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Ergodicity of the finite and infinite dimensional
α-stable Systems

Lihu Xu and BogusÃlaw Zegarliński

Abstract

Some finite and infinite dimensional perturbed α-stable dynamics are constructed
and studied in this paper. We prove that the finite dimensional system is strongly
mixing, while in the infinite dimensional case that the functional coercive inequal-
ities are not available, we develop and apply a technique to prove the point-wise
ergodicity for systems with sufficiently small interaction in a large subspace of
Ω = RZd

.

Key words and phrases. Ergodic property, strongly mixing, Ornstein-Uhlenbeck α-stable
processes, spin system, finite speed of propagation.
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1 Introduction

In the last several decades, α-stable processes have been deeply studied and widely applied
to physics, queueing theory, mathematical finances and others. It is well known that the
Ornstein-Uhlenbeck process driven by α-stable noise (see (1.0.1) with b = 0) is ergodic
([1]), however, there seems no results on the ergodic property of perturbed Ornstein-
Uhlenbeck α-stable processes defined by (1.0.1), which is the main motivation for the first
part of the paper (section 2). More precisely, we will study in section 2 an n dimensional
perturbed Ornstein-Uhlenbeck α-stable system

{
dXt = −Xtdt + dZt + b(Xt)dt

X0 = x
(1.0.1)

where Zt is some α-stable process (1 < α < 2) and b ∈ C∞(Rn) (continuous function
vanishing at infinity), and prove that the system (1.0.1) is ergodic and strongly mixing
as b is small (Theorem II and Corollary 2.2.1).

However, the more important goal is to study the ergodic property of some infinite di-
mensional system. We study in section 3 a spin system of infinite dimensional Ornstein-
Uhlenbeck α-stable processes perturbed by finite range bounded interaction, i.e. for every
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i ∈ Zd, {
dXi(t) = −Xi(t)dt + dZi(t) + Ui(XΛi

(t))dt

Xi(0) = xi

(1.0.2)

where Xi ∈ Rn with n ∈ N, XΛi
(t) = (Xj(t))j∈Λi

, Ui are some bounded cylinder functions

on C((Rn)Z
d
,R) (continuous space with product topology) and {Zi(t)}i∈Zd are a sequence

of independent α-stable processes (1 < α < 2) on Rn. There are two motivations to study
the ergodic property of the system (1.0.2). The first one is from the work by Zegarlinski
on interacting unbounded spin systems driven by an essentially cylindrical Wiener noise
([13]). The system being studied there is similar to (1.0.2) but replaces the cylindrical
α-stable noises by an essential cylindrical Brownian motion. The other motivation is
related to the (quantum) lattice systems described by stochastic PDE (see section 12.3 in
[6], chapter 17 in [11], and the literatures within). Chapter 17 in [11] essentially studied
the lattice system as the following (see (17.1) there)

dXk =


∑

j∈Zd

akjXj + f(Xk)


 dt + g(Xk)dZk(t), k ∈ Zd (1.0.3)

where akj ∈ R for k, j ∈ Zd, f : R → R satisfying Lipchitz condition, g : R → R and
Zk(t) is some α-stable process. (1.0.3) takes away the Brownian motion and the Poisson
noise from the (17.1) in [11] because the ergodic result there is essentially about this
simplified system (The ergodic results on the lattice system driven by Brownian motion
have been obtained in section 12.3 of [6]).

Let us compare our approach to the ergodicity of (1.0.2) and those in [13] and [11].
(1). As mentioned before, the system in [13] is similar to (1.0.2), only replacing the
α-stable processes by Brownian motions. However, that system is reversible and thus
have an a’priori given unique invariant measure µ (Gibbs measure). In the framework of
L2(µ), the infinitesimal generator of the system is self-adjoint, thus one easily constructs
the reversible dynamics by the theory of spectral decomposition of self-adjoint opera-
tors. Moreover, people can prove the ergodic property in the uniform norm sense by
the tools of functional inequalities, i.e. the logarithmic Sobolev inequality (LSI) together
with spectral gap inequality implies ‖Ptf − µ(f)‖∞ ≤ e−ct‖f − µ(f)‖∞ where Pt is the
semigroup generated by the infinitesimal generator in [13] and c > 0 is some constant
independent of f (chapter 8 of [7], [13]). Unfortunately, the system (1.0.2) is nonsym-
metric and thus not reversible, so the tools of spectral decomposition for self-adjoint are
not applicable. On the other hand, we are not able to prove some functional inequalities
such as LSI for the system (1.0.2), thus the procedure of proving ergodic result in [13]
will not wrok. Instead, we prove that our system is ergodic pointwisely in some large
subset of (Rn)Z

d
by gradient estimate and some delicate analysis on space and time. (2).

The interactions in (1.0.3) are linear and unbounded, while those in our system (1.0.2)
are bounded and can be nonlinear. The existence theorem of (1.0.3) is proven under the
framework of stochastic PDE, in which some regular conditions has to be assumed (see
the equation (17.3) and (iii) of Theorem 17.8 in [11]). To obtain its ergodic property, one
has to assume that A and f are sufficiently dissipative (see (i) of Theorem 17.10). For the
system (1.0.2), we will study it by the Kolmogorov equation, and construct an infinite
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dimensional semigroup from the equation in the same way as in [7] (chapter 8). As will
be seen in Theorem IV, as the interactions U are sufficiently small, we can obtain some
ergodic result. Finally, we point out that our ergodicity result is on the level of semigroup
(see Theorem IV) not in the sense that the transition probabilities converge to unique
invariant measure. (It seems hard to obtain some invariant measures for our semigroup.)

The organization of the paper is as follows. In section 2, by the analytic approach,
we study the Ornstein-Uhlenbeck α-stable processes and prove that the system is ergodic
if the perturbation is small (Theorem I, II and Corollary 2.2.1). In section 3, we first
construct an infinite dimensional semigroup Pt from (1.0.2) by some approximation pro-
cedure (Theorem III), then prove Pt is pointwisely ergodic (Theorem IV). Section 2 can
be read independent of section 3, while the latter will only apply lemma 2.1.1 and lemma
2.1.2 in the proof of (3.2.6). The last section is a formal but simple derivation of the
formula (2.1.4).

Acknowledgements: The two authors both warmly thank Prof. Sergio Albeverio at
Bonn University for his reading the paper and encouragements. L. Xu also thanks the
hospitality of Hausdorff Institute for Mathematics in Bonn and his colleagues there during
visiting Bonn university.

2 Perturbed Ornstein-Uhlenbeck α-stable Processes

(1 < α < 2)

For simplicity, we only study the 1-dimensional system in this section. But one can obtain
the same results for the high dimensional systems by the same arguments. The following
notations will be frequently used in this section.

• ∂α
x : It is the generator of the α-stable process (see (2.1.2) for more details).

• Ck
b (R):={f : R → R; f , f

′
, . . . , f (k) are all continuous and bounded}

• C∞(R):={f ∈ Cb(R); f vanishes at infinity}
• Ck

∞(R) = {f ∈ Ck
b (R); f, f

′
, . . . , f (k) ∈ C∞(R)}.

• Ck
0 (R) = {f ∈ Ck

b (R); f is compactly supported}.
• ||f || ≡ supx |f(x)| - the uniform norm.

