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Ergodicity of the finite and infinite dimensional
a-stable Systems

Lihu Xu and Bogustaw Zegarlinski

Abstract

Some finite and infinite dimensional perturbed a-stable dynamics are constructed
and studied in this paper. We prove that the finite dimensional system is strongly
mixing, while in the infinite dimensional case that the functional coercive inequal-
ities are not available, we develop and apply a technique to prove the point-wise
ergodiczi‘gy for systems with sufficiently small interaction in a large subspace of
Q=R*.

Key words and phrases. Ergodic property, strongly mixing, Ornstein-Uhlenbeck a-stable
processes, spin system, finite speed of propagation.
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1 Introduction

In the last several decades, a-stable processes have been deeply studied and widely applied
to physics, queueing theory, mathematical finances and others. It is well known that the
Ornstein-Uhlenbeck process driven by a-stable noise (see (1.0.1) with b = 0) is ergodic
([1]), however, there seems no results on the ergodic property of perturbed Ornstein-
Uhlenbeck a-stable processes defined by (1.0.1), which is the main motivation for the first
part of the paper (section 2). More precisely, we will study in section 2 an n dimensional
perturbed Ornstein-Uhlenbeck a-stable system

1.0.1
Xy — (1.0.1)

{dXt = —X,dt + dZ, + b(X,)dt
where Z; is some a-stable process (1 < a < 2) and b € C(R") (continuous function
vanishing at infinity), and prove that the system (1.0.1) is ergodic and strongly mizing
as b is small (Theorem II and Corollary 2.2.1).

However, the more important goal is to study the ergodic property of some infinite di-
mensional system. We study in section 3 a spin system of infinite dimensional Ornstein-
Uhlenbeck a-stable processes perturbed by finite range bounded interaction, i.e. for every



i€ Z,
{dXi(t) = —Xi(t)dt + dZ(t) + Ui(Xa, (t))dt (1.0.2)

where X; € R" withn € N, Xy, (t) = (X,());ea,, U; are some bounded cylinder functions
on C((R™)%*, R) (continuous space with product topology) and { Z;(t)};cz« are a sequence
of independent a-stable processes (1 < a < 2) on R"™. There are two motivations to study
the ergodic property of the system (1.0.2). The first one is from the work by Zegarlinski
on interacting unbounded spin systems driven by an essentially cylindrical Wiener noise
([13]). The system being studied there is similar to (1.0.2) but replaces the cylindrical
a-stable noises by an essential cylindrical Brownian motion. The other motivation is
related to the (quantum) lattice systems described by stochastic PDE (see section 12.3 in
6], chapter 17 in [11], and the literatures within). Chapter 17 in [11] essentially studied
the lattice system as the following (see (17.1) there)

dXp = | D a X+ f(Xp) | dt + g(Xi)dZi(t), k€ Z° (1.0.3)

jEZd

where a;; € R for k,j € Z%, f: R — R satisfying Lipchitz condition, g : R — R and
Zi(t) is some a-stable process. (1.0.3) takes away the Brownian motion and the Poisson
noise from the (17.1) in [11] because the ergodic result there is essentially about this
simplified system (The ergodic results on the lattice system driven by Brownian motion
have been obtained in section 12.3 of [6]).

Let us compare our approach to the ergodicity of (1.0.2) and those in [13] and [11].
(1). As mentioned before, the system in [13] is similar to (1.0.2), only replacing the
a-stable processes by Brownian motions. However, that system is reversible and thus
have an a’priori given unique invariant measure p (Gibbs measure). In the framework of
L?(u), the infinitesimal generator of the system is self-adjoint, thus one easily constructs
the reversible dynamics by the theory of spectral decomposition of self-adjoint opera-
tors. Moreover, people can prove the ergodic property in the uniform norm sense by
the tools of functional inequalities, i.e. the logarithmic Sobolev inequality (LSI) together
with spectral gap inequality implies ||Pif — u(f)|loo < € f — p(f)|loc where P; is the
semigroup generated by the infinitesimal generator in [13] and ¢ > 0 is some constant
independent of f (chapter 8 of [7], [13]). Unfortunately, the system (1.0.2) is nonsym-
metric and thus not reversible, so the tools of spectral decomposition for self-adjoint are
not applicable. On the other hand, we are not able to prove some functional inequalities
such as LSI for the system (1.0.2), thus the procedure of proving ergodic result in [13]
will not wrok. Instead, we prove that our system is ergodic pointwisely in some large
subset of (R")Zd by gradient estimate and some delicate analysis on space and time. (2).
The interactions in (1.0.3) are linear and unbounded, while those in our system (1.0.2)
are bounded and can be nonlinear. The existence theorem of (1.0.3) is proven under the
framework of stochastic PDE, in which some regular conditions has to be assumed (see
the equation (17.3) and (iii) of Theorem 17.8 in [11]). To obtain its ergodic property, one
has to assume that A and f are sufficiently dissipative (see (i) of Theorem 17.10). For the
system (1.0.2), we will study it by the Kolmogorov equation, and construct an infinite
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dimensional semigroup from the equation in the same way as in [7] (chapter 8). As will
be seen in Theorem IV, as the interactions U are sufficiently small, we can obtain some
ergodic result. Finally, we point out that our ergodicity result is on the level of semigroup
(see Theorem IV) not in the sense that the transition probabilities converge to unique
invariant measure. (It seems hard to obtain some invariant measures for our semigroup.)

