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Abstract: Light regulation systems in industrial or office buildings play an important role in mini-
mizing the use of fossil energy resources, while providing both economic and ergonomic optimal
functionality. Although industrial buildings resolve the problem of interaction or disturbance miti-
gation by providing constant light levels exclusively from artificial sources, office landscapes may
benefit from up to a 20% decrease in costs if mixed light sources are optimized properly. In this
paper, we propose a theoretical framework based on model predictive control (MPC) to resolve a
multi-system with strong dynamic interactions and multi-objective cost optimization. Centralized
and distributed predictive control strategies are compared on various office landscaping structures
and functionality conditions. Economic and ergonomic indexes are evaluated in a scaled laboratory
setting.

Keywords: predictive control; office landscape; energy saving; self-tuning; ergonomics; distributed
control; multi-objective optimization

1. Introduction

In recent years, the climate has become one of the most discussed topics in world
politics. It is clear that CO2 emissions should be reduced drastically. Approximately 40%
of total CO2 emissions worldwide are caused by the production of electricity and heat,
as summarized in Figure 1 (left stacked bar chart) [1].

Figure 1. Global CO2 emissions by sector in 2019.
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On the other hand, Belgium is one of the leading European countries in terms of green
energy production and minimizing fossil energy use (see the right stacked bar chart in
Figure 1). The electricity consumption for lighting in office buildings accounts for about
25% of the total energy consumption within these premises [2,3]. Two main solutions to
reduce both the electricity costs and its ecological footprint are:

• Power-saving lights, i.e., lights based on recently emerging light-emitting diode (LED)
technology. These LED-lights exhibit an energy decrease of over 85% and last about
20 times as long [4] as standard lights; and

• Smart light regulators, i.e., regulating light levels according to the function of the
area and functionality of the area. An advanced light controller acts according to the
operator requests or predefined functionality per office area [5].

Industrial relevance, in terms of the need for regulatory solutions, is shown by the
top three most accepted and versatile methodologies: proportional-integral-derivative
(PID) control, predictive control, and system identification [6]. Although it is a successful
technology and it is deeply embedded in the lower loop control objective platforms of
any dynamic process control problem, PID control has serious limitations in dealing with
strongly interacting systems and multi-objective optimization problems. Through system
identification, advanced control technologies such as model-based control, i.e., predictive
control, represent a rather ubiquitous solution in multi-system, multi-level, and multi-
objective optimization methods for control problems [7].

Previous attempts to regulate light levels in office landscape areas have provided
solutions based on PID control and generalized order PID-type controllers, with successful
performance in terms of reference setpoint tracking [8,9]. In addition, a large number of
applications have made use of lighting control techniques, such as conventional methods,
implementations of intelligent techniques, and agent-based controllers [10], taking into
consideration the features of the environment. In order to improve building designs and
networked sensor-actuator systems by increasing the energy efficiency and the comfort
of the building occupants, techniques based on hierarchical structures [11] and systems
with decentralized integral controllers [12] have been developed in recent years. Modern
developments have proposed different decision-making strategies for optimizing the per-
formance of lighting systems in wide urban areas, such as a large-scale street [13] and a
university campus [14], taking into consideration both energy savings and user satisfaction.
However, to adequately analyze its economic and ergonomic impact, predictive control
seems to be a natural solution. Office buildings often have functionality with repetitive
dynamics, which can be implemented by learning algorithms, or iterative optimization
algorithms. On the other hand, the use of renewable energy resources is often dependent on
stochastic disturbances (e.g., sunlight) with piecewise periodic dynamics (e.g., day/night,
season, office hours). Although not directly acknowledged in conscious task operation,
the flickering of light levels from inadequate dimmer control or external sources of light
level variations (windmill periodic shadow, weather) affects operator productivity. Often,
the commonly encountered solution in industry is to avoid these issues by using facilities
with only artificial light sources. However, in-office buildings, windows can be a great
source of external light if used properly.