2.1 Preliminary: Ornstein-Uhlenbeck α-stable Processes

Ornstein-Uhlenbeck α-stable processes is described by the following stochastic differential
equation (SDE) {

dXt = −Xtdt + dZt

X0 = x
(2.1.1)
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where Zt (0 < α < 2) is an α-stable process with infinitesimal generator ∂α
x (fractional

Laplacian, [1]) defined by

∂α
x f(x) =

1

Cα

∫

R\{0}

f(y + x)− f(x)

|y|α+1
dy, Cα = −

∫

R\{0}
(cosy − 1)

dy

|y|1+α
. (2.1.2)

Moreover, if f has Fourier transform defined by

f̂(λ) =
1√
2π

∫

R

f(x)e−iλxdx, f(x) =
1√
2π

∫

R

f̂(λ)eiλxdλ,

then

∂α
x f(x) =

1√
2π

∫

R

|λ|αf̂(λ)eiλxdλ.

It is well known that the corresponding Kolmogorov backward equation of (2.1.1) is

{
∂tu = ∂α

x u− x∂xu

u(0) = f
(2.1.3)

where f is the initial data. If the solution of (2.1.3) is given, we can recover from it
the information of stochastic process of (2.1.1). The following lemma gives the formula
for the solution of (2.1.3), which will also be formally derived in a simple way in the
appendix.

Lemma 2.1.1. (Formula for the solution of (2.1.3))
Suppose f ∈ C∞(R), then

u(t) =

∫

R

p

(
1− e−αt

α
; e−tx, y

)
f(y)dy (2.1.4)

is a solution of (2.1.3) where p(t; x, y) is the transition probability density of the stochastic
processes {Zt}t≥0. ∀f ∈ C∞(R), set

Stf(x) =

∫

R

p

(
1− e−αt

α
; e−tx, y

)
f(y)dy,

St is a Markov semigroup on C∞(R).

Proof. It is well known that

p(t; x, y) =
1√
2π

∫

R

1√
2π

e−t|λ|α+i(x−y)λdλ (2.1.5)

and
∂tp(t; x, y) = ∂α

x p(t; x, y) = ∂α
y p(t; x, y). (2.1.6)

Setting s(t) = 1−e−αt

α
, z(t, x) = e−tx, and noticing the following facts

z∂zp(s; z, y) = x∂xp(s; e−tx, y), e−αt ∂α
z p(s; z, y) = ∂α

x p(s; e−tx, y),

∂tp(s; z, y) = ∂sp(s; z, y)e−αt − z∂zp(s; z, y),
(2.1.7)
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one can easily have

∂t

∫

R

p(s; z, y)f(y)dy = ∂α
x

∫

R

p(s; e−tx, y)f(y)dy − x∂x

∫

R

p(s; e−tx, y)f(y)dy. (2.1.8)

To prove the semigroup property, it is sufficient to prove
∫

R

p

(
1− e−αs

α
; e−sx, z

)
p

(
1− e−αt

α
; e−tz, y

)
dz = p

(
1− e−α(s+t)

α
; e−(s+t)x, y

)
(2.1.9)

Indeed, from (2.1.5) and applying Parseval’s Theorem on Fourier transform, we have

p

(
1− e−αt

α
; e−tx, y

)
=

1√
2π

∫

R

1√
2π

exp{−1− e−αt

α
|λ|α + i(e−tx− y)λ}dλ

=
1√
2π

∫

R

1√
2π

exp{−1− e−αt

α
eαt|λ|α − ietyλ}eteiλxdλ,

(2.1.10)

and
∫

R

p

(
1− e−αs

α
; e−sx, z

)
p

(
1− e−αt

α
; e−tz, y

)
dz

=

∫

R

1√
2π

exp{−1− e−αs

α
|λ|α − ie−sxλ} 1√

2π
exp{−1− e−αt

α
|etλ|α − iyetλ}etdλ

=
1√
2π

∫

R

1√
2π

exp{−1− e−α(s+t)

α
|λ|α + i(e−s−tx− y)λ}dλ

= p

(
1− e−α(s+t)

α
; e−(s+t)x, y

)

(2.1.11)

Moreover, by the heat kernel estimate of p(t; x, y) in [5]

p(t; x, y) ≤ Kt

|y − x|1+α
(2.1.12)

with some constant K ∈ (0,∞), we have

|Stf(x)| ≤
∫

|y|≤B

p

(
1− e−αt

α
; e−tx, y

)
|f(y)|dy +

∫

|y|>B

p

(
1− e−αt

α
; e−tx, y

)
|f(y)|dy

≤ sup
|y|>B

|f(y)|+
∫

|y|≤B

K

|y − e−tx|1+α
dy||f ||

(2.1.13)

where B > 0 is sufficiently large. From (2.1.13) and the fact f ∈ C∞(R), it is easy to
claim that

lim
x→∞

Stf(x) = 0, (2.1.14)

thus Stf ∈ C∞(R). It is easy to check St1 = 1 and that Stf ≥ 0 if f ≥ 0. Thus (St)t≥0

is a Markov semigroup on C∞(R).
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Lemma 2.1.2. (Gradient estimates for Stf) ∀ f ∈ C1
∞(R),

||∂xStf || ≤ e−t||∂xf || (2.1.15)

||∂xStf || ≤ Ĉe−t

t
1
α ∧ 1

||f || (2.1.16)

where Ĉ is some constant independent of f .

Proof. Recall

Stf(x) =
1

2π

∞∫

−∞

∞∫

−∞

exp{−1− e−αt

α
|λ|α + ie−tλx− iλy}dλf(y)dy, (2.1.17)

we have

|∂xStf(x)| = | 1

2π

∞∫

−∞

∞∫

−∞

∂x exp{−1− e−αt

α
|λ|α + ie−tλx− iλy}dλf(y)dy|

= |e−t 1

2π

∞∫

−∞

∞∫

−∞

∂y exp{−1− e−αt

α
|λ|α + ie−tλx− iλy}dλf(y)dy|

= |e−t 1

2π

∞∫

−∞

∞∫

−∞

exp{−1− e−αt

α
|λ|α + ie−tλx− iλy}dλ∂yf(y)dy|

≤ e−t||∂xf ||,

(2.1.18)

and

|∂xStf(x)| = |
∞∫

−∞

∞∫

−∞

∂x exp{−1− e−αt

α
|λ|α + ie−tλx− iλy}dλf(y)dy|

≤ e−t

∞∫

−∞

|
∞∫

−∞

λ exp{−1− e−αt

α
|λ|α + ie−tλx− iλy}dλ|dy · ||f ||

=
e−t

(1−e−αt

α
)

1
α

∞∫

−∞

|
∞∫

−∞

λ
′
exp{−|λ′|α − iλ

′
y
′}dλ

′|dy
′ · ||f ||

≤ e−tC

t
1
α ∧ 1

||f ||

(2.1.19)

where λ
′
= (1−e−αt

α
)

1
α , y

′
= (1−e−αt

α
)−

1
α (y−e−tx) and

∞∫
−∞

|
∞∫
−∞

λ
′
exp{−|λ′|α−iλ

′
y
′}dλ

′|dy
′
<

∞ is easy to check.
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2.2 Description and Main results of finite dimensional systems

In this section, we study the perturbed Ornstein-Uhlenbeck α-stable system described
by the SDE (1.0.1) whose Kolmogorov backward equation is well known as follows (cf.
chapter 5, [3]) {

∂tu = ∂α
x u− x∂xu + b(x)∂xu

u(0) = f
(2.2.1)

where b ∈ C∞(R). Formally the mild solution of the above equation is

u(t, x) = Stf(x) +

t∫

0

St−s[b∂xu(s)](x)ds. (2.2.2)

Define
L1 = ∂α

x − x∂x + b(x)∂x,

the main results of section 2 are:

Theorem I. Suppose 1 < α < 2. The operator (L1, C
∞
0 (R)) is closable in C∞(R),

and the closed extension generates a Markov semigroup {Pt}t≥0 on C∞(R). Moreover,
∀f ∈ C2

∞(R), Ptf is the unique mild solution of (2.2.1) and also its classical solution.

