prove is given in Proposition 6.1 in Section 6. O



In Theorem 3.1 the strong ergodicity is hidden in assumptions (C4) and (C5) (see Section 4).
In Theorem 3.4, we assume (strong) ergodicity directly and show the LLN and CLT hold. From
the physical point of view, ergodicity is a natural property of turbulent flows. Namely, a system
is ergodic if the underlying process visits every region of the state space. On the other hand, very
turbulent flows (with high Reynolds numbers) are characterized by a low momentum diffusion and
high momentum advection. In other words, a fluid particle in a very turbulent fluid has a tendency
to visit all regions of the state space.

Theorem 3.4. Let {F;}i>0 be a d-dimensional diffusion with jumps and let w',...,w? € CZ(RY)
be arbitrary. If {Fi}i>0 is ergodic with an invariant probability measure w(dx), then there exists a
7(dx) measure zero set B € B(R?), such that for any probability measure o(dx) on B(R?) having
finite first moment and any initial distributions p(dz) of {Fi}i>0, satisfying p(B) = 0, we have

P 0
Xnt Py X Py -a.s.

Vit 3.9
; , (3.9)

as n —» 00, and, under P}, x P} (dwy, dwp),

{né ({L"t - Vt) }QO L (Wibeso, (3.10)

as n — oo. Here, V is given in (3.3), V(t,z,wy) = (Aw'(Fy(wy)),..., Awt(Fy(wy))), where
the operator A is defined by (1.5), and {Wi}t>0 is a d-dimensional zero-drift Brownian motion
determined by a covariance matriz of the form (3.4), with w(dx) instead of m-(dx;). In addition, if
{Fi}i>0 is strongly ergodic, then the above convergences hold for any initial distribution of {F;}i>o.

Note that diffusions satisfy the assumptions in (C5) (see [RWO00] and [She91, Theorem A]).
Hence, Theorems 3.1 and 3.4 generalize the results related to diffusions, presented in [Bha82] and
[PSVT77]. Also, note that Theorem 3.4 is not applicable to Lévy processes, since a (non-trivial) Lévy
process is never ergodic. On the other hand, in the Lévy process case, we can relax the assumptions
in (C5), that is, in order to derive the limiting behaviors in (1.3) and (1.4) the strong ergodicity
will not be crucial anymore. Because of space homogeneity of Lévy processes, the assumption in
(C4) is automatically satisfied. First, recall that for a T-periodic locally integrable function f(x)
its Fourier coefficients are defined by

2 1 _j2nlk) 7
f(k) = — eI f(x)dx, keZ4
17| Ji0,7]
where |7| := 7172 - - - 7. Under the assumption that
> 1f (k)] < o0, (3.11)
kezd

27 (k,z)

f(@) =2 hepa f(k)e' 7T . For example, (3.11) is satisfied if f € Cg(R‘Z) (see [Gra08, Theorems

3.2.9 and 3.2.16]). In general, >, ,a |f(B)||k|™ < 00, n >0, if fe C’ZLH(RJ). Recall that we use
notation {L;}>o instead of {Fi}¢>o for Lévy processes as the driving process of { X }i>o.

Theorem 3.5. Let {L}1>0 be a d-dimensional Lévy process with symbol q(€) satisfying

Rq(hﬂ>>a ke Z*\ {0}, (3.12)
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and let wl, ... w? e Cf(RJ) be T-periodic. Then, there exists a Lebesgue measure zero set B €
B(RY), such that for any probability measure o(dx) on B(R?) having finite first moment and any
initial distribution p(dz) of {Li}i>0, satisfying p(B) = 0, we have

P 0
Xnt Py X Py -a.s.

n

Vt, (3.13)

as n — o0, and, under P{, x P%(dwy,dwp),

o (39, e

n

as n — oo. Here, V is given in (3.3), V(t,z,wy) = (Aw(Li(wy)),. .., Awd(Li(wy))), where
the operator A is defined by (1.5), and {Wili>0 is a d-dimensional zero-drift Brownian motion
determined by the covariance matriz given in (3.4) with 7 (dx,) = dx;/|7|. In addition, if

S k2 (h)| <1 + <Req <2‘Z|’“>>_2) <oo, i=1,....d (3.15)

keZa\{0}
then the convergence in (3.14) holds for any initial distribution of {Li}+>0.

Remark 3.6. Note that when

2k 7 2k
Regq <F> >0, kez® \ {0}, and liminfRegq <W> > 0,
T’ k|—o0

| [k 7
the condition in (3.15) reduces to
> EPR (k) < oo, i=1,....d.
keza\{0}

For example, this is the case when the function £ — Re ¢(&) is radial and the function |{| —
Re ¢(¢) is nondecreasing.

Remark 3.7. A simple example where Theorem 3.1 is not applicable, while Theorem 3.5 gives an
answer is as follows. Let w(z) = sinz and let {L;};>0 be a one-dimensional Lévy process given by
Lévy triplet of the form (0,0,0_1(dy) + 01(dy)). Then, clearly,

1

5 ]{,‘ = _1 1
D N , 1 _ -
(k) {0, otherwise, and ¢(§) = 2(1 — cos&).

Further, note that g(k) # 0 for all kK € Z\ {0}. Thus, the condition in (3.15) (and (3.12)) holds
true and consequently for any initial distribution of {L;}:>o,

nt
{n—% / Abw(Ls)ds} A (Wikiso,
0 t>0

where {W,; }+>¢ is a zero-drift Brownian motion with the variance parameter C' = 2(1 —cos1). Also,
note that, according to Proposition 5.2 below, { L™ };>¢ is ergodic but obviously it is not strongly
ergodic (with respect to dzoy/27). O