The organization of the paper is as follows. In section 2, by the analytic approach,
we study the Ornstein-Uhlenbeck a-stable processes and prove that the system is ergodic
if the perturbation is small (Theorem I, IT and Corollary 2.2.1). In section 3, we first
construct an infinite dimensional semigroup P, from (1.0.2) by some approximation pro-
cedure (Theorem III), then prove P; is pointwisely ergodic (Theorem IV). Section 2 can
be read independent of section 3, while the latter will only apply lemma 2.1.1 and lemma
2.1.2 in the proof of (3.2.6). The last section is a formal but simple derivation of the
formula (2.1.4).

Acknowledgements: The two authors both warmly thank Prof. Sergio Albeverio at
Bonn University for his reading the paper and encouragements. L. Xu also thanks the
hospitality of Hausdorff Institute for Mathematics in Bonn and his colleagues there during
visiting Bonn university.

2 Perturbed Ornstein-Uhlenbeck a-stable Processes
(1 <a<?2)

For simplicity, we only study the 1-dimensional system in this section. But one can obtain
the same results for the high dimensional systems by the same arguments. The following
notations will be frequently used in this section.

e 0%: It is the generator of the a-stable process (see (2.1.2) for more details).

CFR):={f:R—R; f, f,..., f® are all continuous and bounded}

Cowo(R):={f € Cy(R); f vanishes at infinity}
CLR)={f e CiR); f,f,.... [ € C(R)}.
CER) = {f € CF(R); f is compactly supported}.

|| f|| = sup, | f(z)| - the uniform norm.

2.1 Preliminary: Ornstein-Uhlenbeck a-stable Processes

Ornstein-Uhlenbeck a-stable processes is described by the following stochastic differential
equation (SDE)

X():J?



where Z; (0 < a < 2) is an a-stable process with infinitesimal generator 0% (fractional
Laplacian, [1]) defined by

1 fly+z) = flz) / dy
dy, C,=— cosy —1)——. 2.1.2
y[et? / R\{O}( Y )|y|1+°‘ (21.2)

Moreover, if f has Fourier transform defined by

r 1 —i\x o L P ei T
F) = == /R flaede. - fle) = 2= /R FeNdn,

1 ~ .
0@ = <= [ W Fean

It is well known that the corresponding Kolmogorov backward equation of (2.1.1) is

a:p f((lf) = C_oz R\ {0}

then

{@u = 0%u — x0,u (2.13)

where f is the initial data. If the solution of (2.1.3) is given, we can recover from it
the information of stochastic process of (2.1.1). The following lemma gives the formula
for the solution of (2.1.3), which will also be formally derived in a simple way in the
appendix.

Lemma 2.1.1. (Formula for the solution of (2.1.3))
Suppose [ € C(R), then

R N e 2.1.4)

is a solution of (2.1.3) where p(t; x,vy) is the transition probability density of the stochastic
processes {Zi}i>0. Vf € C(R), set

Sif(x) = /p <1 _;_a ;e‘t:c,y> fy)dy,
R

Sy is a Markov semigroup on Cx(R).

Proof. 1t is well known that

1 1 4
tia,y) = — [ ——=e tMFE=Ag) 2.15
o) = o= [ —= (2.15)
and
Op(t;z,y) = Opp(t; 2, y) = 9, p(t; 7, y). (2.1.6)

Setting s(t) = 1‘2;“ ,2(t,x) = e"'x, and noticing the following facts

20,p(s; 2,y) = x0,p(s;e "z, y), e 02p(s; z,y) = 0op(s;e ', y),

21.7
Op(s; z,y) = Osp(s; z,y)e™ " — 20.p(s; 2,y), ( )
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one can easily have

at/p(s;z,y)f(y)dy = 353‘/17(8; e”'x,y) f(y)dy — xé’x/p(s;e‘tx,y)f(y)dy (2.1.8)

R R R

To prove the semigroup property, it is sufficient to prove

1 — p-os 1 — et 1 — e—als+t)

/p <—e; e, z) P (—6; e_tz,y) dz=1p (e—; ety y) (2.1.9)
Q Q@ o

R

Indeed, from (2.1.5) and applying Parseval’s Theorem on Fourier transform, we have

p(l‘Tazy) m/r”’{‘ L e i - y)ajar

efat

exp{— Teat N —defyA}efed,

(2.1.10)

/ (1 _ e—as . ) (1 . e—at i )
p| — e fr,z | p| ——e "2,y | dz
R (0% 8%

1 1—e s
= exp{— @ —ie=sa\ exp{— ]et)\\o‘ iye' Ayetd\
| et = et
—a(s+t)

IA|“ +i(e™*'r — y) A} dA

and

- 75, m””p{

1 — —a(s+t)
=p (eT e, y)

(2.1.11)

Moreover, by the heat kernel estimate of p(t; z,y) in [5]

Kt

< (2.1.12)
|y |1+a

p(t;z,y) <

with some constant K € (0, 00), we have

1 —e 1—e
St < — e, d —e ', d
sai< [ o () ol [ (St oy

K
< sup |f(y +/ ———dy||f
LI e

ly|>B

(2.1.13)

where B > 0 is sufficiently large. From (2.1.13) and the fact f € C(R), it is easy to
claim that
lim S, f(z) = 0, (2.1.14)

thus S;f € Co(R). It is easy to check S;1 = 1 and that S;f > 0if f > 0. Thus (S;)i>0
is a Markov semigroup on C(R).
]



Lemma 2.1.2. (Gradient estimates for S;f) V f € CL(R),

102, f|| < e [0, f]] (2.1.15)
Cet
102 Sefl] < I 1] (2.1.16)
ta N1
where C' is some constant independent of f.
Proof. Recall
=3 / /exp{— |>\\o‘+ze "Ax — i y}rdA\f(y)dy, (2.1.17)
we have
|05 f( 2 / /8 exp{— ])\]a—i—ze Ar — i y A f(y)dyl|
= |e_ti 7 7@ exp{— L= IN* +ie Az — idy X\ f(y)dy|
27 Y (2.1.18)
=le ' — / /exp{— |)\|O‘+ze ‘Ar — i y}dAO, f(y)dy|
< e |0 11,
and
|0:Se f(x)] = | / /8 exp{— |)\|°‘ +ie Az — idy}rd\f(y)dy|
t/|/)\exp{— LA 4 ietha — idghdAdy - 1]
S e (2.1.19)
= / /A exp{—[X[* =Xy }aX |dy - ||f]]
|11l
ta A1
where \' = (12e)a, ¢ = (=) S (y—e'a)and [ | [ N exp{—|\[*—i\y }aN|dy <
—00 —00 -

o0 is easy to check.