Theorem II. Suppose that {Pt}t≥0 is the semigroup in Theorem I and that C1 = Ĉ · ||b|| ·
Γ(1− 1

α
) with Ĉ being the constant in lemma 2.1.2 and Γ being the Gamma-function. If

||b|| is sufficiently small so that

C1(1 + [
α

α− 1
])eC1 < e− 1,

then, ∀ f ∈ C∞(R), there exists a constant c (independent of x) such that

lim
t→∞

Ptf(x) = c .

Corollary 2.2.1. Theorem II implies that there exists some probability measure µ such
that

lim
t→∞

p(t; x, dy) → µ,

where p(t; x, dy) is the transition probability of the system (1.0.1). Moreover, the system
(1.0.2) is strongly mixing.

Remark 2.2.2. It is easy to see that our result implies lim
T→∞

1
T

∫ T

0
p(t; x, dy)dt → µ weakly,

which is the sense of the usual ergodic property.

2.3 Lemmas

Lemma 2.3.1. If f ∈ C1
∞(R), then (2.2.1) has a unique mild solution u with u(t) ∈

C∞(R) for every 0 ≤ t < ∞. Moreover, u is also a classical solution.

7



Proof. We apply Banach fixed point theorem. For some T > 0 (to be selected later),
define

C1
T = {u ∈ C([0, T ]; C1(R)) : u(0) = f, sup

0≤t≤T
||u(t)||C1 < ∞}

and
||u||T = sup

0≤t≤T
||u(t)||C1 ,

(C1
T , || · ||T ) is obviously a Banach space. We consider the map F :

F [u](t) = Stf +

t∫

0

St−s[b∂xu(s)]ds (0 ≤ t ≤ T ) (2.3.1)

Point 1 F is a map from C1
T to C1

T : ∀ u ∈ C1
T , one has

||F [u](t)|| ≤ ||f ||+
t∫

0

||St−s(b∂xu(s)||ds ≤ ||f ||C1 + ||b||
t∫

0

||u(s)||C1ds (2.3.2)

and has by applying (2.1.15) and (2.1.16)

||∂xF [u](t)|| ≤ e−t||∂xf ||+
t∫

0

e−(t−s)Ĉ

(t− s)
1
α ∧ 1

||b|| · ||∂xu(s)||ds

≤ e−t||f ||C1 + ||b||
t∫

0

e−(t−s)Ĉ

(t− s)
1
α ∧ 1

||u(s)||C1ds

(2.3.3)

Hence, for 0 ≤ t ≤ T ,

||F [u](t)||C1 ≤
(

2 + T · ||b||+ sup
0≤t≤T

t∫

0

e−(t−s)Ĉ

(t− s)
1
α ∧ 1

ds||b||
)

sup
0≤t≤T

||u(t)||C1 (2.3.4)

Point 2 F is a contraction map: ∀w, v ∈ C1
T , by the same arguments as in (2.3.2) and in

(2.3.3) respectively, we have

||F [w](t)−F [v](t)|| ≤ ||b||
t∫

0

||w(s)− v(s)||C1ds ≤ ||b||T sup
0≤t≤T

||w(t)− v(t)||C1 (2.3.5)

and

||∂xF [w](t)− ∂xF [v](t)|| ≤ ||b|| sup
0≤t≤T

t∫

0

e−(t−s)Ĉ

(t− s)
1
α ∧ 1

ds sup
0≤t≤T

||w(t)− v(t)||C1 . (2.3.6)

Thus

||∂xF [w](t)− ∂xF [v](t)||C1 ≤ ||b||
(

T + sup
0≤t≤T

t∫

0

e−(t−s)Ĉ

(t− s)
1
α ∧ 1

ds

)
sup

0≤t≤T
||w(t)− v(t)||C1

(2.3.7)
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When T is small enough,

||b||
(

T + sup
0≤t≤T

t∫

0

e−(t−s)Ĉ

(t− s)
1
α ∧ 1

ds

)
< 1.

Combining Point 1 and Point 2, and applying Banach fixed point theorem, we have a
unique u ∈ C1

T such that

u(t) = Stf +

t∫

0

St−s[b∂xu(s)]ds (0 ≤ t ≤ T ). (2.3.8)

By exactly the same procedure as the above on the dynamics at [T, 2T ], [2T, 3T ], . . . , we
finally obtain a unique global mild solution on C([0,∞); C1(R)).

From the facts of f, b ∈ C∞(R), and (2.3.9) (which will be proven in the next lemma),
we have u(t) ∈ C∞(R), by applying the same argument as proving (2.1.14) on the mild

solution u(t) = Stf +
t∫

0

St−s[b∂xu(s)]ds. It is easy to check this mild solution is also a

classical solution.

Lemma 2.3.2. (Gradient estimate for u(t)) Suppose that u and f are the same as
in Lemma 2.3.1. There exists some constant A > 0, independent of f and u, such that

||∂xu(t)|| ≤ e−tAt+1||∂xf ||. (2.3.9)

Moreover, if ||b|| ≤ 1

ĈΓ(1− 1
α

)
, then

||∂xu(t)|| ≤ eC2e−(1−C2)t||∂xf || (2.3.10)

where Ĉ is the constant in Lemma 2.1.2, C2 = log{1 + C1(1 + [ α
α−1

])eC1} and C1 =

Ĉ · ||b|| · Γ(1− 1
α
) .

Remark 2.3.3. When ||b|| is small, C1 and C2 are also small, and thus ||∂xu(t)|| decays
exponentially.

Proof. Noticing (2.2.2), (2.1.15) and (2.1.16), one has

||∂xu(t)|| ≤ e−t||∂xf ||+
t∫

0

e−(t−s)Ĉ · ||b||
(t− s)

1
α ∧ 1

||∂xu(s)||ds (2.3.11)

Set v(t) = et∂xu(t), (2.3.11) is equivalent to

||v(t)|| ≤ ||∂xf ||+
t∫

0

Ĉ · ||b||
(t− s)

1
α

||v(s)||ds. (2.3.12)
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Iterating (2.3.12), we have

||v(t)|| ≤ ||∂xf ||+
t∫

0

Ĉ · ||b||
(t− s)

1
α

||v(s)||ds ≤
∑

k≥0

(Ĉ · ||b||)k

t∫

0

dt1

(t− t1)
1
α

. . .

tk−1∫

0

dtk

(tk−1 − tk)
1
α

||∂xf ||

=
∑

k≥0

Ck
1

Γ(1 + k(1− 1
α
))

tk(1− 1
α

)||∂xf || (where C1 = Ĉ · ||b|| · Γ(1− 1

α
))