10



Remark 3.8. In Theorem 3.1 we implicitly assume (through conditions (C4) and (C5)) that
the underlying process {F] };>¢ is strongly ergodic and conclude the limiting behaviors in (3.1)
and (3.2) for any initial distribution of {F}};>0. In Theorem 3.5 we implicitly assume (through
(3.12)) only the ergodicity of {L] }+>0 and the best we can conclude is that the limiting behaviors in
(3.13) and (3.14) hold for any initial distribution of {L;}:>0 whose overall mass is contained in the
complement of a certain Lebesgue measure zero set. (See more discussions on the condition 3.12 in
Section 5.1.) If, in addition, we assume that {L;};>0 satisfies (C5), then {L] };>0 becomes strongly
ergodic. Conditions that certainly ensure this are the integrability of e %4(€) ¢ > 0, and that either
the Brownian or jumping component is nondegenerate and possesses a strictly positive transition
density function (see [Sat99, Theorem 19.2 and Lemma 27.1]). Note that for the jumping part
to possess a transition density function it is necessary that v(R?) = co. Very recently in [SW11,
Theorem 4.1] it has been shown that {L] }+>0 is strongly ergodic if there exists some ¢y, > 0 such that
for every t > to, the transition function p(¢,x,dy) of {L:}+>0 has (with respect to the Lebesgue
measure) an absolutely continuous component. According to [SW11, Theorem 4.3], a sufficient
condition that guarantees the existence of an absolutely continuous component of p(t, z, dy), t > 0,
is that there exists € > 0, such that for

v - v(B), V(Raij)
A { v({x € B:la| > e}), v(RY)

AN

Oo’

o0,

either the k-fold convolution v*(dy), k > 1, has an absolutely continuous component or there exist
n >0 and k > 1, such that

inf A (0, * 2F)(RY) > 0. (3.16)
z€RY, || <n

Here, for two probability measures p(dz) and o(dz), (p A o)(dz) := p(dz) — (p — 0)*(dx), where
(p — 0)*(dz) is the Hahn-Jordan decomposition of the signed measure (p — g)(dx). Intuitively,
condition (3.16) ensures enough jump activity of the underlying pure jump Lévy process. U

4 Proofs of Theorems 3.1 and 3.4

4.1 Preliminaries on Periodic Diffusions with Jumps

We start this subsection with the following observation. Let {M;};>0 be an Re-valued, d > 1,
Markov process with semigroup {P;};>o and let I, : R — [0, 7] be the covering map, defined in
the previous section. Recall that 7 := (1,...,7;) € (0,00)¢ and [0,7] := [0,71] x ---[0,7z]. Next,
denote by {M] }+>0 the process on [0, 7] obtained by the projection of the process {M;}i>0 with
respect to I, (x), that is, M] := II.(M;), t > 0. Then, if {M;};>0 is “7-periodic”, {M] }i>0 is a
Markov process. More precisely, by assuming that

(A1) {P;}i>0 preserves the class of all 7-periodic functions in By(RY), that is, z — Pof(z) is
r-periodic for all t > 0 and all 7-periodic f € By(R%),

by [Kolll, Proposition 3.8.3], the process {M] };>¢ is a Markov process on ([0, 7], B([0, 7]) with
positivity preserving contraction semigroup {F; }+>¢ on the space (By([0,7]), || - ||c0) given by

Bl fr(w7) = BT [f7(M])] = . ]fT(yr)P‘fT(M{ €dyr), t=0, zr €[0,7], fr € By([0,7]),
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where

PIT(M] € dy,) = Y P(Myedy+k), t>0, zy, €[0,7], (4.1)
kerzd

and z and y are arbitrary points in II;!({z,}) and II-({y,}), respectively. Note that B([0,7])
can be identified with the sub o-algebra of “r-periodic” sets in B(R?) (that is, the sets whose
characteristic function is 7-periodic) by the relation

B= |J B +k
kerzd

where B, € B([0,7]) and B € B (RJ) is “7-periodic”. Further, since [0, 7] is compact, it is reasonable
to expect that {M] }+>0 is (strongly) ergodic. By assuming, in addition, that

(A2) {M;}i>0 possesses a transition density function p(¢,x,y), that is,

Rif@) = [ fptaads, >0, 2 € R f e BRD,

(A3) (z,y) — p(t,z,y) is continuous and p(t,z,y) > 0 for all £ > 0 and all z,y € R?,

then, clearly, { M/ }+>0 has a transition density function p.(¢,z.,y,), which is, according to (4.1),
given by
pT(ta‘TT:yT) = Z p(t,xT,yT—i—k‘), t>0, z;,yr € [077—]7
kerzd
and, by (A3), it satisfies

inf  p(t,xr,y,) >0, t>0.
Z'-rayTe[OvT]

Thus, by [BLP78, the proof of Theorem II1.3.1], the process { M; }+>0 possesses a unique invariant
probability measure 7, (dx;), such that

sup {|P71p, (z;) — 77 (B;)| : 27 € [0,7], Br € B([0,7])} < Ae™™ (4.2)

for all ¢ > 0 and some universal constants A > 0 and A > 0. In particular, {M] };>¢ is strongly
ergodic. Let us remark that, under (A2), (A1) holds true if the function = — p(t,z,y + x) is
T-periodic for all £ > 0 and all y € R,

Now, based on the above observations, we prove that a diffusion with jumps which satisfies
(C4) and (C5) also satisfies the conditions in (A1), (A2) and (A3).

Proposition 4.1. Let {F;}+>0 be a diffusion with jumps with Lévy triplet (b(zx), c(x),v(x,dy)) and
transition density function p(t,x,y). Then, {Fi}i>o satisfies the condition in (C4) if, and only if,
the function x — p(t,z,x +y) is T-periodic for all t > 0 and all y € R?.

