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This paper presents the determination of Eringen’s small length scale coefficient e0 for buckling of

nonlocal Timoshenko beam from a microstructured beam model. The microstructured beam model

is composed of discrete rigid elements (of equal length), which are connected by rotational and

shear springs that model the bending and shearing behaviors in a beam. The exact solution of e0

is given for nonlocal Timoshenko beam with small length scale term appearing in the normal

stress-strain relation only. It is shown that e0 approaches 1=
ffiffiffiffiffi
12
p

� 0:289 which coincides with the

one calibrated for nonlocal Euler beams. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821246]

I. INTRODUCTION

Identification of the small length scale parameter is

important when dealing with the characteristics of the micro-

structure in materials.1 In order to allow for the small length

scale effect in nanostructures, Eringen’s nonlocal elasticity2

has been widely adopted in studies on nano-scale mechanical

behavior.3 For example, Wang4 proposed nonlocal Euler and

Timoshenko beam theories for wave propagation problem.

Wang and Hu5 found that nonlocal Timoshenko beam theory

can predict good agreements of wave speeds in wave propa-

gation with those obtained by molecular dynamics simula-

tions on carbon nanotubes. Lu et al.6 studied free vibration

of nonlocal Euler beams with various boundary conditions.

Wang and Varadan7 reported the frequencies of nonlocal

Euler and Timoshenko beams with simply supported ends.

Their theory has been developed in terms of a double-beam

theory in order to represent the free vibration of double-

walled carbon nanotubes. Wang and Liew8 studied the bend-

ing of nonlocal Euler and Timoshenko beams. Reddy9

formulated the governing equations for bending, buckling,

and free vibration of beams based on nonlocal Euler,

Timoshenko, Reddy, and Levinson beam theories.

In Eringen’s nonlocal elasticity, the stress at a point is

defined to be dependent on the interaction of all points

within the range of interactions.2 According to Eringen,2 the

nonlocal constitutive relation is given by

ð1� l2‘2
er2Þr ¼ D : e; (1)

where D is the fourth-order elasticity tensor, r and e are

macroscopic stress second-order tensor and strain tensors,

respectively. The notation “:” represents the double

contraction between a fourth-order tensor and a second-order

tensor and r2 is the Laplacian operator. Note that l ¼ e0a
‘e

where the quantity e0a represents an intrinsic characteristic

length of a material. This intrinsic length is the size of a

representative elementary volume over which the local stress

is integrated. The length scale coefficient e0 is a constant

appropriate to each material and a is an internal characteris-

tic length (e.g., lattice spacing and granular distance),

and ‘e is an external characteristic length (e.g., crack length,

wavelength). It has been found that a larger value of e0

implies a more significant effect of the small length

scale.10,11 Nevertheless, owing to the difficulty in determin-

ing the internal characteristic length a, most researchers have

adopted e0a as a single parameter.4 For example, a conserva-

tive estimate of the scale coefficient e0a < 2:0 nm for a

single walled carbon nanotube (SWCNT) if the measured

frequency value for the SWCNT is assessed to be greater

than 10 THz.12

In order to identify the Eringen’s small length scale

coefficient e0, a promising approach is to make use of the an-

alytical equivalence between the discrete microstructured

models and nonlocal continuum models. For example, based

on this equivalence, Eringen2 identified e0 as 0.39 by match-

ing the dispersion curves of plane waves from nonlocal

theory to the Born-K�arm�an model of lattice dynamics. In a

discrete lattice model, the length of a representative micro-

structure is interpreted as the length of a discrete element

or accommodated by the inter-particle spring stiffness. The

basic assumption based on the equivalence between a dis-

crete lattice model and the nonlocal continuum model is that

the concerned wavelength is much longer than the character-

istic length, which could be taken as the inter-particle

distance. The analytical relations between equivalent contin-

uum models and discrete lattice models have been confirmed

by recent results. It has been reported that the higher

order gradient continuum theories can be derived from
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discrete lattice models.13,14 Askes and Metrikine15 presented

that continuum models can be related to discrete models

through continualisation strategies. From these continualisa-

tion strategies, not only the classical continua but also

higher-order continua in one-dimension and two-dimension

can be developed. The continualisation on the governing

equation and on the energy furnished the identical results.

Pichugin et al.16 established equivalence between the dis-

crete lattice model and higher-order continuum theories.