2.2 Description and Main results of finite dimensional systems

In this section, we study the perturbed Ornstein-Uhlenbeck a-stable system described
by the SDE (1.0.1) whose Kolmogorov backward equation is well known as follows (cf.
chapter 5, [3])

Oru = 0%u — x0u + b(x)0u

w(0) = f (2.2.1)
where b € Co(R). Formally the mild solution of the above equation is
t
u(t,z) = Sef(x) + /St_s[bﬁzu(s)](x)ds. (2.2.2)

0

Define
Ly =0y —x0, + b(x)0,,

the main results of section 2 are:

Theorem 1. Suppose 1 < a < 2. The operator (L1,C§°(R)) is closable in Cy(R),
and the closed extension generates a Markov semigroup {P;}i>0 on Cx(R). Moreover,
Vf e C%(R), Pf is the unique mild solution of (2.2.1) and also its classical solution.

Theorem IL. Suppose that {P,};>o is the semigroup in Theorem I and that Cy = C-||b||-
NG é) with C' being the constant in lemma 2.1.2 and ' being the Gamma-function. If
|10]| is sufficiently small so that

Ch(1+] et <e—1,

a—1

then, ¥V f € C(R), there exists a constant ¢ (independent of x) such that
tlim Pf(x)=c .

Corollary 2.2.1. Theorem II implies that there exists some probability measure p such
that

lim p(t;z, dy) — p,

where p(t; x,dy) is the transition probability of the system (1.0.1). Moreover, the system
(1.0.2) is strongly mizing.

Remark 2.2.2. Tt is easy to see that our result implies 71im % fOTp(t; x,dy)dt — p weakly,

which is the sense of the usual ergodic property.

2.3 Lemmas

Lemma 2.3.1. If f € CL(R), then (2.2.1) has a unique mild solution u with u(t) €
Coo(R) for every 0 <t < co. Moreover, u is also a classical solution.



Proof. We apply Banach fixed point theorem. For some T > 0 (to be selected later),
define
Cr ={u e C([0,T]; C'(R)) : w(0) = f, sup [[ut)ller < oo}

and
lullr = sup_[[u(t)]|c1,
0<t<T
(CL. || - ||7) is obviously a Banach space. We consider the map F:

Flul(t) = Sif + / Si-ilbd,u(s)ds (0 <t<T) (2.3.1)

Point 1 F is a map from Ci. to C}: V u € Cy., one has

IFlul®)]] < |!f|!+/HSts(baxU(S)HdSS £ llen +Hb!|/Hu(8)Hmd8 (2.3.2)

and has by applying (2.1.15) and (2.1.16)

t

~(t-5) ¢
0. F )] < e lonfl + [
0

— 10| - ||Ozu(s)]||ds
oo
t (2.3.3)
B e—(t—s)é
<e t||f||01+||b||/—1I|U(8)||01ds
) (t—s)a A1
Hence, for 0 <t < T,

t

e=(t=)C
IFlul@ller < {2+ - ||ol] + sup /—1 ds|[bf| ) sup [fu(t)[lcr  (2.34)
(t—s)a Al 0<t<T

0<t<T
0

Point 2 F is a contraction map: Yw,v € C., by the same arguments as in (2.3.2) and in
(2.3.3) respectively, we have

|| Fw](t) = FLol@®)]] < [[b]] / [lw(s) = v(s)llerds < [BIIT sup Jlw(t) = v(E)ller (2:3.5)

and
t

0.7 () - LI < 1l sup |

I s sup [ — ol (2.3.6)
—ds su w(t) — v(t 1. 3.
(t—s)a Al OStET ¢

Thus

¢ .
e~ (t=s)(C
[0z Flw](t) — 0. F[v](t)]|cr < Hb||<T+ sup /—1 ds) sup [[w(t) —v(t)]|c
o<t<T) (t—s)a A1 0<t<T

(2.3.7)



When T is small enough,

t ~
—(t=s)
ol 7+ sup /e—lds <1
o<t<rJ (t—s)a Al

0

Combining Point 1 and Point 2, and applying Banach fixed point theorem, we have a
unique u € Cz such that

u(t) = Sif + /St_s[baxu(s)]ds (0<t<T). (2.3.8)

0

By exactly the same procedure as the above on the dynamics at [T, 2T, [2T,3T],..., we
finally obtain a unique global mild solution on C([0,0); C'(R)).

From the facts of f,b € Co(R), and (2.3.9) (which will be proven in the next lemma),

we have u(t) € C(R), by applying the same argument as proving (2.1.14) on the mild
¢

solution u(t) = Sif + [ Si—s[bO,u(s)]ds. It is easy to check this mild solution is also a
0

classical solution. O

Lemma 2.3.2. (Gradient estimate for u(t)) Suppose that u and f are the same as
in Lemma 2.3.1. There exists some constant A > 0, independent of f and u, such that

10zu(t)]] < e A" [0 f1]. (2.3.9)
Moreover, if ||b]| < ﬁ_i), then
10:u(t)]] < e C=2N|a, f]| (2.3.10)

where C' is the constant in Lemma 2.1.2, Cy = log{1 + C1(1 + [-])e'} and Cy =
Cpll-T(1=7) .