Proof. The sufficiency follows directly from [JacOl, the proof of Theorem 4.5.21]. To prove the
necessity, first recall that there exists a suitable enlargement of the stochastic basis (2, 7, {P*}  _pd,

{Fit>0, {0t }+>0), say ((Nl,]?, {fﬁ;x}mem’ {ft}tZ()a {@}Qo), on which {F;}>o is the solution to the
following stochastic differential equation

12



t t .
F, :x+/ b(Fs)ds+/ c(Fs—)dWs
0 0
t ~
+/ / E(Fs—, 2)fufk(py— u)|<1} (2) (ﬁ(',ds,dz) - dSN(dZ)>
0 JR\{0}
t
[ R ey (T ds, d2), (43)
0 R\{O}

where {W;}i>0 is a d-dimensional Brownian motion, fi(w,ds,dz) is a Poisson random measure

with compensator (dual predictable projection) dsN(dz) and k : R? x R \ {0} — R is a Borel
measurable function satisfying

ﬁ(wadsak(st(w)a') € dy) = Z 5(5,AFs(w))(dsady)a
$:AFs(w)#0
dsN (k(Foe(w), ) € dy) = ds v(Fy—(w), dy)

(see [Sch98b, Theorem 3.5] and [CJ81, Theorem 3.33]). Further, {F;};>¢ has the same transi-
tion function on the starting and enlarged stochastic basis. Thus, because of the 7-periodicity of
(b(x), c(x),v(z,dy)), directly from (4.3) we read that P**7(F, € dy) = P*(F,+7 € dy) for all t > 0
and all € R?, which proves the assertion. O

Since we mainly deal with 7-periodic functions, we need to extend the operator (A™| (RA)>

CSO(RJ)) on a larger domain which contains a certain class of 7-periodic functions. Recall that
every Feller semigroup {P;};>0 can be uniquely extended to B,(R?). We denote this extension
again by {P;}>0.

Proposition 4.2. Let {F;};>0 be a diffusion with jumps with By-generator (A, D ) which satisfies
the condition in (C4). Then,

{fe CbQ(RJ) : f(z) is T-periodic} C D 4
and, on this class of functions, A’ has the representation in (1.5).

Proof. Let L : C’g(sz) — By(R%) be defined by the relation in (1.5). Observe that actually
L: CERY) — Cp(RY) (see [Sch98a, Remark 4.5]). Next, by [Sch98b, Corollary 3.6], we have

B [f(Ft) - £f<Fs>ds] — f(@), weR? feCRRY.

Now, let f € C? (RJ) be T-periodic. Then, since z — Lf(x) is also 7-periodic, we have

. Bf—-7f . 1
b ] - e
1 t
< lim — sup |PsLf(x) — Lf(x)|ds
Jim g [ s (P~ £1@)
=0,
where in the final step we applied [Jac0l, Lemma 4.8.7]. O
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In the following proposition we derive a connection between the By-generators (A°, D 4v) and
(A?,DAQ) of {Fi}+>0 and {F] }4+>0, respectively. Recall that for a 7-periodic function f(z), fr(z;)
denotes its restriction to [0, 7].

Proposition 4.3. Let {F;}1>0 be a diffusion with jumps satisfying the condition in (C4) and let
{F7 }+>0 be the projection of {F;}i>0 on [0,7] with respect to Il-(x). Further, let (A”, D 4) and
(AS’.,DA?_) be the By-generators of {Fi}i>0 and {F] }1>0, respectively. Then, we have

{fr: f € CHRY) and f(z) is T-periodic} C Dy,
and, on this set, AL f, = (.Abf)T

Proof. First, according to Proposition 4.2, {f € C’f(RJ) : f(x) is T-periodic} C D 4. This and
T-periodicity automatically yield that for any 7-periodic f € C? (RY), we have

Prfr—J Pf —
lim |2 = ~ () XU RN E—
t—0 t Tl t—0 t oo
which proves the desired result. O

4.2 Proof of Theorem 3.1

Before proving the main result of this subsection (Theorem 3.1), let us recall the notion of
characteristics of a semimartingale (see [JS03]). Let (2, F, {Ft}+>0, P, {St}+>0), denoted by {St}i>0
in the sequel, be a d-dimensional semimatingale and let h : R — R? be a truncation function
(that is, a continuous bounded function such that hA(x) = z in a neighborhood of the origin). We
define two processes

S(h)y =) (ASs = h(AS,)) and  S(h); =S, — S(h)s,
s<t
where the process {AS;}i>0 is defined by AS; := Sy — S;— and ASy := Sp. The process {S(h)¢}e>0
is a special semimartingale, that is, it admits a unique decomposition
S(h)e = So+ M(h); + B(h)s, (4.4)
where { M (h);}+>0 is a local martingale and { B(h); }+>0 is a predictable process of bounded variation.

Definition 4.4. Let {S;}i>0 be a semimartingale and let h : R — R? be a truncation function.
Furthermore, let {B(h)}+>0 be the predictable process of bounded variation appearing in (4.4), let
N(w,ds,dy) be the compensator of the jump measure

pw,ds,dy) == D s as.w)(ds, dy)
5:ASs(w)#£0

of the process {Si}i>0 and let {Cii>0 = {(C} )1<z]<d)}t>0 be the quadratic co-variation process
for {S¢ >0 (continuous martingale part of {St}i>0), that is,

CY = (S, 579).

Then (B C, N) is called the 'characteristics of the semimartingale {St}i>0 (relative to h(x)). If we
put C(h ) = (M (h) M(R)]), i,5 =1,...,d, where {M(h)}+>0 is the local martingale appearing
c,

in (4.4), then (B,C, N) is called the modlﬁed characteristics of the semimartingale {St}+>0 (relative
to h(z)).
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Now, we prove Theorem 3.1.

Proof of Theorem 3.1. The proof proceeds in three steps.

Step 1. In the first step, we explain our strategy of the proof. First, note that, because of the
independence of {F;}+>0 and {B;}+>0, [Sat99, Theorem 36.5] and Proposition 4.2, in order to prove
the relation in (3.1), it suffices to prove that

PP -a.s.

nt
n! / Awi(Fy)ds —— 0 (4.5)
0

forallt >0, alli=1,...,d and all initial distributions p(dz) of {F;};>0. Recall that w!, ..., w? €
Cf(RJ) are T-periodic. Next, due to the 7-periodicity of the Lévy triplet of {F}};>0 (which implies
that A’f(z) is T-periodic for any 7-periodic f € C,?(]Rd_)) and by noting that for any 7-periodic
f:RYI — R, f(F,) = f(F7), t > 0, we observe that we can replace {Fi}t>0 by {F/ }i>0 in (4.5),
which is, by (4.2), strongly ergodic. Hence, the limiting behavior in (4.5) will simply follow by
employing Proposition 4.3 and the Birkhoff ergodic theorem.