Polyzos and Fotiadis17 derived Mindlin’s first and second

strain gradient elastic theories from simple lattice and contin-

uum models.

Based on a microstructured Euler beam model compris-

ing rigid segments connected by rotational springs, Challamel

et al.18,19 showed that e0 is 0.289 for buckling of nonlocal

Euler beams with any combination of end conditions. The

present study extends this work to determine the small length

scale coefficient e0 for the buckling of nonlocal Timoshenko

beams that allows for both the effects of small length scale

and transverse shear deformation. The earlier microstructured

Euler beam model used for calibrating e0 will be refined to

include shear springs at the nodes. This new model will be

referred to as microstructured Timoshenko beam model. The

paper is organized as follows. The governing equation and

boundary condition for the buckling of nonlocal Timoshenko

beam with simply supported ends will be developed based on

the method of weighted residuals. The length scale coeffi-

cients in the Eringen’s nonlocal theory are then estimated by

comparing the buckling load formulations with the exact

expression furnished by a microstructured Timoshenko beam

model.

II. NONLOCAL TIMOSHENKO BEAM THEORY AND
SOLUTION FOR SIMPLY SUPPORTED BEAM

Eringen’s normal and shear stress-strain relations are

given by

rxx � ‘2
c

d2rxx

dx2
¼ Eexx and rxz � a‘2

c

d2rxz

dx2
¼ Gcxz; (2)

where rxx is the normal stress, exx is the normal strain, rxz is

the shear stress, cxz is the shear strain, E is the Young’s mod-

ulus, G is the shear modulus, ‘c ¼ e0a is the intrinsic charac-

teristic length, and a is a scalar indicator which may take the

value of either 0 or 1. When a ¼ 0, we obtain the case where

the small length scale effect is neglected in the shear stress-

strain constitutive relation. When a ¼ 1, we have the case

where the small length scale effect is considered in shear

stress-strain constitutive relations.

According to the Timoshenko beam theory,20 the strain-

displacement relations are given by

exx ¼ �z
d/
dx

and cxz ¼
dw

dx
� /; (3)

where z is the distance away from the normal plane, / is the

rotation due to bending, dw
dx � / is the rotation due to shear-

ing since dw
dx is the total slope of a deformed cross section.

Multiplying Eq. (2) by zdA and integrating over the

cross sectional area A of the beam, one obtains

M � ‘2
c

d2M

dx2
¼ �EI

d/
dx
; (4a)

Q� a‘2
c

d2Q

dx2
¼ jGA

dw

dx
� /

� �
; (4b)

where M is the bending moment, Q is the shear force, I is the

second moment of area, and j is the shear correction factor.

The equilibrium equation for a Timoshenko beam under a

compressive axial load P is given by Timoshenko20,21

dM

dx
� Q ¼ 0; (5a)

dQ

dx
� P

d2w

dx2
¼ 0: (5b)

By substituting Eqs. (5) into Eqs. (4), the nonlocal bend-

ing moment and nonlocal shear force can be expressed as

M ¼ �EI
d/
dx
þ ‘2

cP
d2w

dx2
; (6a)

Q ¼ jGA
dw

dx
� /

� �
þ a‘2

cP
d3w

dx3
: (6b)

In view of Eqs. (6a) and (6b), the governing equations

given by Eqs. (5a) and (5b) can be written as

jGA
dw

dx
� /

� �
þ EI

d2/
dx2
� ð1� aÞ ‘2

cP
d3w

dx3
¼ 0; (7a)

jGA
d2w

dx2
� d/

dx

� �
� P

@2w

@x2
þ a‘2

cP
d4w

dx4
¼ 0: (7b)

When a ¼ 0 , Eqs. (7a) and (7b) reduce to the fourth order

differential equations of the nonlocal Timoshenko beam as

derived earlier by Wang et al.22 However, when a ¼ 1, one

has to contend with a sixth order differential equation as

derived by Reddy and Pang.23

The method of weighted residuals24,25 may be used on

the established governing equations (7a) and (7b) to obtain

the boundary conditions. One can adopt d/ and dw as resid-

uals for Eqs. (7a) and (7b), respectively. Therefore, the weak

formulation of Eqs. (7a) and (7b) can be written asðL

0

jGA
dw

dx
� /

� �
þ EI

d2/
dx2
� ð1� aÞ ‘2

cP
d3w

dx3

� �
d/dx ¼ 0;