Remark 2.3.3. When [|b]| is small, C} and Cy are also small, and thus ||0,u(t)|| decays
exponentially.

Proof. Noticing (2.2.2), (2.1.15) and (2.1.16), one has

t .
B e~ =) ||p
focutoll < e oufll+ [ —Aho o 23.11)
/ (t—s)a N1
Set v(t) = e'd,u(t), (2.3.11) is equivalent to
[ -1l
oI < 110 £ +/@_—S)1!|U(S)Hd5~ (2.3.12)
0



Iterating (2.3.12), we have

t . k—1
C b || v dt,
ol <1io.711+ | s)lds < 3°(C |1 / : /—————wam
/ (t—s) ,;0 t—tlé (thoy — t)a
_1 A 1
=3 sy ISl Gwhere €= Ol T = )
k>0 «
(2.3.13)
since
t tp—1 t tp—2
/ dty / dty / dt, / Bty /
S (t—t)e wA—mé 0@—&%”5 mg—mléol—%%
t lk—3
:/Ll/ dtk QI/Sk 1d5k1 (11_l)
) (t—1t)= / (e 3—tk25 (1—sp_1)= «
d TR0 gy 202y 11 1
:/%/ it i Sis 2B 41— 1 S)B(1,1- )
] (t—t1)e / (th— 4—tk35 (1= spo)a o' a a
k—1
DT B +i(1— =), 1- 5)
=0
*1-) I'(a)L(B)
— ¢k(-2) a ticing B —
TR 1) (noticing B(«, ) T(atd) )
(2.3.14)

Noticing the facts of 1 — 2 >0, ['(z + 1) = 2I'(2), and I'(a) > I'(1) = 1, we have

F(1+k(1—é)):(k—§)(k—§—1)...(k—g—[k—g]Jrl)F(k—g—[k—g]‘H)
> [k 4
(2.3.15)

and have by combining (2.3.13) and (2.3.15)

(1) r<§j A0, f]] (0t <), (2.3.16)
k>0
Set
Ay =(Cr+1)s1, A=1+(1+ [a — 1])A16A1,

10



it is easy to see, for every ¢ € [0, 1],

CY _1
oIl < k lﬁ,tk(l 0. £l

k>0 [k — a]'

1-1)+1
_1 2.3.17
<10, f||+2 A D, £ (2:3.17)
k>1

<JfoufIl + (1 + [m])AleA“llc%fll

and

10:u(®)]] = e |00l < e {1+ 1+ [~— ])AleA”}llf? I (2.3.18)

Moreover, one can apply the above argument on 1 <t < 2,....n <t <n+1,...,
obtaining

10-u(t)]] < e 1{1+(1+[ — DAY [0,u(1)]]
(2.3.19)
<e 7 1{1+(1+[ — DA™ e 0.l (1<t <2),
and for every t € [n,n+ 1] (n € N),
—(t—n) L A1 (t—n) —1 A\n
o)l < I 0 DA I A

< e 'A"|0.f]|.

Let us prove (2.3.10). Noticing the fact C; < 1 and (2.3.16), it is easy to see, on 0 <t < 1,

[k~ %]
C _k
o1 < N0ufIl+Ci )y E t= a0, £]]
k>1 [k — ]
o 2.3.21
<1911+ Cul1+ [ o, (2321
!
= 1011 + Ao [[0uf| (where As = C1(1+ [—])),
and
10u(t)]| = e Ju(t)]] < e (1 + A0 fIl (V0 <t <1). (2.3.22)
By the same argument, inductively, one has
18:u()]| < e (L + Age® M )e (1 + Ape™)" (|0, f]|
S e_t(l + A2eC1)(1 + A2€Cl)n|’amf|| (2 3 23)
< e 'e®e?!|0,f|| (where Cy = log(1 4+ Aye®)) o
= L=, f|
oneveryn <t<mn+1(n€N). O

Lemma 2.3.4. (Hille-Yosida Theorem for Markov preoperator [8])
The operator (L1, C§°(R)) satisfies the following three conditions:

11



o CP(R) is dense in C(R).
e Ly satisfies maximum principle on C§°(R).
o Vf e C°(R), 3 g € Cx(R) solving the the equation (A — L1)g = f.

Then (L1,C§°(R)) is closable in Coo(R) and there exists a Markov semigroup P; (t > 0)
generated by its closure (L1, Dom(Ly)).

Proof. 1t is well known that the three conditions in the lemma implies the closability of
the infinitesimal generator ([8]). We only need to check them for £;. The first condition
is obvious. Yh € C§°(R), suppose there exists some z( such that h(zg) = mi}rtl h(z).

TE

.1 hy) — h(z
(09h)(xo) = lgﬁ)l ron / wd(y >0 (2.3.24)
{ly—zo|>e}

since h(y) — h(zg) > 0 for all y € R. Define g = [ e *u(t)dt, where u(t) is the classical
0

solution of (2.2.1) with initial data f. g uniformly converges if A > Ag and \g > 0 is large
enough, since

/ 43 —1)A
Ol < 511+ 6] [ A dsion i = 111+ e =040 b (2.325)
0

log é
from (2.3.9) and (2.2.2). Hence
L1g = / N Lou(t)dt / e MOut)dt = —f + Ag. (2.3.26)
0 0
Moreover, it is obvious to have g € Co(R) since u(t) € C(R). O
Lemma 2.3.5. (Ergodicity for S;) If f € CL(R), then
tlim Sif(x)=c VzreR (2.3.27)

where ¢ 1s a constant independent of x.