(2.3.13)

since

t∫

0

dt1

(t− t1)
1
α

. . .

tk−1∫

0

dtk

(tk−1 − tk)
1
α

=

t∫

0

dt1

(t− t1)
1
α

. . .

tk−2∫

0

t
1− 1

α
k−1 dtk−1

(tk−2 − tk−1)
1
α

1∫

0

dsk

(1− sk)
1
α

=

t∫

0

dt1

(t− t1)
1
α

. . .

tk−3∫

0

t
2(1− 1

α
)

k−2 dtk−2

(tk−3 − tk−2)
1
α

1∫

0

s
1− 1

α
k−1 dsk−1

(1− sk−1)
1
α

B(1, 1− 1

α
)

=

t∫

0

dt1

(t− t1)
1
α

. . .

tk−4∫

0

t
3(1− 1

α
)

k−3 dtk−3

(tk−4 − tk−3)
1
α

1∫

0

s
2(1− 1

α
)

k−2 dsk−2

(1− sk−2)
1
α

B(1 + 1− 1

α
, 1− 1

α
)B(1, 1− 1

α
)

= tk(1− 1
α

)

k−1∏
i=0

B(1 + i(1− 1

α
), 1− 1

α
)

= tk(1− 1
α

) Γk(1− 1
α
)

Γ(1 + k(1− 1
α
))

(noticing B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
))

(2.3.14)

Noticing the facts of 1− 1
α

> 0, Γ(z + 1) = zΓ(z), and Γ(α) ≥ Γ(1) = 1, we have

Γ(1 + k(1− 1

α
)) = (k − k

α
)(k − k

α
− 1) . . . (k − k

α
− [k − k

α
] + 1)Γ(k − k

α
− [k − k

α
] + 1)

≥ [k − k

α
]!

(2.3.15)

and have by combining (2.3.13) and (2.3.15)

||v(t)|| ≤
∑

k≥0

Ck
1

[k − k
α
]!
tk(1− 1

α
)||∂xf || (0 ≤ t ≤ 1). (2.3.16)

Set
A1 = (C1 + 1)

α
α−1 , A = 1 + (1 + [

α

α− 1
])A1e

A1 ,

10



it is easy to see, for every t ∈ [0, 1],

||v(t)|| ≤
∑

k≥0

Ck
1

[k − k
α
]!
tk(1− 1

α
)||∂xf ||

≤ ||∂xf ||+
∑

k≥1

A
[k(1− 1

α
)]+1

1

[k − k
α
]!

t[k(1− 1
α

)]||∂xf ||

≤ ||∂xf ||+ (1 + [
α

α− 1
])A1e

A1t||∂xf ||

(2.3.17)

and
||∂xu(t)|| = e−t||∂xv(t)|| ≤ e−t{1 + (1 + [

α

α− 1
])A1e

A1t}||∂xf ||. (2.3.18)

Moreover, one can apply the above argument on 1 ≤ t ≤ 2, . . . , n ≤ t ≤ n + 1, . . . ,
obtaining

||∂xu(t)|| ≤ e−(t−1){1 + (1 + [
α

α− 1
])A1e

A1(t−1)}||∂xu(1)||

≤ e−(t−1){1 + (1 + [
α

α− 1
])A1e

A1(t−1)}e−1A||∂xf || (1 ≤ t ≤ 2),
(2.3.19)

and for every t ∈ [n, n + 1] (n ∈ N),

||∂xu(t)|| ≤ e−(t−n){1 + (1 + [
α

α− 1
])A1e

A1(t−n)}(e−1A)n||∂xf ||
≤ e−tAt+1||∂xf ||.

(2.3.20)

Let us prove (2.3.10). Noticing the fact C1 ≤ 1 and (2.3.16), it is easy to see, on 0 ≤ t ≤ 1,

||v(t)|| ≤ ||∂xf ||+ C1

∑

k≥1

C
[k− k

α
]

1

[k − k
α
]!
t[k−

k
α

]||∂xf ||

≤ ||∂xf ||+ C1(1 + [
α

α− 1
])eC1t||∂xf ||

= ||∂xf ||+ A2e
C1t||∂xf || (where A2 = C1(1 + [

α

α− 1
])),

(2.3.21)

and
||∂xu(t)|| = e−t||v(t)|| ≤ e−t(1 + A2e

C1t)||∂xf || (∀ 0 ≤ t ≤ 1). (2.3.22)

By the same argument, inductively, one has

||∂xu(t)|| ≤ e−(t−n)(1 + A2e
C1(t−n))e−n(1 + A2e

C1)n||∂xf ||
≤ e−t(1 + A2e

C1)(1 + A2e
C1)n||∂xf ||

≤ e−teC2eC2t||∂xf || (where C2 = log(1 + A2e
C1))

= eC2e−(1−C2)t||∂xf ||

(2.3.23)

on every n ≤ t ≤ n + 1 (n ∈ N).

Lemma 2.3.4. (Hille-Yosida Theorem for Markov preoperator [8])
The operator (L1, C

∞
0 (R)) satisfies the following three conditions:

11



• C∞
0 (R) is dense in C∞(R).

• L1 satisfies maximum principle on C∞
0 (R).

• ∀f ∈ C∞
0 (R), ∃ g ∈ C∞(R) solving the the equation (λ− L1)g = f .

Then (L1, C
∞
0 (R)) is closable in C∞(R) and there exists a Markov semigroup Pt (t ≥ 0)

generated by its closure (L1, Dom(L1)).

Proof. It is well known that the three conditions in the lemma implies the closability of
the infinitesimal generator ([8]). We only need to check them for L1. The first condition
is obvious. ∀h ∈ C∞

0 (R), suppose there exists some x0 such that h(x0) = min
x∈R

h(x).

(∂α
x h)(x0) = lim

ε↓0
1

Cα

∫

{|y−x0|>ε}

h(y)− h(x0)

|y − x0|α+1
dy ≥ 0 (2.3.24)

since h(y)− h(x0) ≥ 0 for all y ∈ R. Define g =
∞∫
0

e−λtu(t)dt, where u(t) is the classical

solution of (2.2.1) with initial data f . g uniformly converges if λ > λ0 and λ0 > 0 is large
enough, since

||u(t)|| ≤ ||f ||+ ||b||
t∫

0

e−sAs+1ds||∂xf || = ||f ||+ ||b||((
A
e
)t − 1)A

log A
e

||∂xf || (2.3.25)

from (2.3.9) and (2.2.2). Hence

L1g =

∞∫

0

e−λtL1u(t)dt =

∞∫

0

e−λt∂tu(t)dt = −f + λg. (2.3.26)

Moreover, it is obvious to have g ∈ C∞(R) since u(t) ∈ C∞(R).

Lemma 2.3.5. (Ergodicity for St) If f ∈ C1
∞(R), then

lim
t→∞

Stf(x) = c ∀x ∈ R (2.3.27)

where c is a constant independent of x.