(8a)ðL

0

jGA
d2w

dx2
� d/

dx

� �
� P

@2w

@x2
þ a‘2

cP
d4w

dx4

� �
dwdx ¼ 0: (8b)

After integrating Eqs. (8a) and (8b) by parts, one obtains

0 ¼
ðL

0

EI
d/
dx

d
d/
dx
� ð1� aÞ ‘2

cP
d2w

dx2
d

d/
dx

�

þ jGA
dw

dx
� /

� �
d/

�
dx

þ ð1� aÞ‘2
cP

d2w

dx2
d/

� �L

0

� EI
d/
dx

d/

� �L

0

(9a)
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and

0¼
ðL

0

jGA
dw

dx
�/

� �
d

dw

dx
þP

dw

dx
d

dw

dx
�a‘2

cP
d2w

dx2
d

d2w

dx2

� �
dx

� jGA
dw

dx
�/

� �
dw

� �L

0

þ P
dw

dx
dw

� �L

0

� a‘2
cP

d3w

dx3
dw

� �L

0
þ a‘2

cP
d2w

dx2
d

dw

dx

� �L

0
: (9b)

In view of Eqs. (9a) and (9b), the boundary conditions

are given by

Specify

w

dw

dx

/

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

or

jGA
dw

dx
� /

� �
� P

dw

dx
þ aP‘2

c

d3w

dx3

a ‘2
cP

d2w

dx2

EI
d/
dx
� ð1� aÞ‘2

cP
d2w

dx2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

(10)

Consider a nonlocal Timoshenko beam with simply sup-

ported ends. The boundary conditions for such a supported

nonlocal Timoshenko beam are

w ¼ 0;
d2w

dx2
¼ 0;

d/
dx
¼ 0 when a ¼ 1 (11)

and

w ¼ 0; EI
d/
dx
� ‘2

cP
d2w

dx2
¼ 0 when a ¼ 0: (12)

A. Case when a51

For the case when a ¼ 1, the buckling solution of the

nonlocal Timoshenko beam is obtained by solving Eqs. (7a)

and (7b) with boundary conditions given in Eq. (11) as

shown below. By using the following nondimensional terms:

�x ¼ x

L
; �w ¼ w

L
; l¼ ‘c

L
¼ e0a

L
; Ka ¼

PaL2

EI
; X¼ EI

jGAL2

(13)

and after decoupling the deflection and rotation variables,

the governing equations (7a) and (7b) can be written as

d6 �w

d�x6
þ A1

d4 �w

d�x2
þ A2

d2 �w

d�x2
¼ 0; (14a)

d5/
d�x5
þ A1

d3/
d�x3
þ A2

d/
d�x
¼ 0; (14b)

where

A1 ¼ �
1

l2
� 1

X
þ 1

l2K1X
;

A2 ¼
1

l2X
ðKa ¼ K1 for present caseÞ: (15)

The general solution to Eq. (14a) is given by

�wð�xÞ ¼C1 coshðr�xÞ þ C2 sinhðr�xÞ þ C3 sinðs�xÞ
þ C4 cosðs�xÞ þ C5�x þ C6; (16)

while the solution to Eq. (14b) is given by

/ð�xÞ ¼D1 sinhðr�xÞ þ D2 coshðr�xÞ þ D3 cosðs�xÞ
þ D4 sinðs�xÞ þ D5; (17)

where

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 � 4A2

p
2

s
; (18a)

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 � 4A2

p
2

s
; (18b)

and constants Ci (i ¼ 1; 2 � � � 6) and Dj(j ¼ 1; 2 � � � 5) are

related by

D1 ¼ gC1; D2 ¼ gC2; D3 ¼ vC3; D4 ¼�vC4; and D5 ¼C5;

(19)

where v ¼ s
1þs2X and g ¼ r

1�r2X . Equation (19) is obtained by

substituting Eqs. (16) and (17) into Eq. (7a).