Similarly as above, because of the independence of { F} }+>¢ and { B }+>0 and the scaling property

of {B;}+>0 (that is, {B:}+>0 4 {0—1/2Bct}t20 for all ¢ > 0), we conclude that in order to prove the
limiting behavior in (3.2), it suffices to prove that for any initial distribution p(dx) of {F}}+>o,

1

{n_2 /0 " U(Fs)ds}tzo A Wb (4.6)

under P?(dwy ), where v(x) = (A’w!(z), ... ,Ab’uid(:c)) and {W;}¢>0 is a zero-drift Brownian motion
determined by a covariance matrix of the form C' := C' — 3, where the matrices C and ¥ are given
in (3.4) and (1.2), respectively. Now, according to [JS03, Theorem VIII.2.17], (4.6) will follow if we

prove the convergence (in probability) of the modified characteristics of {nfl/ 2 font U(Fs)ds} . to
[

the modified characteristics of {Wt}tZO- Accordingly, we explicitly compute the modified charac-
teristics of {n*1/2 f(;lt v(Fs)ds} . (in terms of the Lévy triplet of {F}}+>0) and, again, because of
. >

the 7-periodicity of the Lévy triplet of {Fi}+>0, we switch from {F}i}i>0 to {F} }+>0 and apply the
Birkhoff ergodic theorem, which concludes the proof of Theorem 3.1.

Step 2. In the second step, we prove the limiting behavior in (4.5). First, observe that, by
Proposition 4.3, we have

Au (F) = Al (F]) = (Aw') (F]) = Al (F7), 120, i=1,....d.

Using this fact, (4.2) and [Bha82, Proposition 2.5] (which states that the Birkhoff ergodic theorem
for strongly ergodic Markov processes holds for any initial distribution) we conclude that for any
initial distribution p(dz) of {F}}>0, we have

nt . PP -a.s. .
n_l/ APw'(F,)ds —— t Awl (), (dey), i=1,...,d.
0 [0,7]

Here, 7, (dz,) denotes the unique invariant probability measure of {Fy }+>¢. Finally, we have

= lim
t—0

-Al;wi (zr)7r (dzr)
[0,7]

At (o) (o) — [

[0,7] ¢

T )0l i
<Pt wl —wk

) Gl

[0,7]
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T ) 0yd %
_ Plwi —w;

1 b
im H.AT w; "

o0

=0,
where in the first equality we used the stationarity property of m(dx;).

Step 3. In the third step, we prove the limiting behavior in (4.6). Let p(dz) be an arbitrary
initial distribution of {F}}>0. According to [EK86, Proposition 4.1.7], the processes

= %/ Aw'(Fy)ds —n 2w(Fnt)—|—n*%wi(Fo), i=1,...,d,
are PP-martingales (with respect to the natural filtration). Further, let h : R — R% be an arbitrary
truncation function such that h(z) = x for all |z] < 2max;e(y gy [|w’||oc. Then, SP* = 5™ (h); for
all £ > 0 and all n > 1, that is, {S}'}+>0 is a special semimartingale with S§ = 0 for all n > 1. In

particular, Bf* =0 for all ¢ > 0 and all n > 1. Now, by applying It6’s formula to S}, directly from
[JS03, Theorem 11.2.34] and [Sch98b, Theorem 3.5], one easily obtains that

cpir :nl/ (Vw'(Fs_), e(Fs—)Vw! (Fs_))ds, 4,5=1,...,d. (4.7)
0
Since w'w’ € D g, 4,5 = 1,...d, again by [EK86, Proposition 4.1.7], the processes
ShIm = 1/ A (wiw? ) (Fy)ds — n~ w! (Fpp)w? (Ft) + n~ 't (Fo)w? (Fy), i, =1,...,d,

are also PP-martingales. According to (a straightforward adaption of) [EK86, Problem 2.19], this
yields

G = (517, 51"
=n! /0 : (A (w'w)(Fy) = wh (Fyo ) Awd (Fy-) = ) (Fy ) AP (F, ) ) ds
ot [ i F) = () (i + F) - () o i
+n—1/0m(Vwi(Fs),c(Fs)ij(Fs»ds, i,j=1,...,d,
and, by (4.7), [JS03, Proposition I1.2.17] and [Sch98b, Theorem 3.5,
N5, B) = [ 15 (nhuly + P (@) = n (B @) v (P (@), dy) ds. B € BRY.

Here, w(z) := (w'(z),...,w(z)).
Now, we show that under P?(dwy ),

d ~
{Sf}tzo — {Wt}tzo-
To prove this, according to [JS03, Theorem VIII.2.17], it suffices to prove that

Pr-a.s.

[ [ lswineds.dy) =0 (1.9
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for all £ > 0 and all g € C(RY) vanishing in a neighborhood around the origin, and

~ Pr-a.s. ~

cy —— tC (4.9)
for all ¢ > 0. The relation in (4.8) easily follows from the fact that the function w(z) is bounded
and g(x) vanishes in a neighborhood around the origin. To prove the relation in (4.9), first note
that because of T-periodicity of all components,

. nt . .
G =t [V (L), (BT )0 (B ) ds
0

nt
! /0 /Rd (w'(y + FL) = w'(FL)) (w(y + FL) — ! (FL)) v(F]_, dy)ds

for alli,7 =1,...,d. Now, the desired result again follows by employing (4.2) and [Bha82, Propo-
sition 2.5]. Finally, since w(z) is bounded, [JS03, Lemma VI.3.31] shows the convergence in (4.6),
and thus, (3.2). O

Finally, note that 7 (dz;) and dx; are mutually absolutely continuous. Thus, due to [Bha&2,
Proposition 2.4], C = ¥ (that is, C' = 0) if, and only if, Abw'(z) =0 foralli=1,...,d.