Proof. ∀ t2 > t1 > 0, we have, with some A > 0,

|St2f(0)− St1f(0)| ≤ [

∫

y:|y|≤A

|p
(

1− e−αt2

α
; 0, y

)
− p

(
1− e−αt1

α
; 0, y

)
|dy

+

∫

y:|y|≥A

p

(
1− e−αt2

α
; 0, y

)
dy +

∫

y:|y|≥A

p

(
1− e−αt1

α
; 0, y

)
dy] · ||f ||

= [I1 + I2 + I3] · ||f ||.
(2.3.28)
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For any fixed A, by Lebesgue dominated convergence theorem,

I1 → 0, as t1, t2 →∞. (2.3.29)

According to the heat kernel estimate (2.1.12), ∀ t > 1,

∫

y:|y|≥A

p

(
1− e−αt1

α
; 0, y

)
dy ≤

∫

y:|y|≥A

K

|y|α+1
dy → 0, as A →∞ (2.3.30)

Combine (2.3.29) and (2.3.30), we obtain

c := lim
t→∞

Stf(0). (2.3.31)

∀ x ∈ R, one has

|Stf(x)− c| ≤ |Stf(x)− Stf(0)|+ |Stf(0)− c| ≤ |
x∫

0

∂zStf(z)dz|+ |Stf(0)− c|

(2.1.15)

≤ |Stf(0)− c|+ |x| · e−t||∂xf || → 0 (t →∞).

(2.3.32)

2.4 Proof of Theorems I, II and Corollary 2.2.1

Proof of Theorem I: According to the classical semigroup theory, ∀ f ∈ C2
∞(R) ⊂

Dom(L1), Ptf uniquely solves (2.2.1). From Lemma 2.3.1, we define another semigroup
P̃t (t ≥ 0) by

P̃tf = u(t) ∀f ∈ C2
∞(R).

By the uniqueness of the solution, it is obvious that

Ptf = P̃tf ∀f ∈ C2
∞(R) (2.4.1)

Since C2
∞(R) is dense in C∞(R) under uniform norm, we can extend (2.4.1) to C∞(R),

i.e.
Ptf = P̃tf ∀f ∈ C∞(R). (2.4.2)

Proof of Theorem II: We prove the theorem in the case of f ∈ C1
∞(R), and the case of

f ∈ C∞(R) can be done in a classical but simple approximate procedure. ∀ t2 ≥ t1 > 0,
it is easy to see

|Pt2f(0)−Pt1f(0)| ≤ |St2f(0)−St1f(0)|+ |
t2∫

0

St2−s[b∂xPsf ](0)ds−
t1∫

0

St1−s[b∂xPsf ](0)ds|

(2.4.3)

13



For the second term on the right hand side of (2.4.3), one has, with some B > 0

|
t2∫

0

St2−s[b∂xPsf ](0)ds−
t1∫

0

St1−s[b∂xPsf ](0)ds|

≤
B∫

0

|St2−s[b∂xPsf ](0)ds− St1−s[b∂xPsf ](0)|ds + |
t2∫

B

St2−s[b∂xPsf ](0)ds|

+ |
t1∫

B

St1−s[b∂xPsf ](0)ds|

= I1 + I2 + I3

(2.4.4)

By (2.3.9) and (2.3.28), for any fixed B > 0, we have

I1 → 0, as t1, t2 →∞. (2.4.5)

For I2 (I3 can be treated by the same arguments), as t2, B →∞,

I2 ≤
t2∫

B

||St2−s[b∂xPsf ]||ds ≤
t2∫

B

||b|| · ||∂xPsf ||ds (St is contraction)

(2.3.10)

≤
t2∫

B

||b||eC2e−(1−C2)s||∂xf ||ds → 0.

(2.4.6)

Hence, from lemma 2.3.5 and the above estimates on I1, I2, I3, it is obvious to have

lim
t→∞

Ptf(0) := c (a constant).

∀ x ∈ R, using the similar argument for obtaining (2.3.32) and (2.3.10), we have

lim
t→∞

Ptf(x) = c.

Proof of Corollary 2.2.1: It is easy to check that the solution to (1.0.1) satisfies

Xt = e−tx−
∫ t

0

e−(t−s)dZs +

∫ t

0

e−(t−s)b(Xs)ds, (2.4.7)

which implies

E|Xt| ≤ |x|+ E|
∫ t

0

et−sdZs|+ ||b||∞(1− e−t)

≤ |x|+ E|Z1| ·
∫ t

0

e−(t−s)s1/α−1ds + ||b||∞

14



since α-stable process is a stationary process with independent increments and E|Zt −
Zs| = |t− s|1/αE|Z1|, and thus

sup
0≤t<∞

E|Xt| ≤ |x|+ C + ||b||∞

where C > 0 is some constant independent of x. Hence, the transition probability family
of the system {p(t; x, dy)}t≥0 is tight, according to Prohorov theorem, there exists a
measure µx depending on x and subsequence {tk}k∈N with tk →∞ such that

p(tk; x, dy) → µx weakly.

Noticing Theorem II, for any given φ ∈ C∞(R), we have

|Ptφ(x)− µx(φ)| ≤ |Ptφ(x)− Ptnφ(x)|+ |Ptnφ(x)− µx(φ)| → 0, as t, tn →∞, (2.4.8)

i.e. p(t; x, dy) → µx as t →∞, which also easily implies that µx is an invariant measure
of the system.
Denote I as the set of the all invariant measures for (1.0.1). Given any two invariant
measures µ1, µ2 ∈ I, then for every φ ∈ C∞(R),

|µ1(φ)− µ2(φ)| = lim
t→∞

|
∫ ∫

φ(z)p(t; x, dz)µ1(dx)−
∫ ∫

φ(z)p(t; y, dz)µ2(dy)|

≤ lim
t→∞

∫
|
∫

φ(z)p(t; x, dz)− φ(z)p(t; y, dz)|µ1(dx)µ2(dy)

=

∫
lim
t→∞

|
∫

φ(z)p(t; x, dz)− φ(z)p(t; y, dz)|µ1(dx)µ2(dy)

= 0. (noticing Theorem II)

So µ1 = µ2, which means that I only includes one element.
As for the strong mixing property of (1.0.2), according to Corollary 3.4.3 in [6], the above
convergence of the transition probabilities implies the system (1.0.1) is strongly mixing.

3 Infinite Dimensional Interacting α-stable Systems

We will only study our system in the configuration space of (R)Z
d
, but our approaches

and results are also true for (Rn)Z
d
. We first list the notations as follows, which will be

frequently used in this section.

• Configuration Space Ω: Ω = RZd
. ∀ x ∈ Ω, x = (xi)i∈Zd , xi ∈ R;∀ Λ ⊂ Zd, xΛ =

(xi)i∈Λ.

• Lattice Γ: Γ = Zd. ∃ {ΓN ; N ∈ N} such that ΓN ⊂⊂ Zd and lim
N↑∞

ΓN = Zd. Given

a cube Λ ⊂⊂ Zd centred at 0, Λi := {i + j; j ∈ Λ} for i ∈ Zd and ΓΛ
N = {i ∈

Zd; dist(i, ΓN) < diam(Λ)} where dist(i, j) =
∑

1≤k≤d |ik − jk| ∀ i, j ∈ Zd

• Local Functions Spaces D: For any Λ ⊂⊂ Zd, DΛ = {f : f is a bounded con-
tinuous function depending on the configurations in Λ and f vanishes at ∞.}.
D =

⋃
Λ⊂⊂Zd

DΛ. Dk = {f ∈ D; f is Ck}. We use Λ(f) to denote the localization set

of the local function f , i.e. the smallest set Λ
′ ⊂ Zd such that f ∈ DΛ′ .
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• Potential U : In this paper, U = {UΛi
∈ DΛi

; i ∈ Zd}. A typical example for U is
UΛi

=
∑
X3i

φX where φX ∈ V = {φ; φ is local function such that diam(Λ(φ)) < R}
where R < ∞ is some constant and diam(Λ) = max{d(i, j) : i, j ∈ Λ}.