Proof. ¥ ty > t; > 0, we have, with some A > 0,

5,70 - 5,701 < 1 [ (2 00) o (0 oy

y:ly|<A
1 — efat2 1 — e*atl
+ / p(—;O,y)der / p(—;O,y)dy]-llfH
(@8] (@]
y:ly|>A yily|>A

=L+ L+ 1] - || f]]-
(2.3.28)

12



For any fixed A, by Lebesgue dominated convergence theorem,
I — 0, asty,ty — oo. (2.3.29)

According to the heat kernel estimate (2.1.12), V ¢ > 1,

1 — ot K
/ P (L; 0,y> dy < / Ty — 0, as A— o0 (2.3.30)
o ly|*

y:ly[=A yily|=A
Combine (2.3.29) and (2.3.30), we obtain
¢:= lim S,£(0). (2.3.31)

V z € R, one has

|S0f (2) = ¢ < |5uf(2) = Sif(0)] +15:f(0) = ¢f < \/@Stf(Z)dZ\ +15:/(0) — |

(2.1.15) .,
< |Sef(0) = el + [zf - e |0uf| = 0 (£ — o0).

(2.3.32)

]

2.4 Proof of Theorems I, Il and Corollary 2.2.1

Proof of Theorem I: According to the classical semigroup theory, V f € C%(R) C
Dom(Ly), P,f uniquely solves (2.2.1). From Lemma 2.3.1, we define another semigroup
P, (t>0) by

Pf=u(t) VfeCL(R).

By the uniqueness of the solution, it is obvious that
P.f=Pf VYfeC:(R) (2.4.1)

Since C2 (R) is dense in Cy(R) under uniform norm, we can extend (2.4.1) to C(R),
le.

Pf=DPf VYfeCO.R). (2.4.2)

Proof of Theorem II: We prove the theorem in the case of f € C! (R), and the case of
f € C«(R) can be done in a classical but simple approximate procedure. V ¢y >t > 0,
it is easy to see

t1

[P f(0) — P f(0)] < S0, £(0) — Si, F(0)] + ] / Sty [00, P, f1(0)ds / 51y [b0, P, f(0)ds|

" (2.4.3)
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For the second term on the right hand side of (2.4.3), one has, with some B > 0

| 0/ Sy, A[b0.P.f1(0)ds — 0/ Sy, [0, P £1(0)ds|

B to
< /|St28[68mPsf](O)ds — S, —s[00. P f1(0)|ds + | /Stzs[bﬁmPSf](O)dﬂ
0 B

(2.4.4)
t1
—i—\/Stls[baxPSf](O)ds]
B
=L+ L+1;
By (2.3.9) and (2.3.28), for any fixed B > 0, we have
[1 — 0, as tl,tQ — OQ. (245)
For I, (I3 can be treated by the same arguments), as ty, B — o0,
to to
I, < /||St2_s[b8xPSf]||ds < /||b|| ||0:Psf||ds (S; is contraction)
b B (2.4.6)

(23.10) F
= /||b||6026_(1_c2)5|I&cfHdS — 0.
B
Hence, from lemma 2.3.5 and the above estimates on I, I5, I3, it is obvious to have
tlim P,f(0) := ¢ (a constant).
—00

V x € R, using the similar argument for obtaining (2.3.32) and (2.3.10), we have

tlim P, f(x)=c.

Proof of Corollary 2.2.1: It is easy to check that the solution to (1.0.1) satisfies
t ¢
X, =e 'z —/ e =9z, +/ e~ 9b(X,)ds, (2.4.7)
0 0
which implies
¢
BIX| < e+ B| [ a2+ Hlo(1— )
0

t
< |z| + E|Z]| - / e (t=s)gl/a—1gqs o 116]] 00
0

14



since a-stable process is a stationary process with independent increments and E|Z; —
Z,| = |t — s|"/*E|Z,], and thus

sup E|Xy| < [z[ 4+ C 4 |||

0<t<o0o

where C' > 0 is some constant independent of x. Hence, the transition probability family
of the system {p(t;x,dy)}i>o is tight, according to Prohorov theorem, there exists a
measure j, depending on = and subsequence {t; }ren With ¢, — oo such that

p(te; v, dy) — pe weakly.
Noticing Theorem II, for any given ¢ € C(R), we have

[P () — p12(9)] < [Prgp(w) — Prod()| + | B, 0(x) = pa(0)] — 0, as £, 1, — 00, (2.4.8)

i.e. p(t;z,dy) — p, as t — oo, which also easily implies that pu, is an invariant measure
of the system.

Denote Z as the set of the all invariant measures for (1.0.1). Given any two invariant
measures (i1, o € Z, then for every ¢ € C(R),

(@) = (@) = im | [ [ 6(Iptw,dntao) - [ [ oIty deppatan)
< lim / | / o(2)p(t; ,dz) — ¢(2)p(t; y, dz)| (dz) pa(dy)

= [t | [ 6(eIptts,dz) - ol . d) ) a)
=0. (noticing Theorem II)

So p11 = pg, which means that Z only includes one element.
As for the strong mixing property of (1.0.2), according to Corollary 3.4.3 in [6], the above
convergence of the transition probabilities implies the system (1.0.1) is strongly mixing.