In this paper, we propose a theoretical framework to resolve a multi-system with
strong dynamic interactions and multi-objective cost. Distributed predictive control strate-
gies are compared with various office landscaping structures and functionality conditions.
Economic and ergonomic indexes were evaluated in both a simulation and an experimental
setup scaled in a laboratory setting. The original contribution of the paper is a fast, dis-
tributed predictive control algorithm, used to compare the changes in the light level for
different landscape office structures, with changing context parameters (e.g., introducing
external sunlight).

The paper is structured as follows. Section 2 presents the office landscape setup control
problem and describes the control and optimization methodologies. Next, the results are
presented in Sections 3 and 4 discusses the main outcomes of this work.
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2. Materials and Methods
2.1. Study Case

The laboratory test setup mimics the lighting structure in a typical office environment.
This laboratory-scale system was inspired by that proposed in [15] and simplified to a
box with eight light bulbs and eight sensors, as depicted in Figure 2. The environment
is composed of eight zones, each consisting of a lamp and a sensor distributed unevenly
in each delimited room. This design permits us to consider “wall” constructions with
varying heights for delineating the influence between zones of illumination and the super-
position of light zones. Open environments or divided structures are possible to mimic,
but an increased division of the zones will limit the influence between them. In addition,
the performance of the box has been improved by adding two ways of simulating daylight,
with the possibility of showing its effects on the test setup system, as a disturbance. The
first one is to emulate the daylight electrically using the two additional lamps represented
as “D” and the last one is using the windows on the sides of the box to allow daylight
inside the rooms where we want to analyze its effects on the system. The positions of the
lamps, windows, and sensors are presented in Figure 3.

Figure 2. The scaled laboratory test setup system that mimic an office light landscape.

Figure 3. The corresponding positions of the lamps within the box.

A system, depicted in Figure 4, was built to measure the light intensity in the room at
the location of the window, with a sampling rate of 500 Hz. This system consists of four
components: (i) a Raspberry Pi zero W; (ii) a power bank (20,800 mAh); (iii) a 16 GB micro
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SD for storing data and (iv) a light sensor (BH1750FVI) measuring light intensity between 1
and 65,535 lx.

Figure 4. Light intensity measuring system and corresponding measured sunlight.

2.2. Modeling

The system is a strongly coupled dynamic multivariable process, in which the light
intensity will cross-couple across zones of the setup area. To calculate the interaction
coefficients, a staircase experiment was applied and the measured outputs of every light
for the case with office walls (half-height) are depicted in Figure 5. The identification of
these coefficients is performed as follows: a staircase signal is applied to the input of one
zone, while the other zones are kept at a zero input. This is carried out once for each
system’s input. The output values of each zone are plotted, resulting in a total of eight
figures. The coefficients belonging to system i’s input and system j’s output are calculated
as follows. First, the value of system j’s output at the third step of the staircase is determined
from the experiment with system i as the input. The third step was chosen as it lies in
the middle of the input range. Next, the obtained values are normalized with the output
value of the third step of system 1 with system 1 as the input. Note that if the height of the
walls is changed, the interaction gains are changed. An additional pseudorandom binary
sequence (PRBS) test signal is used to perform identification.

Figure 5. Staircase experiment on every light with accompanying sensor values for half-height
walls structure.

This system can be represented by means of a Hammerstein system [16]:

yj(s) =
8

∑
i=1

(L{ f (ui(t))}(s)P(s)Kij) (1)
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where yj is the output of the sensor in zone j, ui is the input of the lamp in zone i and f is a
linear correlation function:

f (x) = 0.5334x− 0.2388 (2)

The interaction gain is represented by the coupling matrix K, which is obtained from
the staircase experiment and which, for the case of half-height walls, has the values:

Kij =



1.19 0.34 0.11 0.06 0.63 0.25 0.11 0.05
0.86 1.11 0.43 0.15 0.49 0.60 0.26 0.10
0.18 0.45 1.15 0.53 0.12 0.24 0.67 0.29
0.08 0.12 0.52 1.34 0.06 0.08 0.29 0.78
0.31 0.16 0.09 0.07 1.18 0.51 0.14 0.07
0.23 0.24 0.18 0.11 0.70 1.11 0.77 0.13
0.12 0.19 0.32 0.24 0.13 0.37 1.08 0.40
0.06 0.08 0.22 0.43 0.06 0.12 0.51 1.19


(3)

The process transfer function model is represented by P(s) and is considered to be the
same for the dynamics of all the lamps:

P(s) =
33.09

s + 32.63
(4)

2.3. Configurations

Several configurations have been investigated, representing various arrangements of
office landscapes, which could also have differing functionality (e.g., office desk, coffee table,
printer area), thereby requiring different light levels. These configurations are represented
in Figure 6 and are studied in this work.

(a) (b) (c)

Figure 6. Various configurations for the office landscape area’s distribution of controlled zones.
(a) 4/4, (b) 3/3/2, and (c) 2/2/2/2.

2.4. Predictive Control Basics

Consider the generic 2×2 process model:{
y1(t) = x1(t) + n1(t)
y2(t) = x2(t) + n2(t)

(5)

where xi(t) is the model output, yi(t) is the process output and ni(t) represents the pro-
cess/model disturbance. The process models are defined as a function of past model
predictions and past inputs:{

y1(t) = f1[x1(t− 1), x1(t− 2), . . . , u1(t− 1), u1(t− 2), . . . , u2(t− 1), u2(t− 2), . . .]
y2(t) = f2[x2(t− 1), x2(t− 2), . . . , u1(t− 1), u1(t− 2), . . . , u2(t− 1), u2(t− 2), . . .]

(6)



Energies 2022, 15, 734 6 of 14

The disturbance model is represented as colored noise, where ei(t) is white noise and
Ci(q−1) and Di(q−1) are monic polynomials in the shift operator q:

n1(t) =
C1(q−1)

D1(q−1)
e1(t) and n2(t) =

C2(q−1)

D2(q−1)
e2(t) (7)

This filter can be designed in various ways as a function of the type of expected distur-
bance profile [17]. The elements in ui(t + k|t) are the optimal control actions, represented
as the sum of basic control actions uibase(t + k|t) and optimizing control actions δui(t + k|t):{

u1(t + k|t) = u1base(t + k|t) + δu1(t + k|t)
u2(t + k|t) = u2base(t + k|t) + δu2(t + k|t)

(8)

These control actions will lead to an optimal response yi(t + k|t), which is the sum of
the base response yibase(t + k|t) and the optimizing response yiopt(t + k|t):{

y1(t + k|t) = y1base(t + k|t) + y1opt(t + k|t)
y2(t + k|t) = y2base(t + k|t) + y1opt(t + k|t)

(9)

with y1opt(t + 1|t) calculated as follows:
y1opt(t + 1|t)
y1opt(t + 2|t)

. . .

. . .
y1opt(t + N2|t)

 =


h11

1 0 0 . . . 0
h11

2 h11
1 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
h11

N2
h11

N2−1 h11
N2−2 . . . g11

N2−Nu+1

 ·


δu1(t|t)
δu1(t + 1|t)

. . .

. . .
δu1(t + Nu − 1|t)



+


h12

1 0 0 . . . 0
h12

2 h12
1 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
h12

N2
h12

N2−1 h11
N2−2 . . . g12

N2−Nu+1

 ·


δu2(t|t)
δu2(t + 1|t)

. . .