• Infinite Dimensional Infinitesimal Generator : L =
∑

i∈Zd

[∂α
i − xi∂i] +

∑
i∈Zd

UΛi
(x)∂i

where ∂i = ∂xi
and ∂α

i = ∂α
xi

. We also simply denote ∂ij = ∂xi
∂xj

. For simplicity,
we drop Λ in the potentials and write Ui = UΛi

. We will approximate L by the
operators as follows:

LN =
∑

i∈Zd

[∂α
i − xi∂i] +

∑
i∈ΓN

Ui(x)∂i.

Note that Ui is a function depending on xΛi
, not just xi.

• Semigroups: {St}t≥0 is the semigroup generated by product Ornstein-Uhlenbeck
α-stable operator ∑

i∈Zd

[∂α
i − xi∂i].

{PN
t }t≥0 and {Pt}t≥0 are the semigroup generated by LN and L respectively.

• Norms: ||.|| in the following context is the uniform norm. The |||.||| is defined by

|||f ||| =
∑

i∈Zd

||∂if ||, ∀ f ∈ D1.

Formally the Kolmogorov backward equation of the system (1.0.2) is




∂tu =
∑

i∈Zd

[∂α
i − xi∂i]u +

∑
i∈Zd

UΛi
(x)∂iu

u(0) = f
(3.0.9)

which is an infinite dimensional equation and hard to be solved directly. Alternatively,
we consider the infinitesimal generator L from which a Markov semigroup may be con-
structed. One can understand the properties of the systems (1.0.2) and (3.0.9) by studying
the Markov semigroup. Because we can extend the conclusions about the semigroup on
D∞ to C∞(Ω) by the fact that D∞ is dense in C∞(Ω) under uniform norm, we only
construct the semigroup and prove its ergodic property on D∞. The main results of this
section are the following two theorems.

Theorem III. If sup
i
|||Ui|||+ sup

i
||Ui|| < ∞, then ∀f ∈ D∞, we have

lim
N→∞

PN
t f = Ptf under uniform norm. (3.0.10)

Theorem IV. Suppose that

γ :=
∑

i∈Zd

||∂iUi||, β := Ĉ
∑

i∈Zd

||Ui||, η := sup
j
|||Uj|||
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are all finite, where Ĉ is the constant in lemma 2.1.2. Set

|i| =
d∑

k=1

|ik| (i ∈ Zd), BR,ρ = {x : |xi| ≤ R|i|ρ} (R > 0, ρ > 0), B =
⋃

R>0,ρ>0

BR,ρ.

If
αβ

α− 1
< e−(η+γ), 1− η − γ − θ > 0

with θ = log(1 + αβeη+γ

α−1−αβeη+γ ), then ∀ x ∈ B, we have

lim
t→∞

Ptf(x) = a (3.0.11)

where a is some constant independent of x.

3.1 Proof of Theorem III

Lemma 3.1.1. For any LN , there exists a Markov semigroup PN
t satisfying

∂tP
N
t f = LNPN

t f (3.1.1)

where f ∈ D∞ such that Λ(f) ⊂ ΓN . Moreover,

PN
t f = Stf +

t∫

0

St−s

∑
i∈ΓN

Ui∂iP
N
s fds (3.1.2)

where St is the trivial product semigroup generated by
∑

i∈Zd

(∂α
i − xi∂i).

Proof. By the same argument as proving Theorem I.

Proof of Theorem III: The proof uses the similar arguments as in chapter 8 of [7]. It
is sufficient to check that {PN

t }N is a Cauchy sequence under uniform norm. ∀ ΓM ⊃
ΓN ⊃ Λ(f), it is easy to check

||PM
t f − PN

t f || ≤ ||
t∫

0

d

ds
PM

t−sP
N
s fds|| ≤ ||

t∫

0

PM
t−s(LM − LN)PN

s fds||

≤
t∫

0

||(LM − LN)PN
s f ||ds ≤

t∫

0

∑

ΓM\ΓN

||Ui|| · ||∂iP
N
s f ||ds

(3.1.3)

By the easy fact d
ds

PN
t−s∂iP

N
s f = PN

t−s[∂i,LN ]PN
s f (where [∂i,LN ] = ∂iLN − LN∂i =

−∑
j∈Zd δij∂j +

∑
j∈ΓN

∂iUj∂jf) and Markov property of PN
t , we have

||∂iP
N
t f || ≤ ||∂if ||+

t∫

0

||[∂i,LN ]PN
s f ||ds

≤ ||∂if ||+
t∫

0

∑

j∈Zd

(δij + ||∂iUj||) · ||∂jP
N
s f ||ds.

(3.1.4)
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Denote cij = ||∂iUj|| and eij(t) =
∑
n≥0

tn

n!
(c + δ)n

ij, then c and e(t) are both operators in l1

with norm

||c||l1 ≤ sup
j
|||Uj|||, ||e(t)||l1 ≤ exp{(||c||l1 + 1)t} ≤ exp{(sup

j
|||Uj|||+ 1)t} (3.1.5)

(Indeed, | ∑
i∈Zd

∑
j∈Zd

eij(t)αj| ≤
∑
n≥0

tn

n!
(||c||l1+1)n

∑
j |αj| ≤ exp{(supj |||Uj|||+1)t}∑

j |αj|.)
Iterating (3.1.4), we have

||∂iP
N
t f || ≤

∑

j∈Zd

eij(t)||∂jf ||

|||PN
t f ||| ≤ exp{(||c||l1 + 1)t}|||f ||| ≤ exp{(sup

j
|||Uj|||+ 1)t}|||f |||,

(3.1.6)

and have by noticing (3.1.5)

||PM
t f − PN

t f || ≤
t∫

0

∑

i∈ΓM\ΓN

||Ui||
∑

j∈Zd

eij(t)||∂jf ||ds

≤ sup
i
||Ui||

t∫

0

∑

i∈ΓM\ΓN

∑

j∈Zd

eij(t)||∂jf ||ds → 0 (N,M →∞)

(3.1.7)

3.2 Proof of Theorem IV

Lemma 3.2.1. (Finite Speed of Propagation)
Given any approximate semigroup PN

t and f ∈ D∞, ∀ i /∈ Λ(f), then

||∂iP
N
t f || ≤ tNi(1 + η)Ni

Ni!
e(η+1)t|||f ||| (3.2.1)

where Ni = [dist(i,Λ(f))
diam(Λ)

] and η is the same as in Theorem IV. Moreover, for any A > 0,
there exists some B ≥ 1 such that, when Ni > Bt, we have

||∂iP
N
t f || ≤ e−At−ANi|||f ||| (3.2.2)

Proof. The arguments are similar to those of [7] (pp 88-90). Recall the equation (3.1.4)

||∂iP
N
t f || ≤ ||∂if ||+

t∫

0

∑

j∈Zd

(δij + ||∂iUj||) · ||∂jP
N
s f ||ds

≤
Ni−1∑
n=0

tn

n!
(c + δ)n

ij||∂jf ||+
∞∑

n=Ni

tn

n!
(c + δ)n

ij||∂jf ||.
(3.2.3)

Since Λ(Ui) = Λi, one can check that ([7], pp 90)

Ni−1∑
n=0

tn

n!
(c + δ)n

ij||∂jf || = 0,
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thus

||∂iP
N
t f || ≤

∞∑
n=Ni

tn

n!
(c + δ)n

ij||∂jf || ≤ tNi(1 + η)Ni

Ni!
e(1+η)t|||f ||| (3.2.4)

where η = ||c||l1 = supj |||Uj|||. Choosing B ≥ 1 such that

2− logB + log(1 + η) +
1 + η

B
≤ −2A,

as n > Bt, one has

tn(1 + η)n

n!
e(1+η)t ≤ exp{nlogt(1 + η)− nlogn + 2n + (1 + η)t}

≤ exp{nlog
1 + η

B
+ 2n + (1 + η)

n

B
} ≤ exp{−2An} ≤ exp{−An− At}.