3 Infinite Dimensional Interacting a-stable Systems

We will only study our system in the configuration space of (R)Zd, but our approaches
and results are also true for (R“)Zd. We first list the notations as follows, which will be
frequently used in this section.

o Configuration Space Q: QA =R% . Vz e, v = (24)iezd, v: € RV A C Z% ) =
(i)iea-

o Lattice I': T' = Z% 3 {I'y; N € N} such that I'y cC Z¢ and ]1[1%11 I'y = Z% Given
a cube A CC Z? centred at 0, A; :== {i +j;j € A} fori € Z¢and T} = {i €
Z%; dist(i, T'n) < diam(A)} where dist(i, j) = 3, cpeqlin — Jil V1,5 € Z°

e Local Functions Spaces D: For any A CC Z% Dy = {f : f is a bounded con-

tinuous function depending on the configurations in A and f vanishes at oc.}.
D= |J Dy D*={fe€D;fis C*}. We use A(f) to denote the localization set

Acczd
of the local function f, i.e. the smallest set A" C Z? such that f € D,.

15



e Potential U: In this paper, U = {Uy, € Dy,;i € Z%}. A typical example for U is
Up, = > ¢x where ¢px € V = {¢; ¢ is local function such that diam(A(¢)) < R}

X>i
where R < oo is some constant and diam(A) = max{d(i,j) : i,j € A}.

e Infinite Dimensional Infinitesimal Generator: L = Y [0 — x;0;] + > Ua,(2)0;
1€Z4 i€Zd
where 0; = 0., and 0f = 0. We also simply denote 0;; = 0,,0,,. For simplicity,
we drop A in the potentials and write U; = U,,. We will approximate £ by the
operators as follows:

Ly =) _[08 — 0]+ Y _ Ui(x)o:.
iEZd iEFN
Note that U; is a function depending on xy,, not just z;.
o Semigroups: {Si}i>o is the semigroup generated by product Ornstein-Uhlenbeck
a-stable operator
Z[@f - xzﬁl]
i€zd

{PN}i50 and {P;};>0 are the semigroup generated by Ly and L respectively.

e Norms: ||.|| in the following context is the uniform norm. The [||.||| is defined by
=Y "loifll, v feD
i€z

Formally the Kolmogorov backward equation of the system (1.0.2) is

8tu = Z [8? — x,@z]u + Z UAi (x)@zu
i€zl i€zl (3.0.9)
u(0) = f

which is an infinite dimensional equation and hard to be solved directly. Alternatively,
we consider the infinitesimal generator £ from which a Markov semigroup may be con-
structed. One can understand the properties of the systems (1.0.2) and (3.0.9) by studying
the Markov semigroup. Because we can extend the conclusions about the semigroup on
D> to Cx(92) by the fact that D> is dense in Cy(2) under uniform norm, we only
construct the semigroup and prove its ergodic property on D*°. The main results of this
section are the following two theorems.

Theorem III. If sup [[|Ui][| + sup [|Ui]| < oo, then Vf € D>, we have

A}im PNf=Pf wunder uniform norm. (3.0.10)

Theorem IV. Suppose that
V= Z 1O:U;l], B = OZ |Uill,m == sup [[|Uj]|
J

i€Zd i€Zd
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are all ﬁm’te where C' is the constant in lemma 2.1.2. Set

ll—Zml (i €2%), Bry=A{x: |z <RI’} (R>0,p>0), B= |J Bxg,

k=1 R>0,p>0

If

of <e N 1 _p—~n-60>0
a—1

with 8 =log(1 + (ﬂe—nﬂ), then V = € B, we have

1—aBen*v
lim P,f(x) =a
t—o00

where a is some constant independent of x.

3.1 Proof of Theorem III

Lemma 3.1.1. For any Ly, there exists a Markov semigroup P satisfying
O f=LyPNf
where f € D> such that A(f) C T'x. Moreover,

t
PNf =S+ [ s> o pas
0 i€’y
where Sy is the trivial product semigroup generated by > (08 — x;0;).
i€Zd

Proof. By the same argument as proving Theorem I.

(3.0.11)

(3.1.1)

(3.1.2)

O

Proof of Theorem III: The proof uses the similar arguments as in chapter 8 of [7]. It
is sufficient to check that {P/N}y is a Cauchy sequence under uniform norm. V I'y; D

I'n D A(f), it is easy to check

t
d
IPMf - PYAI< / LPYPN | < | / P, (L = £x)PY fis|

/HcM £N>PNf||ds</ S° U 0P fllds

Tap\I'y

(3.1.3)

By the easy fact %Pﬁs O,PNf = PN [0;, Ly]PN f (where [0;, Ly] = O;,Ly — LnO; =

= ieza 0ij0; + > icr, 0iU;0; f) and Markov property of PY | we have

t
1PV FIl < ll0uf]] + / 1105, £x]PY f|ds
0

t

< \I0¢f||+/2(5ij+!|3inH) (10,2 fllds.

0 jEZd

17
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Denote ¢;; = ||0;U;]| and e;;(t) = > 5 (c+ 8), then ¢ and e(t) are both operators in 4
n>0
with norm

el < sup [[JUG[1], - [le(@)ln, < exp{([lc[ln, + 1)t} < exp{(sup [[[Uj][| + 1)t} (3.1.5)
J J

(Indeed, | >, 3. ei(t)ay| < Z i (el +1)" 325 o] < exp{(sup, [[|U;][[+1)t} 32 o))
i€Zd jeZ
Iterating (3.1.4), we have
(AN O]
jez! (3.1.6)
117 FII < exp{(llell, + DI < exp{(sup [[[TU]]] + D[ f1]]
j

and have by noticing (3.1.5)