. . .
δu2(t + Nu − 1|t)


(10)

where the parameters h are the coefficients of the unit impulse response and the parameters
g are the unit step response of the system. A similar expression can be obtained for
y2opt(t + 1|t). The control horizon Nc determines after which step the control action
remains constant. The prediction horizon N2 determines the number of samples of the
future control actions that are calculated. In matrix notation, the key equations are:{

Y1 = Y1base + G11 ·U1 + G12 ·U2

Y2 = Y2base + G21 ·U1 + G22 ·U2
(11)

The extended prediction self-adaptive control (EPSAC) algorithm is implemented hereafter,
and was previously validated in several simulations and experimental applications [18–20].

2.5. Distributed Control Scheme

An effective distributed model predictive control (DiMPC) scheme was proposed
in [21], as illustrated in Figure 7. Every dynamic subsystem has its own controller, which
calculates the optimal solution for its own subsystem, based on the information received
from neighboring sub-systems. To reach the optimal solution, the optimization algorithm
is performed iteratively.
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Figure 7. Concept of the distributed model based predictive control DiMPC.

The iterative DiMPC structure consists of five steps. These steps can be implemented
for one objective, or for prioritized sequential objectives, as in Figure 8.

• Step 1: Subsystem i receives an optimal local control action δUi at the iterative time
as iter = 0 according to the EPSAC algorithm, and the local control action δUi can be
rewritten as δUiter

i , where δUi indicates the vector of the optimizing future control
actions with a length of Nci;

• Step 2: The δUiter
j (j ε Ni) is communicated to the subsytem i, and the δUiter+1

i is

calculated again with the δUiter
j from the other subsystems;

• Step 3: If the terminal conditions || δUiter+1
i − δUiter

i || ≤ εi ∨ iter + 1 > iter are
reached, the Uiter+1

i is adopted, where εi is the positive value and iter indicates the
upper bound of the number of iterations. Otherwise, the iter is set as iter = iter + 1,
and return to step 2;

• Step 4: Calculate the optimal control effort as Ut = Ubase + δUiter, and the control effort
is applied to the system;

• Step 5: Set the discrete time sample t = t + 1 and return to step 1.

The number of iterations is often limited in practice to a trade-off number between the
computational time and solution optimality.

2.6. Multi-Objective Optimization

The computation time is a key element when one deploys control algorithms in real-
time platforms. A practical set of multi-objective optimization algorithms for industrial
multivariable PID control is proposed in [22]. For predictive control applications, a first-
hand solution is to minimize the prediction horizon [23]. However, this often results in
aggressive control actions and overshoot in closed-loop output variables. Alternatively, one
may examine the benefit of using a sub-optimal solution from a quadratic programming
solver, as often in practice the sub-optimal solution gives satisfactory results [18]. In the
limit, a non-periodic sampling of the control action, e.g., triggered by events such as context
changes beyond tolerance intervals, can significantly reduce the overall computational
cost [24].
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Multi-objective distributed control has a generic baseline structure that consists of three
sequential layers: safety, tracking performance, and energy [25,26]. Obviously, the highest
priority is assigned to safety. The flowchart is shown in Figure 8.

Figure 8. Flowchart multi-objective distributed model-based predictive control.

At the start of the optimization process, all initial conditions are set to zero. With these
initial values, the controllers compute an optimal control effort in the absence of constraints.
Constraints are added for ensuring system safety when the predicted inputs or outputs
are found to be outside the safety zone bounds. After achieving safety, the next objective
to be prioritized is tracking. In the case that the tracking error is larger than the tolerance
error (Error > ε), the focus will move to performance, whereas the control effort will
remain at δUiter

i . This control effort will be the solution of the optimization function, which
minimizes the cost function. In the case that the tracking error is already within the tolerance
error (Error < ε), the focus moves to energy and the control is maintained at δUiter

i = 0
(the actuators are not required to make any changes). The same terminal conditions
(|| δUiter+1

i − δUiter
i || ≤ εi ∨ iter + 1 > iter) are applied as in the original distributed

MPC [21]. Each of these sequential objectives can be checked within a sampling period or
within an iteration.