(3.2.5)

Replacing n by Ni, we conclude the proof.

Lemma 3.2.2. Let γ, β, η and θ be the same as in Theorem IV. If αβ
α−1

< e−(η+γ), then
∀ f ∈ D∞, we have

|||PN
t f ||| ≤ e−(1−η−γ−θ)t|||f |||, ∀ N. (3.2.6)

Proof. Noticing the fact Λ(PN
t f) = ΓΛ

N (because the interaction range of every Ui is

diam(Λ)), and using integration by part formula and the fact ∂yp
(

1−e−αt

α
; e−tx, y

)
=

et∂xp
(

1−e−αt

α
; e−tx, y

)
(see p(t;x,y) in Lemma 2.1.1), one has

St−s(Uj∂ijP
N
s f)(x)

Λ(P N
t f)=ΓΛ

N=

∫ ∏

k∈ΓΛ
N

p

(
1− e−α(t−s)

α
; e−(t−s)xk, yk

)
Uj(yΛj

)∂ijP
N
s f(y)dyΓΛ

N

= −
∫

∂yj

∏

k∈ΓΛ
N

p

(
1− e−α(t−s)

α
; e−(t−s)xk, yk

)
Uj(yΛj

)∂iP
N
s f(y)dyΓΛ

N

−
∫ ∏

k∈ΓΛ
N

p

(
1− e−α(t−s)

α
; e−(t−s)xk, yk

)
∂jUj(yΛj

)∂iP
N
s f(y)dyΓΛ

N

= −et−s∂xj

∫ ∏

k∈ΓΛ
N

p

(
1− e−α(t−s)

α
; e−(t−s)xk, yk

)
Uj(yΛj

)∂iP
N
s f(y)dyΓΛ

N

−
∫ ∏

k∈ΓΛ
N

p

(
1− e−α(t−s)

α
; e−(t−s)xk, yk

)
∂jUj(yΛj

)∂iP
N
s f(y)dyΓΛ

N

= −et−s∂jSt−s(Uj∂iP
N
s f)− St−s(∂jUj∂iP

N
s f).

(3.2.7)
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By (3.1.2), (2.1.15), (3.2.7) and (2.1.16), we have, for all i ∈ Zd,

||∂iP
N
t f || ≤ e−t||∂if ||+

t∫

0

e−(t−s)
∑
j∈ΓN

||St−s∂i(Uj∂jP
N
s f)||ds

≤ e−t||∂if ||+
t∫

0

e−(t−s)
∑
j∈ΓN

||∂iUj|| · ||∂jP
N
s f ||ds +

t∫

0

e−(t−s)
∑
j∈ΓN

||St−s(Uj∂ijP
N
s f)||ds

(3.2.7)

≤ e−t||∂if ||+
t∫

0

e−(t−s)
∑
j∈ΓN

cij||∂jP
N
s f ||ds

+

t∫

0

e−(t−s)
∑
j∈ΓN

||∂jUj|| · ||∂iP
N
s f ||ds +

t∫

0

∑
j∈ΓN

||∂jSt−s(Uj∂iP
N
s f)||ds

≤ e−t||∂if ||+
t∫

0

e−(t−s)
∑
j∈ΓN

cij||∂jP
N
s f ||ds +

t∫

0

e−(t−s)(γ +
β

(t− s)
1
α ∧ 1

)||∂iP
N
s f ||ds

(3.2.8)

where cij = ||∂iUj||. Hence,

et|||PN
t f ||| ≤ |||f |||+

t∫

0

(η + γ +
β

(t− s)
1
α ∧ 1

)es|||PN
s f |||ds. (3.2.9)

When 0 ≤ t ≤ 1, by (3.1.6) and (3.2.9), we have the following Gronwall’s type inequality

et|||PN
t f ||| ≤ |||f |||+

t∫

0

(η + γ)es|||PN
s f |||ds + (

t∫

0

β

(t− s)
1
α

ds)e2+η|||f |||

≤ |||f |||+
t∫

0

(η + γ)es|||PN
s f |||ds +

αβ

α− 1
e2+η|||f |||,

(3.2.10)

and thus

et|||PN
t f ||| ≤ e(η+γ)t(1 +

αβ

α− 1
e2+η)|||f |||. (3.2.11)

Set

K1 = e(η+γ)(1 +
αβ

α− 1
e2+η),

by the above estimate on et|||PN
t f |||, (3.2.9) implies

et|||PN
t f ||| ≤ |||f |||+

t∫

0

(η + γ)es|||PN
s f |||ds +

αβ

α− 1
K1|||f |||,
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and (3.2.11) is improved to be

et|||PN
t f ||| ≤ e(η+γ)t(1 +

αβ

α− 1
K1)|||f |||.

By induction, we have

et|||PN
t f ||| ≤ e(η+γ)t(1 +

αβ

α− 1
Kn)|||f ||| n = 1, 2, . . .

where Kn = e(η+γ)t(1 + αβ
α−1

Kn−1). It is easy to see that if αβ
α−1

< e−(η+γ),

K := lim
n→∞

Kn =
eη+γ

1− αβ
α−1

eη+γ
.

Hence,

|||PN
t f ||| ≤ e−(1−η−γ)t(1 +

αβ

α− 1
K)|||f ||| (0 ≤ t ≤ 1). (3.2.12)

Using the same method, when n ≤ t ≤ n + 1, we have

|||PN
t f ||| ≤ e−(1−η−γ)t(1 +

αβ

α− 1
K)n|||f ||| ≤ e−(1−η−γ−θ)t|||f |||. (3.2.13)

Lemma 3.2.3. If 1− η − γ − θ > 0, then we have some constant a such that

lim
t→∞

Ptf(0) := a (3.2.14)

where f, η, γ, θ are the same as those in Lemma 3.2.2.