4.3 Proof of Theorem 3.4

We now prove Theorem 3.4. The main ingredients in the proof of Theorem 3.1 were the 7-
periodicity of the driving diffusion with jumps {F}}+>0 and velocity function v(x) and the fact that
all T-periodic f € CZ(R?) are contained in the domain of the By-generator (A%, D 4) of {F;}i>o0
and, on this class of functions, A° has the representation in (1.5) (Proposition 4.2). By having
these facts, and assuming (C5), we were able to switch to the strongly ergodic process {F} }+>0
and apply the Birkhoff ergodic theorem. On the other hand, in Theorem 3.4 we simply assume
the (strong) ergodicity of a driving diffusion with jumps {F};}+>0. Now, one might conclude that
the assertion of Theorem 3.4 automatically follows by employing completely the same arguments
as in the proof of Theorem 3.1. However, note that in this situation it is not clear that Cf(Rd) is
contained in D 4» or that AP can be uniquely extended to C’g (]Rd). In order to resolve this problem,
according to [BSW13, Theorem 2.37], we employ the following facts: (i) C% (R%) is contained in
the domain of the Feller generator (A, D) of {F}i>0, (ii) for any f € CZ(RY) there exists a
sequence {fn}n>1 € C2(R?), such that A>®f, converges (pointwise) to Af, where the operator
A is given by (1.5), and (iii) for any f € CZ(R?) and any initial distribution p(dz) of {F}i>0,
{fg Af(Fs)ds — f(Fy) + f(Fb)}e>o0 is a PP-martingale.

Proof of Theorem 3.4. Let (A, D g ) be the Feller generator of {F} };>0. As we commented above,
due to [BSW13, Theorem 2.37], C2 (R?) C D4 and, on this set, A has again the representation
(1.5). Furthermore, according to the same reference, (A>, D 4 ) has a unique extension to C2Z(RY),
denoted by (A, CZ(R?)), satisfying

Af(x) = lim A®(f¢n)(z), = €R?, fe PR,

n—aoo

for any sequence {¢, }n>1 C C°(RY) with Lyyerd.|yj<n} (z) < ¢n(z) < 1forallz € RYand all n > 1.

Moreover, A has the representation (1.5). Note that Af € By(R?). Now, by the Birkhoff ergodic
theorem and dominated convergence theorem, for any f € C’bQ(Rd) we have

lim 0! / Y AfFEyas =t [ Af@)n(de) = Tim ¢ [ AS(fén)@)n(de) =0, Fras,
0 R4

n—>o0 n—>o0 R4
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where {¢n}n>1 C C=(RY) is as above and in the final step we used the stationarity property of
m(dz). Thus, for any w!,...,w? € CZ(R?),

nt nt
P ( lim nl/ Aw'(Fy)ds = 0) :/ P* < lim nl/ Aw'(Fy)ds = O> m(dr) =1
n—->00 0 Rd n—s00 0

for all i = 1,...,d. Therefore, there exists a m(dx) measure zero set B € B(R?) such that

n—:aoQ

nt
IP’“”(lim nl/ .Awi(Fs)ds—O>—1, re B i=1,...,d,
0

which proves the desired result. )
To prove the limiting behavior in (3.10), again by [BSW13, Theorem 2.37), for any f € CZ(R%)
and any initial distribution p(dz) of {F;}s>0, the process

{ / L AF(F)ds - () + f(Fo>}

>0

is a PP-martingale with respect to the natural filtration. Thus, by completely the same approach
as in the proof of Theorem 3.1, the desired result follows. O

5 Proof of Theorem 3.5

In this section, we prove Theorem 3.5. We start with two auxiliary results we need in the
sequel. First, observe that dx,/|7| is always an invariant probability measure for {L] };>¢. Indeed,
let t > 0 and B; € B([0,7]) be arbitrary. Then, by (4.1) and the space homogeneity property of
Lévy processes, we have

PI(L] € B;)dz, = /
uA;J] [0,7] jg:

kerzd

:/[o | Z /Rd LB, +k—a,} (¥)P(t, 0, y)dydz,

keTzd

Z/p(t,O,y)dy/ da;
Rd B,
:/ dx,.

In general, dz;/|7| is not necessarily the unique invariant probability measure for {L] };>o. But, if
{Li}+>0 is symmetric, that is, b = 0 and v(dy) is a symmetric measure, and possesses a transition
density function (not necessary strictly positive), then dx,/|7| is unique (see [Yin94]). Having this
fact, in the Lévy process case, the covariance matrix C (given by (3.4)) can be computed in an
alternative way. Recall that f (k) denotes the k-th, k € Z?, Fourier coefficient of a 7-periodic locally
integrable function f(x).

/ p(t,0,y)dydx,
Br+k—xr

Proposition 5.1. Let {L}i>0 be a J—dimqnsional Lévy process with symbol q(§) and By-generator
(A%, D ). Further, let w',... w? € C’g(Rd) be T-periodic, such that

D (k)P < oo, i=1,....,d, (5.1)
kezd
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and

1+ Regq <2|7Tr|k
keza\{0} ‘q (TFTF)‘
Then, for alli,7 =1,...,d, we have

Cij = lim 1/ E®" / APw'( / APwi (L,)dr| dz,
n=5oo nfrt [0,7] 0
1

>Ab i(k)||Abwd (—K)| < 00, iyj=1,....d.

w(z,) A (2, )dz,

B m [0,7]
Req (%

P
= ————2 Awi(k) Abwi(—k)
2 kezzd\:{o} ) (%) ’2 w wJ

Proof. First, we prove that

R 27k
Z eq(thbw%( Abuﬂ Z Re (27rk) "(k) @ (—k).
keziv{o) |4 (%) ‘ kezd |7|

Because of T-periodicity, from Proposition 4.2, we have
. 4 1 ,
Abwi(z) =(b, V' (z)) + idichwl(x)
+ /R‘i (wz(y + J)) - wl(x) - <y7 le(x)>l{z|z|§1}(y)) V(dy)

Now, by using the assumption (5.1) and the facts that

ow 27 2 (k,x) O’
g kW d = g kpkqw
aa:p |7'| pt an axpazq |T\2
kezd kezd

27r<k x)

fori=1,...d and p,q =1,...d, we easily find

2k

@()——q(, |> Wik), kezd i=1,...,d,

which proves the claim. Note that

> e (30 ) ()7 (~#) < oc

kezd

follows from (C2) and (5.1).
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Next, we prove

1
lim / E* [/ Abwl( ds/ Abwl (L )dr] dz,
n—>OOTL‘T|t [0,7]