The multi-objective optimization has already been validated on systems with fast
and slow dynamics [26]. It provides a significant reduction in computational times while
providing good closed-loop performance for reference tracking. In addition, MODiMPC
sets its four criteria (safety, constraints, energy, and tracking performance) in different
subproblems instead of calculating an optimum all at once, and this large time difference
can be explained as follows. When a solution hits its constraints, both methods (DiMPC
and MODiMPC) will have the same computing time. When the solution does not hit its
constraints, the MODiMPC will be much faster.

3. Results

In the distributed MPC (DiMPC) there are two terminal conditions (|| δUiter+1
i − δUiter

i
|| ≤ εi ∨ iter + 1 > iter) for the execution of the algorithm within a sampling period.
For these simulations, the parameters itermax = 10 and εi = 0.01 Volts are used. The value
εi = 0.01 Volts was chosen to ensure the feasibility of the optimal solution. Whenever the
difference between two iterations is smaller than this value, further iterations are useless.
The gained cost minimization result with respect to the effort required to perform the extra
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iterations is non-essential. Moreover, a voltage difference of 0.01 Volts will not influence
the light due to dead-band limitation.

The number of iterations for the DiMPC in each configuration simulation is given in
Figure 9.

(a) (b) (c)

Figure 9. The number of iterations executed by the distributed MPC algorithm for each of the
following configurations for the office landscape area: (a) 4/4, (b) 3/3/2, and (c) 2/2/2/2.

An example of the output light level and control effort for the 4/4 configuration setup
is given in Figures 10 and 11, respectively. A similar performance was obtained for the
other configurations.

Figure 10. Output performance for the distributed MPC algorithm for the 4/4 configuration.
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Figure 11. Control effort for the distributed MPC algorithm for the 4/4 configuration.

In the multi-objective distributed model predictive control (MoDiMPC) structure, we
imposed the same terminal conditions as in DiMPC. These are (|| δUiter+1

i − δUiter
i || ≤ εi

∨ iter + 1 > iter) for the algorithm that is executed within the sample period. For these
simulations, we have itermax = 10 and εi = 0.01 Volts. A maximal error of 2% is required in a
steady state. The average reference is 2.5 Volts, which gives a tolerance error ε of 0.05 Volts.

The number of iterations for the MoDiMPC in each configuration simulation is given
in Figure 12.

(a) (b) (c)

Figure 12. The number of iterations executed by the multi-objective distributed MPC algorithm for
each of the following configurations for the office landscape area: (a) 4/4, (b) 3/3/2, and (c) 2/2/2/2.

A variable external light on a mixed sun/cloudy day was measured, and tested in
a configuration as depicted in Figure 13. The external light was applied to the rest of
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the setup via an additional bulb, as depicted in Figure 2. The setpoint for the light level
required in Zone 1 was different from that in Zone 2.

Figure 13. Implementation of external light and its configuration, via the input of additional bulbs
(as seen in Figure 2).

The results of the controller are given in Figure 14 for the output of Zone 1 and Zone 2.
It can be observed that despite the strong interaction between the zones and the external
light disturbance, the controller tracks the setpoint in both areas.

Figure 14. Control results for external light disturbance.

The ergonomics index corresponds to an additional constraint on the output error,
keeping it within a ±5% interval. Larger fluctuations in the light level are detectable
by the human eye, resulting in fatigue and the loss of productivity. The comparison of
various results obtained is summarized in Table 1. The objective is examined with respect to
ergonomics as the % of total simulation time that this condition is not fulfilled and energy-
saving as the % potential for the presented configurations, using the 4/4 configuration as
a reference. In this test we did not investigate the effect of requesting different reference
values as a function of the functionality of the office area.
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Table 1. CPU time, iterations, ergonomics, and energy savings with respect to the configuration 4/4
(reference).