The boundary conditions for a simply supported beam

are specified in Eq. (11). They can be expressed in non-

dimensional forms as

at �x ¼ 0 and �x ¼ 1 : �w ¼ 0;
d2 �w

d�x2
¼ 0; and

d/
d�x
¼ 0: (20)

By substituting Eqs. (16) and (17) into Eq. (20), one obtains

the following set of homogenous equation in terms of the

unknown constants Ci (i ¼ 1; 2 � � � 6) after replacing Dj

(j ¼ 1; 2 � � � 5) using Eq. (19):

1 0 0 1 0 1

r2 0 0 �s2 0 0

rg 0 0 �sv 0 0

coshðrÞ sinhðrÞ sinðsÞ cosðsÞ 1 1

r2 coshðrÞ r2 sinhðrÞ �s2 sinðsÞ �s2 cosðsÞ 0 0

rg coshðrÞ rg sinhðrÞ �sv sinðsÞ �sv cosðsÞ 0 0

2
66666666664

3
77777777775

6�6

�

C1

C2

C3

C4

C5

C6

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

6�1

¼ 0: ð21Þ

For a nontrivial solution, the determinant of Eq. (21)

must vanish. This furnishes the following characteristic

equation:

�r2s2ðrv� sgÞ2 sinhðrÞ sinðsÞ ¼ 0 ! sinðsÞ ¼ 0: (22)
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Based on Eqs. (18b) and (22), one can develop a buck-

ling load relationship between nonlocal Timoshenko beam

and the classical Euler beam, i.e.,

Pa¼1 ¼
PE

1þ PE

jGA
þ ‘2

c

PE

EI
þ ‘2

c

PE

jGA

PE

EI

; for a ¼ 1; (23)

where PE is the buckling load of classical Euler beam with

simply supported ends and is given by

PE ¼
p2EI

L2
: (24)

B. Case when a50

Consider next the case when a ¼ 0, i.e., when the small

length scale is ignored in the shear stress-strain relation in

Eq. (2). The solution has previously being obtained by Wang

et al.22 and it is given by

Pa¼0 ¼
PE

1þ PE

jGA
þ ‘2

c

PE

EI

; for a ¼ 0: (25)

It is interesting that one can obtain the buckling load given

by Eq. (25) from Eqs. (14) by dropping the sixth-order term.

This approximation has been previously adopted by Reddy

and Pang.23 The nonlocal buckling loads obtained from

Eqs. (23) and (25) with respect to l ¼ ‘c

L ¼
e0a
L are compared

in Figure 1 for X ¼ 1=300 and X ¼ 1=600. The significance

of these X values is that they represent typical properties of

macro scale materials26 and nano scale materials,22,23 respec-

tively. It can be seen from Figure 1 that the differences

between the buckling loads (obtained from nonlocal beam

theories with a ¼ 1 and a ¼ 0) are negligibly small.

Therefore, one can adopt the nonlocal Timoshenko beam

with a ¼ 0 for calibrating the Eringen’s small length scale

coefficient in Sec. III.

III. MICROSTRUCTURED TIMOSHENKO BEAM MODEL
FOR SIMPLY SUPPORTED BEAM

Consider a microstructured Timoshenko beam model

comprising n rigid segments (each segmental length a¼L/n)

that are connected by rotational and shear springs. The

microstructured Timoshenko beam is subjected to a com-

pressive axial load P. The problem at hand is to determine

the buckling load of the microstructured Timoshenko beam

with simply supported ends.

To illustrate the microstructured Timoshenko beam

model, a five segment beam example is shown in Figure 2.

There are four rotational springs and five shear springs in the

five-segment microstructured Timoshenko model. At each

node j, there are two degrees of freedom, representing the

nodal transverse displacement wj and nodal rotation hj. For

a simply supported end with n segments, one will have

w1 ¼ wnþ1 ¼ hnþ1 ¼ 0 at the ends.

The strain energy function due to deformed rotational

springs is given by Ostoja-Starzewski27 as

Vb ¼
1

2

Xn�1

i¼1

Cðhjþ1 � hjÞ2; (26)

where C ¼ nEI
L ¼ EI

a and L ¼ na. The quantity n is the num-

ber of discrete elements. The value of C might be different

for other boundary conditions instead of simply supported

ends. This assumption is the same with the microstructured

Euler beam model as described in the authors’ previous

paper.19

The strain energy function due to deformed shear spring

is given by

Vs ¼
1

2

Xn

j¼1

Sðwjþ1 � wj � ahjÞ2; (27)

where S ¼ njGA
L ¼ jGA

a .