_9 Z |7

(M)Abwz k) A (— k).
kezd\ {0} ’q 2ok )‘

We have

! / E* {/ APw'( dr/ APw? (L )ds} dx;
n[ﬂt [0,7]
1 nt
= E r+ ) A w + x,)drdsdz,
0/ //A“ )APw! (Ly + x,)drdsd
7’L|T|t [0,7]

1 nt j2mlk(@r+Ly)) 2m(l(zr+Ls))
= e / / / S Awi(k)Awi)e R drdsday
n‘7—|t [0,7]

klezd
Z Abwz _Abwj /nt/ [ 427k, (|1;1"|—Ls)):| drds
k: zd
" ZnthLoms) n L)
ni wil v ras rds
Z.Abz AbJ <//]E0|: :|dd+//E0{ :|dd>
d
k: z . kK )
nt Z Abwl Ab“’j < / / ) drds+ / / ~(r—s)a(3 |)drds)
k zd
1 e—ntq(—%> 1 1 6—ntq<2|%l) 1
Z Abwl Abw]( ) + —+ +
) e () () e )

where in the final step we used the fact that Abwi(0) =0, 7 =1,...,d, that is, f[o,r} Abwidz = 0,
i=1,...,d, (see the proof of Theorem 3.1). Note that the change of orders of sums and integrals
is justified by (C2), (5.1) and (5.4). Now, the desired result follows from (5.2) and the dominated
convergence theorem.

Finally, the fact that

Cy= [ wian Aw(e)dee =2 3 Req( ™ ) 0 ()0 ()
1Tl Jio.7] et 7|
follows from a straightforward computation by using (5.1), (5.3) and (5.4). O

Proposition 5.2. Let {L;};>0 be a d-dimensional Lévy process with symbol q(&) satisfying the
condition in (3.12). Then, {L] }+>0 is ergodic (with respect to dx;/|T|).

Proof. First, recall that {L] };>0 is ergodic if, and only if, the only bounded measurable functions
satisfying

/[0 ]pT(t,xT,dyT)fT(yT) = fr(z7), 2z, €[0,7], t>0,
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are constant dx.-a.s. Now, by comparing the Fourier coefficients of the left and right hand side in
the above relation, we easily see that (3.12) implies that the above relation can be satisfied only
for constant dx,-a.s. functions. O

Now, we prove Theorem 3.5.

Proof of Theorem 3.5. The proof proceeds in four steps.

Step 1. In the first step, we explain our strategy of the proof. The idea of the proof is similar
as in the proof of Theorem 3.1. Namely, again because of the independence of {L; }+>0 and {B; }+>0,
[Sat99, Theorem 36.5] and Proposition 4.2, in order to prove the relation in (3.13), it suffices to
prove that there exists a Lebesgue measure zero set B € B(R?), such that for any initial distribution
p(dx) of {Lt}i>0, satisfying p(B) = 0, we have

1 b PP -a.s.
—/ Abwi(Lg)ds ——>0, t>0,i=1,...,d. (5.5)
Recall that w',...,w? € Cf(Rd) are 7-periodic. Further, since the driving diffusion with jumps

is a Lévy process (hence, it has constant coefficients), we again conclude that for any 7-periodic
f:RY— R, f(L) = f(L]), t > 0, and that A®f(z) is T-periodic for any 7-periodic f € CZ(R%).
Thus, we can again switch from {L;}+>0 to {L] }+>0, which is, by (3.12), ergodic (with respect to
dz./|T|). Now, the limiting behavior in (5.5) will follow by employing Proposition 4.3 and the
Birkhoff ergodic theorem.

In order to prove the limiting behavior in (3.14), again because of the independence of {F}}i>0
and {B;}+>0 and the scaling property of {B;}+>0, we conclude that it suffices to prove that there
exists a Lebesgue measure zero set B € B(RY), such that for any initial distribution p(dz) of
{Li}i>0, satistying p(B) = 0,

{n—% /0 ntv(Ls)ds}tZO 4 (Widiso (5.6)

under P?(dwy ), where v(z) = (Aw!(x),.. .iAbwd(:c)) and {W;}¢>0 is a zero-drift Brownian mo-
tion determined by the covariance matrix C' := C' — X defined in (3.4). Now, we again employ
[JS03, Theorem VIII.2.17], which states that that the desired convergence is reduced to the con-

vergence (in probability) of the modified characteristics of {nil/ 2 Ont v(LS)ds} o to the modified
>

characteristics of {VNVt}tZO. Hence, we again explicitly compute the modified characteristics of

{n—1/2 fom U(Ls)ds} . (in terms of the Lévy triplet of {L;};>0) and, because of the T-periodicity
> >

of the Lévy triplet of {L;}i>0, we switch from {L;};>0 to {L] }+>0 and apply the Birkhoff ergodic

theorem. Finally, to prove that under (3.15) the limit in (5.6) holds for any initial distribution of

{L;}¢>0, we consider the L?-convergence of the modified characteristics of {nil/ 2 font U(Ls)ds} .
> t>

to the modified characteristics of {Wt}tZO-
Step 2. In the second step, we prove the limiting behavior in (5.5). First, according to
Proposition 4.3, we have

Abwi(Ly) = Abwi(L]) = (Abwi) (L7) = Awi(L]), t>0,i=1,...,d,

n_l/ Abwi(L —1/ Alw t>0,i=1,...,d.
0
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Further, according to Proposition 5.2, the process {L] };>0 is ergodic (with respect to dz./|7|).
Thus, the Birkhoff ergodic theorem entails

nt
pde-/I7l ( lim n_l/ Awi(Ly)ds = |7| 7t Agwi(xT)de> =1, i=1,...,d.

[0,7]

Analogously as in the proof of Theorem 3.1, we conclude that

|77t Awi(z)de, =0, i=1,...,d,
(0,7]

that is,

n——oo

nt
|7"_1/ pEr ( lim n_l/ Abwi(Ls)dS = 0> de = 17 1= 1’ s 7d'
[0,7] 0

Therefore, there exists a Lebesgue measure zero set B € B(R?) such that

n—-aoo

nt
P® ( lim nl/ Alwi(Ly)ds = o) =1, zeB i=1,...,d,
0

which proves the desired result.