1PMf - PN f| < / SO ONGIY. en®)10,711ds

0 ’iEFM\FN jEZd

(3.1.7)
< sup||Uz-||/ S Y eudllofllds — 0 (N M — oo)
’ 0 €lu\I'y jezd
3.2 Proof of Theorem IV
Lemma 3.2.1. (Finite Speed of Propagation)
Given any approzimate semigroup PN and f € D®,V i & A(f), then
tY (1 4 )™
0B pl < LI ey g (3.2.1)

where N; = [%W] and n is the same as in Theorem IV. Moreover, for any A > 0,

there exists some B > 1 such that, when N; > Bt, we have

10: 7 fl] < e

(3.2.2)

Proof. The arguments are similar to those of [7] (pp 88-90). Recall the equation (3.1.4)

t

10: P A1l < l1o: £l +/Z(&;-+H&-Uj\|) (10,2 f|ds

o Jjezd (3.2.3)
N;— i < 4n .
Zn—c—i—5 1105 f1] + Zm(c—i_é)i_j”ajf’l'
n=0 n=N;

Since A(U;) = A;, one can check that ([7], pp 90)

3 t—,<c+5> 110,411 =0,

n=0

18



thus

. . tNi(1 4+ n)Ni
B A< Y Se vl < SEEDZ ooy 2.

where 1 = ||c[|;, = sup, |||Uj]||. Choosing B > 1 such that

1
1N o op

2 —logB + log(1 +1n) + 7 = ,

as n > Bt, one has

t"(1 "
L'n)e(p”’)t < exp{nlogt(1 +n) —nlogn + 2n + (1 + n)t}
n! (3.2.5)
1
< exp{nlog | +2n+ (1+ 'r;)%} < exp{—2An} < exp{—An — At}.

Replacing n by N;, we conclude the proof. O

Lemma 3.2.2. Let v, 3, n and 6 be the same as in Theorem IV. Ifoj"—_ﬁ1 < e ) then
V f € D™, we have
PN ANl < e[ flll, v A (3.2.6)

Proof. Noticing the fact A(PYNf) = T'A (because the interaction range of every U; is

diam(A)), and using integration by part formula and the fact d,p (1_27“;@*%,3/) =

t0.p < ety y) (see p(t;x,y) in Lemma 2.1.1), one has

=1}, 1—eolt=)
St S(U aZJPNf) / H p ( (t S)xlmyk) UJ(yAJ)aZJPst(y)dyF/]}]
kery,
1—e —a(t—s) —(t—s) N
o, [[ | —— U ) Uj(ya, )P f(y)dyry
kery,
1—e¢ a(t—s) e
-[10» (T et ) O m P o)y
keT4
et—s l—e” o(t-2) —(t—s) N
= aa?] H P\ ————¢ Ty Yk Uj(y/\j)aips f(y)dyl"/]}]
keryy,
1—e¢ a(t—s) -
-[1I» (T et ) 000 P 1 (5)dry
keT4

—e'7%0;8;_(U;0: PN f) — S;_o(0;U;0: PN f).
(3.2.7)
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By (3.1.2), (2.1.15), (3.2.7) and (2.1.16), we have, for all i € Z,

t

10: P fII < e~*[|0: 1] +/€(”) > 18i-8i(U;0, P f)llds

0 jEFN
t t
<e |0 f]| + / e o] - 110;PY fl]ds + / e~ 1S, (U;0,, PN f)||ds
0 jel'n 0 Jjel'n

t
(3.2.7)
<o+ e S eliopr s
0

NS NN
t t
b [0S Ul PN sllds + [ 3 10,8 U0PN ks
0 JjErN 0 Jj€l'N
t t
<ol + [ S eqllopX fllas + [+ —L o las
: (t—s)a Al
0 J€LN 0
(3.2.8)
where ¢;; = ||0;U;||. Hence,
t
PN <IN+ [ty + —S e lIPMfllds. (3:29)
(t—s)a N1

0

When 0 <t <1, by (3.1.6) and (3.2.9), we have the following Gronwall’s type inequality

t t
s g
AR+ [+ RXAlds + ([ e
0 0
t , (3.2.10)
«
<A+ [ a4 ellPE Allds + e 1),
0
and thus 5
IRV < e+ 3:211)
Set

K, = e(”ﬂ)(l + af €2+n)
a—1

by the above estimate on €'||| P f]|[, (3.2.9) implies

Y

t

P A< I +/(n+7)€SIIIP§VfII|d8+ k1411,

a—1
0
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and (3.2.11) is improved to be

ANEN A < e+ 2Ll

By induction, we have

af
— K, =1,2,...
I

where K, = M1 + 22, ). It is easy to see that if 22 < e~

[N < e (1 +

oY
K = nh_{go K, = %.
Hence,
IIPY Il < e @81+ aa—_ﬂlK)H!f\H 0<i<1). (3.2.12)
Using the same method, when n <t < n + 1, we have
NPY Il < e 41+ aa—_ﬁlK)”\!!le < e GO . (3.2.13)
O
Lemma 3.2.3. If 1 —n—~v — 60 > 0, then we have some constant a such that
tlggo P.f(0):=a (3.2.14)

where f,n,v,0 are the same as those in Lemma 3.2.2.