Control Area CPU Time (s) Iter Ergo (0–5) Energy (0–100%)

DiMPC 3/3/2 32.75 8 4.54 16%
DiMPC 2/2/2/2 31.76 6 3.53 17%

MoDiMPC 3/3/2 0.0453 8 3.23 16%
MoDiMPC 2/2/2/2 0.0443 6 3.87 17%

4. Discussion

The wastage of valuable energy in large office buildings can be avoided if energy
resources are used considering an effective and clever usage of daylight, as well as human
needs and illumination requirements. Moreover, the employees can be more productive if
they are provided with the same intensity of the light. Nowadays, further requirements
for social distancing in the office areas will influence the illumination pattern and overall
ergonomics of the building.

The results of our simulation study indicated that distributed predictive control with
prioritized multi-objective optimization provides a significant reduction in computational
times, while providing good closed-loop performance for reference tracking. The setpoint
trajectory was adequately followed in the presence of a strong interaction between various
areas of interest and in the presence of a nominal daily sunlight disturbance. Given the
configuration of the laboratory setup, no significant visible influence has been observed
from the external light source (daily sunlight). This may be an effect of the limited space for
adding an external source, i.e., one window for the entire office area. In this study, the main
factor in determining energy-savings and ergonomics was the office’s landscape structure.

The limitations of this study are several. The effect of disturbances from outside, such
as periodic shadowing from windmill periodicity or other factors of interest (weather),
were not investigated. However, the use of the MPC structure will allow the design
of specific disturbance filters for band-limited frequency intervals, corresponding to the
energy of the measured disturbance signals, providing a good solution for testing different
environment disturbances.

The effects on the optimizer and control performance under the conditions of using a
mixed artificial-natural light source optimization strategy were not investigated. This may
have an important impact when energy contracts of percentages of renewable resources are
economically beneficial in terms of reducing the overall cost of energy usage. The resource
allocation of such a network has an important impact on the overall dynamics of the system,
and it is necessary to investigate its effects.

Finally, the learning capability of the proposed control strategy was not implemented
but it is feasible. When a landscape structure changes, the interaction gains may also change,
or user-defined light levels may vary depending on the functionality of the controlled areas.
Hallways and areas of lower cognitive tasks will have lower light-level requirements than
areas of intensive cognitive tasks. Automatic gain scheduling or tuning may prove to
have a positive impact on ergonomics. The implementation of successful control strategies
in office buildings requires the division of the environment and the introduction of local
controllers per zone with distributed architectures.

Other applications could benefit from the use of the proposed methodology, by con-
sidering the control of the light level in any building environment that requires better
energy optimization, such as industrial or agriculture settings, where a controlled envi-
ronment is mandatory (e.g., plants that require continuous light to grow, animals that are
light-dependent, etc.). The presented methods can be also applied in offices where a larger
energy optimization strategy can be introduced, as part of the control of HVAC (heating,
ventilation and air conditioning) systems control. Furthermore, research on controlling resi-
dential lighting can be carried out, if further studies confirm the influence of the ergonomic
light level on a person’s productivity and life.
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5. Conclusions

This paper illustrates the influence of lighting in different structural configurations
in a test setup system. The results were obtained through the implementation of a fast
optimization method with distributed predictive control. They were expressed in terms of
CPU time, the number of iterations to converge within a sample for an optimal solution,
ergonomics (illumination comfort as a function of structure), and energy-saving potential
(as a function of structure). A reduction in energy consumption as a function of landscaping
structure in the controlled zones was achieved up to 20%. The CPU time is a lot smaller for
MODiMPC when the solution does not hit its constraints. The number of iterations differed
from six to eight for each control strategy.

The results obtained are strongly dependent on the system’s configuration, while
obtaining overall ergonomic and economic office light-level control for each landscape
structure.

Future work implies the implementation of the solutions that address the study
limitations. Further research should take into consideration the methods that provide
optimal results. The MODiMPC 5% structure could also be tested with applied disturbances.
All the tests were conducted in simulations in a laboratory setup, but applying the same
methods to a real environment could facilitate the transfer of knowledge to practice.
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