Step 3. In the third step, we prove the limiting behavior in (5.6). We proceed similarly as in
the proof of Theorem 3.1. Let p(dx) be an arbitrary initial distribution of {L;}+>0. Then, again by
[EK86, Proposition 4.1.7], the processes

NI

. nt . . .
Syt i=mn" / Aw'(Lg)ds — n_%wl(Lm) + n_%wl(Lo), i=1,...,d,
0

are PP-martingales. Now, by completely the same arguments as in the proof of Theorem 3.1 we
deduce that the semimartingale (modified) characteristics of {S'}+>0 are given by

Br =0,

€9 =nt [ (Vi (L), eV (Lo s, ig =1
0

Gt =n! /On /R (w'(y + Ls—) = w'(Ls-)) (w(y + Ls-) — w? (Ls-)) v(dy)ds

+n_1/ (Vw'(Ls_),cNVuw’ (Ls_))ds, i,j=1,...,d,
0

1

N"™(w, ds, B) = / i (nBwly + Lo (@)~ bw(L, (@) v (dy)ds, B € BRD,

R
where w(z) = (w!(z),...,w%(x)). Recall that for the truncation function we again use an arbitrary
h:RY — RY, such that h(z) = z for all [z] < 2max;eqy gy |[0']]oo-
Now, according to [JS03, Theorem VIII.2.17], in order to prove that
d ~
{5t }iz0 — {Wikeo,

under P?(dwy ), it suffices to show that

nt Pr-a.s.
[ [ lswiNeds.dy) =0 (57)
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for all £ > 0 and all g € C(RY) vanishing in a neighborhood around the origin, and

Pr-a.s.

cr ——— tC (5.8)

for all t > 0. The relation in (5.7) easily follows from the fact that the function w(z) is bounded
and g(z) vanishes in a neighborhood around the origin. Also, note that (5.7) holds for any initial
distribution p(dz) of {L;}+>0. Now, we prove the relation in (5.8). Similarly as in the proof of
Theorem 3.1, because of T-periodicity of all components,

Giin _ o1 / (Vw'(L7_), eVl (L7_))ds

+n7! /Un /R (w'(y + L5-) = w'(L3)) (w!(y + L3-) — w (L)) v(dy)ds

for all 4,5 = 1,...,d. Now, by similar arguments as in the first step, Proposition 5.2 implies that
{L] }+>0 is ergodic (with respect to dz,/|7|), hence the Birkhoff ergodic theorem entails that

Pdwmﬂ( lim @;@an:t@j) = |Tyl/[0 }P%( lim C*;'m:téij) de. =1, 4,j=1,...,d.

n——aoo n——aoo

Therefore, there exists a Lebesgue measure zero set B € B(R?) such that
IP”C< lim ép:té) —1, ze€B i=1,....d
n——oo
which together with [JS03, Lemma VI1.3.31] proves (5.6), and thus, (3.14).
Step 4. In the fourth step, we prove that under (3.15) the limit in (5.6) holds for any initial
distribution of {L:}+>0. We again employ [JS03, Theorem VIII.2.17]. In the third step we derived

the semimartingale (modified) characteristics (B™, C",C™, N™) of the semimartingales {S}};>0,
n > 1, and proved that for any initial distribution p(dx) of {L;}+>0,

nt n PP-a.s.
[ [ v .ds.dy —=0

for all t > 0 and all g € Cy(R?) vanishing in a neighborhood around the origin. Therefore, the
desired result will be proven if we show that for any initial distribution p(dx) of {L;}+>0,

~,J,m @) .
Ct” —)tCl’j

forallé,7=1,...,d and all £ > 0. We have
o~ s - 2 .. 2 _ . B
E/ [(C’t’”’” —tCij) } — B [(CZ’J’”) } — 2Cy,EP [CZW] +#2C2.

N2 _
First, we show that lim,,__,. E” [(CZ”L) ] = tszj. We have

.. 2
e ()| = e (59)
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where

d t nt i : . .
_ n Ow'(Ls_) Ow’ (Ly_) Ow' (Ly_) Owd (Ly_)
no._ =2 p
I :==n ) l;_l Cklcpq/o /0 E [ Ozy, 0x; oz, D4 dsdu,
" ow'(Ls-) 0w (L) | |
n —92 0 . o
= k;1 Ckl/ / - [ axk oz /Rd (w'(y + Lu-) = w'(Lu-))
(W (y + Lu_) — w (L)) v(dy) | dsdu,
nt nt . . |
Iy = —2/ / / / EP y+L )= ’(LS,)) (W(y+LS,) —wJ(LS,))
Rd JRA

(w (z+ Ly-) — wi(Lu,)) (wj(z + Ly ) — wj(Lu,)) } v(dy)v(dz)dsdu.

Now, by the same approach as in Proposition 5.1, we get

d

ntoru Ow'(Ls_) Ow? (Lg_) Ow*(Ly_) Ow’ (L)
I = 2n~2 criC / / E” [ & & 4 “ ] dsdu
! . l%:l L A Oxy, O0x; Oz O0zg
2571'4 d nt ru ) ) ) .
— g 2 e [ [ abgddi@w (a@w @
k7l7p7q:1 0 0 a,b,c,dEZg
2mw(a+b,Ls) i27‘r<c+d,Lu>
EP [ e T ] dsdu
25 4 d nt  ru . . . ,
A 2 e [ [ et @n 0w @p ()
T k,lp,q=1 0 a,b,c,deZd

—(u—s)q(M> €_3q<w

[7] [7] )dsdu

24742 d N N VY
= W Z CkiCpq Z apaicpcgW’ (a)w’ (—a)w'(c)w’ (—c)
k,l,p,q=1 a CEZJ
2574 & VI (1) 5 [ 27 (atbtetd)
o 3 e [ [ e (@i 00 (00 (@) (e
k,l,p,q=1 a,b,c, dezd

a+b#0 or c+d#0
_ (U*S)q ( 27 (c+d) ) 6*811 ( 2w (a+b+c+d)

7] 7] )dsdu’

where p(§) denotes the characteristic function of the probability measure p(dz). Note that the
change of orders of integrations and summations is justified by (3.15). Finally, again by applying
(3.15), it is easy to see that