Proof. For ∀t2 > t1 > T (with a large number T to be determined later), it is obvious to
see

|Pt2f(0)− Pt1f(0)| ≤ |Pt2f(0)− PN
t2

f(0)|+ |PN
t2

f(0)− PN
t1

f(0)|+ |Pt1f(0)− PN
t1

f(0)|
(3.2.15)

∀ ε > 0, by (3.1.7), there exists some N(t1, t2) ∈ N such that as N > N(t1, t2)

|Pt2f(0)− PN
t2

f(0)|+ |Pt1f(0)− PN
t1

f(0)| < ε. (3.2.16)

By (3.1.2), one has, with some large A > 0 to be determined later,

|PN
t2

f(0)− PN
t1

f(0)| ≤ |St2f(0)− St1f(0)|+ |
∫ t2

0

St2−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds

−
∫ t1

0

St1−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|

≤ |St2f(0)− St1f(0)|

+ |
∫ t2

A

St2−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|+ |

∫ t1

A

St1−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|

+ |
∫ A

0

St2−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds−

∫ A

0

St1−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|

(3.2.17)
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As for the term |St2f(0)−St1f(0)|, since f ∈ D∞, St is a finite product semigroup. Thus,
by the same arguments as in proving (2.3.31), we have

|St2f(0)− St1f(0)| → 0 (t1, t2 →∞) (3.2.18)

According to (3.2.6) and 1− η− γ − θ > 0, there exists some A0 > 0 (independent of N)
such that if A ≥ A0

|
∫ t2

A

St2−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|+ |

∫ t1

A

St1−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|

≤ sup
i
||Ui||(

∫ t2

A

∑
i∈ΓN

||∂iP
N
s f ||ds +

∫ t1

A

∑
i∈ΓN

||∂iP
N
s f ||ds)

< ε.

(3.2.19)

As for the term in the last line of (3.2.17), firstly, since γ =
∑

i∈Zd

||Ui|| < ∞, there exists

some ∆ ⊂⊂ Zd such that ∑

i∈Zd\∆
||Ui|| ≤ ε;

secondly, by the same method to obtaining (2.3.31), there exists some T > 0 such that
as t2 > t1 > T

|
∫ A

0

St2−s

∑
i∈∆

Ui∂iP
N
s f(0)ds−

∫ A

0

St1−s

∑
i∈∆

Ui∂iP
N
s f(0)ds| < ε;

hence

|
∫ A

0

St2−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds−

∫ A

0

St1−s

∑
i∈ΓN

Ui∂iP
N
s f(0)ds|

≤ |
∫ A

0

St2−s

∑
i∈∆

Ui∂iP
N
s f(0)ds−

∫ A

0

St1−s

∑
i∈∆

Ui∂iP
N
s f(0)ds|

+ |
∫ A

0

St2−s

∑

i∈ΓN\∆
Ui∂iP

N
s f(0)ds|+ |

∫ A

0

St1−s

∑

i∈ΓN\∆
Ui∂iP

N
s f(0)ds|

≤ ε + 2ε

∫ A

0

|||PN
s f |||ds (because

∑

i∈Zd\∆
||Ui|| ≤ ε)

≤ ε + 2ε

∫ A

0

e−(1−η−γ−θ)s|||f |||ds ≤ (1 +
2|||f |||

1− η − γ − θ
)ε.

(3.2.20)

Combining (3.2.15)-(3.2.20), we conclude the proof.

Proof of Theorem IV: It is sufficient to prove that the limit is true for every x in one
ball BR,ρ. By triangle inequality, it is obvious to have

|Ptf(x)− a| ≤ |Ptf(x)− PN
t f(x)|+ |PN

t f(x)− PN
t f(0)|

+ |PN
t f(0)− Ptf(0)|+ |Ptf(0)− a| (3.2.21)
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∀ ε > 0, by lemma 3.2.3, ∃ T0 > 0 such that, as t > T0,

|Ptf(0)− a| < ε. (3.2.22)

By Theorem III, ∀ t > 0, ∃ N(t) ∈ N such that as N > N(t)

|Ptf(x)− PN
t f(x)| < ε, |PN

t f(0)− Ptf(0)| < ε. (3.2.23)

Define an order for Zd by its its lexicographic order, which is a one by one function
j : Zd → Z+, and denote the inverse function of j by i = i(j) ∀ j ∈ Z+. For
every x ∈ Ω, we first arrange it according to the lexicographic order of Zd and have
x = (xi(1), . . . , xi(j), . . .), then defines x0 = 0 and xj = (xi(1), . . . , xi(j), 0, . . . , 0, . . . , ). (We
often drop the j in i(j) if no confusion arises.) Recalling BR,ρ = {x : |xi| ≤ R|i|ρ} (R >
0, ρ > 0), one has

|PN
t f(x)− PN

t f(0)| ≤
∞∑

j=1

|PN
t f(xj)− PN

t f(xj−1)| ≤
∞∑

j=1

|xi(j)| · ||∂i(j)P
N
t f ||

≤
∞∑

j=1

R · |i(j)|ρ||∂i(j)P
N
t f || ≤

∑

j>ltd

R · jρ||∂iP
N
t f ||+

∑

j≤ltd

R · jρ||∂iP
N
t f ||,

where l ≥ 1 is some constant to be determined later and the last inequality is because of
|i(j)| ≤ j. On the one hand, as t →∞,

∑

j≤ltd

R · jρ||∂iP
N
t f || ≤ R(ltd)ρ+1|||PN

t f ||| ≤ R(ltd)ρ+1e−t(1−γ−θ−η) → 0. (3.2.24)

On the other hand, by (3.2.2), as l > (2diam(Λ) · B · t)d (thus Ni = dist(i,Λ(f))
diam(Λ)

> Bt as t

is sufficiently large), we have
∑

j>ltd

R · jρ||∂iP
N
t f || ≤ R

∑

j≥ltd

jρe−At−ANi|||f ||| = K|||f |||e−At, (3.2.25)

where K = R
∑

j≥ltd jρe−ANi ≤ R
∑

j≥0 jρexp{−A j
1
d

2·diam(Λ)
} < ∞. Combining (3.2.24)

and (3.2.25), we have some T1 > 0 such that as t > T1

|PN
t f(x)− PN

t f(0)| < ε (3.2.26)

Take T = max{T0, T1}, and combine (3.2.22), (3.2.23) and (3.2.26), we have that

|Ptf(x)− a| < 4ε, as t > T.

4 Appendix: Formal Derivation of (2.1.4)

Suppose that Fourier transforms for the solution u(t) and f exist, then the equation for
their Fourier transforms is

{
∂tû = −|λ|αû + û + λ∂λû

û(0) = f̂
(4.0.27)
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where ’ˆ’ denotes the Fourier transform of functions. Suppose λ > 0, set ν = ln λ, v̂ =
e−tû(eν), ĝ(ν) = f̂(eν), we have

{
∂tv̂ = −eαν v̂ + ∂ν v̂

v̂(0) = ĝ(ν)
(4.0.28)

Suppose ĝ is positive, set ŵ = lnv̂, the equation for ŵ is
{

∂tŵ = −eαν + ∂νŵ

v̂(0) = lnĝ(ν)
(4.0.29)

It is easy to solve the above equation by ŵ(t) = lnĝ(ν + t)− eαν eαt−1
α

, thus

ŵ(t) = ĝ(ν + t) exp{−eαν eαt − 1

α
}

and

û(t) = ĝ(ν + t) exp{t− eαν eαt − 1

α
} = f̂(etλ) exp{t− |λ|α eαt − 1

α
}.

Hence, by Parseval’s Theorem, we have

u(t) =
1√
2π

∫

R

f̂(etλ) exp{t− |λ|α eαt − 1

α
}eiλxdλ

=

∫

R

f̂(λ)
1√
2π

exp{−|λ|α 1− e−αt

α
+ iλe−tx}dλ =

∫

R

p

(
1− e−αt

α
; e−tx, y

)
f(y)dy
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