Proof. For Vty > t; > T (with a large number 7' to be determined later), it is obvious to
see

|
.15)
YV >0, by (3.1.7), there exists some N(t1,t3) € N such that as N > N(t,t,)
[P f(0) = P F(0)] + [P f(0) = PYFO)] < e. (3.2.16)
By (3.1.2), one has, with some large A > 0 to be determined later,

PYF(0) = PYF(0)] < 1S1,/(0) — Su S(0)] + / S0 S UGN F(0)ds

i€l n

t1
—~ / Su—s Y Uidi P f(0)ds|
0

i€l N

S |St2f(0) - St1f<0)‘
’ . . N tl . . N
+ | /A Stres Y Ui PY [(0)ds| + | /A Sti—s Y Uidi P (0)ds]

’iEFN iEFN
A A
+ |/ Stz—s Z UzaZPst(O)dS - / St1—s Z UzazPst(O)dSl
0 1€l 0 i€l

(3.2.17)
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As for the term | S, f(0) — S, f(0)|, since f € D>, S, is a finite product semigroup. Thus,
by the same arguments as in proving (2.3.31), we have

|St, f(0) — Sy, f(0)| = 0 (t1,t2 — 00) (3.2.18)

According to (3.2.6) and 1 —np —~ — 6 > 0, there exists some Ay > 0 (independent of N)
such that if A > A,

to t1
| / Sue 3" UOPY f(0)ds| + | / Su_e 3" UDPY (0)ds
A A

i€l N i€l N

ta N i v (3.2.19)
swpnw/ S |aP: f!!d5+/ S (0:PY fllds)

i€l N A ery
<e.

As for the term in the last line of (3.2.17), firstly, since v = Y ||U;]| < oo, there exists

icZd
Sl <e

i€ZIN\A

some A CC Z% such that

secondly, by the same method to obtaining (2.3.31), there exists some 7' > 0 such that
astyo >t > 1T

A A

[ S varNsods - [ s S UaR f0)ds] < =
0 i€eA 0 i€A

hence

A A
| / Si—s Y _ Ui0iPY f(0)ds — / Si—s Y _ UidiPY f(0)ds|
0 0

i€l N i€l N

A A
< / Sua S UDPY (0)ds — / S s S UDPY F(0)ds]
0

ieA 0 ieA
A A
+ | / Stams Y Ui0iPY f(0)ds| + | / Su—s Y U0PNf(0)ds|  (3.2.20)
0 i€l N \A 0 i€TN\A
A
§e+25/ 11PN flllds — (because Y~ ||Uil| < ¢)
0 ieZd\A
<e+2 /A e~ U=m=7=9s|| £ |ds < (1 + _AlAr )e
B 0 - L=n—vy—0
Combining (3.2.15)-(3.2.20), we conclude the proof. O

Proof of Theorem IV: It is sufficient to prove that the limit is true for every x in one
ball B ,. By triangle inequality, it is obvious to have

|Pif () = al < |Pf(x) = PN ()| + |5 f () = B F(0)]

N (3.2.21)
+ 1[5 f(0) = Pf(0) + [P f(0) — a
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Ve >0, by lemma 3.2.3, 3 T, > 0 such that, as t > Ty,
|P,f(0) —al <e. (3.2.22)
By Theorem III, ¥ ¢t > 0, 3 N(t) € N such that as N > N(t)
|Pf(x) — PN f(x)| <&, |[PYf(0)— Pf(0)| <e. (3.2.23)

Define an order for Z¢ by its its lexicographic order, which is a one by one function
j : Z% — Z7T, and denote the inverse function of j by i = i(j) V j € Z*. For
every x € (), we first arrange it according to the lexicographic order of Z¢ and have
z = (Tiq), - - Ti(j), - - ), then defines 2% = 0 and 27 = (z;1), ..., 24, 0,...,0,...,). (We
often drop the j in i(j) if no confusion arises.) Recalling Br, = {z : |z;| < R|i|’} (R >
0,p > 0), one has

1PN f(z) = PYFO) <> [PV f(a)) - PN f x“|<Z|a: | 110i) B ]
j=1

Z DPNaGPY A < S R 210N fll+ S R- #1102 £,

j>Itd j<itd
where [ > 1 is some constant to be determined later and the last inequality is because of
li(7)] < j. On the one hand, as t — oo,

Y RNOPNFII < RUHHIRY fII| < R(u)y e 707 — 0, (3.2.24)

J<itd

On the other hand, by (3.2.2), as | > (2diam(A) - B - t)? (thus N; = %’}%)) > Bt ast

is sufficiently large), we have

D R-GNGPNFII< R Y e N[ £ = K|l fllle™, (3.2.25)

F>ltd j>ltd

where K = RZg>ltd gre= AN < RZ >0J Pexp{— Amam
and (3.2.25), we have some 77 > 0 such that as ¢t > T;

} < 00. Combining (3.2.24)

PN f(x) = B f(0) <e (3.2.26)
Take T' = max{Ty, T1 }, and combine (3.2.22), (3.2.23) and (3.2.26), we have that

|Pf(z) —al <4e, ast>T.

4 Appendix: Formal Derivation of (2.1.4)

Suppose that Fourier transforms for the solution u(t) and f exist, then the equation for
their Fourier transforms is

e D
{m A+ Aoy (4.0.27)

a(0) = f
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where "7 denotes the Fourier transform of functions. Suppose A > 0, set v =In\, 0 =
e ta(e”), g(v) = f(e"), we have

00 = —e*'0 + 0,0
e = mer U O (4.0.28)
5(0) = g(v)

Suppose ¢ is positive, set w = [nv, the equation for w is
oW = —e™ + 0, W
= e o (4.0.29)
0(0) = Ing(v)

It is easy to solve the above equation by w(t) = Ing(v +t) — ea”eaiT_l, thus

at_l

W(t) = §(v+ ) expf—e™”

}

and

et —1 et —1

—} = f(eN) expft — AP

1.

u(t) = g(v +t) exp{t — e

Hence, by Parseval’s Theorem, we have

1 A et —1_ .
ult) = == / Flen exp{t = e e
R

5 1 Gl—e e l—e™™
= f(A)\/%eXp{—W —, tide rydh= [ p ey f(y)dy
R R
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