247442
=

d
Z CkiCpq Z axa;cpcy (a)? (—a)w' (c)i! (—c). (5.10)

k,l.p,q=1 a,ceZd
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Similarly, we have

nt
2 y=dn" Z Ck:l/ / E?

k=1

Ow'(Ls_) Ow’ (L) . i
axk o, /Rd (w'(y + Lu—) — w'(Ly—))

(wj(y 4+ Ly ) —u? (Lu-)) V(dy)] dsdu

27r(a+b Ls) »27r<c+d,Lu):|

- n2|7‘2 chl/nt/ Z apby’ (a)w’ (b)' (c)w (d)IEP[ T el T

k=1 a,b,c,dezd
,L'27T<va> Z-27r(d,y)
e "I —1)le T —1)v(dy)dsdu
R4
2w (c+d)

= nzmzzcm / / S b (@i (o) ()i (d)p (2=teszgesn) ()

k=1 ab,c,deZd

_ 27 (a+b+c+d) .27 (c,y) - 2m(d,y)
e a2 )/ <ez2 e 1) <€Z2 - 1> v(dy)dsdu
R4

ki=1  gcezd R4
2471'2 d nt u ) ) ) )
— 55 D Gk / / > apbt (a)id (b)d ()i (d)p (w)
n ’T‘ k,lzl 0 0 a,b,c dGZJ

a+b#0 (;r c+d#0

2n(ctd) _ . (2m(atbictd) ;2m{ey) j 2 {d)
o (5 >e sa(F )/ <elfy —1> (ezﬂy — 1> v(dy)dsdu.
R

d

Again, by applying (3.15), we get

94,242 . ,
lim I = ——5— Z Ck,l Z apag’ —a)w*(c)w’ (—c)

e ‘T| k=1 a,ceZd

/Rd (1= cos (252 ) ) wldy). (5.11)

Finally, we have

g=o [T [ ] w0 L) - ) (0 + ) —wik)

(w'(z + Ly—) — w'(Ly-)) (W (2 + Ly—) — w? (Ly-)) ]V(dy)y(dz)dsdu

nt  ru . . . . om(a+b,Ls) . 2m(ctd,Ly)
—on? / SO (o) (b)i (c)i (d) P [el et i }
0

ab,c,deZd

27r(a y) Z-27-r<b,y) Z»27r(c,z) 7;27r<d,z)
/ / —1)(e T —=1)(e T —1)(e T —1|v(dyv(dz)dsdu
Rd JRE
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it , , C(u—s)o 2t g (2mlatbtetd)
_ —2/ / Z u?’(c)ﬁ}%d)ﬁ(%)e( )q( B >e q( B )
a,b,c,deZd
.27 (d,z)
)(el 7] —1> v(dy)v(dz)dsdu

L L (6”” *)( )(
— a2 3 @i ()i (~a /R /R (z=t2)) (1 cos (2252 ) ) wldyw(d2)

acEZfz
nt . . . . (0 2m(c+d)\ 27 (a+btc+d)
n=2 / / S () (b)) (d) (espresan ) (D) o (D)
abchZd
a+b#0 or c+d#0

27r(a y) i27‘r<b,y) 2.27r(c,z) 7:27'r<d,z)
/ / < 1> (e T — 1> <e T — 1> (e T — 1> v(dy)v(dz)dsdu.
Rd JRA

Again, (3.15) implies that

. no_ 442 N NN VY VY P
nh—>mooI3 =4t Z w'(a)w’! (—a)w' (c)w’ (—c)

a,ceZd
/Rd /]Rd 1 — cos 27r<ay >> (1 — Cos (W)) v(dy)v(dz). (5.12)

Now, by putting together (5.9), (5.10), (5.11) and (5.12), Proposition 5.1 implies

N2 5 9
lim B [(C;M) ] — 1202,
n—-aoo
In completely the same way we get

lim E? |G| = tCy.

n——~oo

Thus,
L2(Pr,Q)
Cpit —— 5 4Cy, i, =1,....d,

that is, for any initial distribution p(dx) of {L¢}+>o,

n d T
{S¢' b0 — {Witezo,
under P?(dwy ). Finally, since the function w(x) is bounded, [JS03, Lemma VI.3.31] again implies
the convergence in (5.6), and thus, in (3.14). O
5.1 Comments on the Condition in (3.12)

In connection to Proposition 5.2, note that if (3.12) is not satisfied for some ko # 0, then we
cannot automatically conclude that {L] };>¢ is not ergodic. For example, take a one-dimensional
Lévy process {L:}+>0 with symbol of the form ¢(§) = b€, b # 0. On the other hand, in the
dimension d > 2 or when b = 0 (in any dimension), {L] };>¢ is not ergodic.

Proposition 5.3. Let {L;}+>0 be a d-dimensional Lévy process with symbol q(€) not satisfying the
condition in (3.12). Then, {L] }+>0 is not strongly ergodic (with respect to dx,/|T]).
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Proof. By the assumption, there exists kg € ZJ, ko # 0, such that Req(2mky/|7|) = 0. Hence, for

this ky € Z%, we have
EO |: <2‘1rk‘ ’Lt>:| :el Q‘Wk‘ 7t170>

for some xg € R?. This yields

E° [cos<2m° ,Lt—txoﬂ = /R 008 (* =tz )p(t,0, dy) = 1.

Thus, p(t,0,dy) is supported on the set {y € RY (ko,y — tzo) =l|7|, L € Z}, t > 0. In particular,
p(t,0,dy) is singular with respect to dz, which proves the claim. O

Further, the condition in (3.12) is also not equivalent with the strong ergodicity of {L] }+>o.
For example, let {L;};>0 be a one-dimensional Lévy process with symbol of the form ¢(§) =
2(1 — cos(k§)) or, equivalently, with the Lévy triplet (0,0,0_(dy) + dx(dy)), where k > 0 is such
that x/7 ¢ Q. However, as a direct consequence of Proposition 5.3 we get that condition (C5)
automatically implies the relation in (3.12).

Proposition 5.4. Let {Lt}i>0 be a d-dimensional Lévy pr