The work done by the compressive axial load on the

microstructured Timoshenko beam is given by Challamel

et al.19

W ¼ 1

2

Xn

j¼1

Pa
wjþ1 � wj

a

� �2

: (28)

Therefore, the total potential energy function can be

expressed as

PT ¼
1

2

Xn�1

j¼1

Cðhjþ1� hjÞ2þ
1

2

Xn

j¼1

Sðwjþ1�wj� ahjÞ2

� 1

2

Xn

j¼1

Pa
wjþ1�wj

a

� �2

: (29)

Obviously this energy function in Eq. (29) for microstruc-

tured Timoshenko beam would reduce to microstructured

Euler beam18 as one sets the shear angle to zero. For exam-

ple, in the five-segment beam with simply supported ends,

we have
FIG. 1. Nondimensional buckling load for nonlocal Timoshenko beam with

simply supported ends.
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h1 ¼
w2

a
; h2 ¼

w3 � w2

a
; h3 ¼

w4 � w3

a
;

h4 ¼
w5 � w4

a
; h5 ¼ �

w5

a
: (30)

Interestingly, by considering jGA!1 in this buckling

load formulation, the buckling load parameter of the five

segment Timoshenko beam reduces to 9.5492 which is the

solution for the five segment Euler beam (see Table 1 of

Challamel et al.18). If we keep increasing the number of

elements, the buckling load converges to the buckling load

of the classical Timoshenko beam.

The Euler-Lagrange equations based on the energy func-

tion in Eq. (29) are

aSðwjþ1 � wj � ahjÞ þ Cðhjþ1 � 2hj þ hj�1Þ ¼ 0; (31a)

S½wjþ1 � 2wj þ wj�1 � aðhj � hj�1Þ�

� P

a
ðwjþ1 � 2wj þ wj�1Þ ¼ 0: (31b)

By eliminating h, the simplified equation can be written as

½wjþ2 � 4wjþ1 þ 6wj � 4wj�1 þ wj�2�

þ P0T
aS� P0T

S

C
a2ðwjþ1 � 2wj þ wj�1Þ ¼ 0: (32)

Here, we use P0T to replace P in Eq. (31b), representing the

axial force applied on the Timoshenko beam. It is noted that

Eq. (32), applicable when j � 3, is a fourth-order model and

rigorously corresponds to a fourth-order differential equation

of the nonlocal Timoshenko beam model with a ¼ 0.

The microstructured Euler beam model (without the

shear springs) with simply supported ends has the following

total energy function:

PE ¼
1

2

Xn

j¼2

C
wjþ1 � 2wj þ wj�1

a

� �2

� 1

2

Xn

j¼1

Pa
wjþ1 � wj

a

� �2

: (33)

From Eq. (33), one can have the corresponding Euler-

Lagrange equation for the microstructured Euler beam as

½wjþ2 � 4wjþ1 þ 6wj � 4wj�1 þ wj�2�

þ P0Ea

C
ðwjþ1 � 2wj þ wj�1Þ ¼ 0; (34)

where we use P0E to replace P in Eq. (33). This formulation

is applicable when j � 3.

By comparing Eqs. (32) and (34), their mathematical

similarity28 allows one to deduce that

P0E
C

a ¼ P0T
�P0T þ aS

S

C
a2: (35)

Therefore, the buckling loads of the microstructured

Timoshenko beam and the microstructured Euler beam are

related by

P0T ¼
P0E

1þ P0E
aS

: (36)

It has been shown18 that the exact buckling load of the

microstructured Euler beam is given by

�pE ¼
P0EL2

EI
¼ 2n sin

p
2n

� �� �2

¼ p2 1� p2

12

1

n2
þ p4

360

1

n4
þ � � �

� �
: (37)

Therefore, the non-dimensional exact buckling load of the

microstructured Timoshenko beam is

�pT ¼
P0TL2

EI
¼ �pE

1þ �pEEI

jGAL2

: (38)

Note that the mathematical similarity is valid only if both the

governing equation and boundary conditions match. Through

the mathematical similarity between Eqs. (32) and (34), the

deflections of the microstructured Timoshenko beam and the

microstructured Euler beam are related by

wT
j ¼ BwE

j ; (39)

where B is an arbitrary constant.

FIG. 2. Five-segment microstructured

Timoshenko beam model.
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The simply supported boundary conditions in the micro-

structured Euler beam model are imposed by setting wE
j ¼ 0

and ignoring the rotational springs at both ends.18,19 These

boundary conditions are readily realized in the microstruc-

tured Timoshenko model by defining wT
j ¼ 0 and neglecting

the rotational springs at the boundaries. Therefore, in view-

ing of Eq. (39), the boundary conditions for simply sup-

ported microstructured Euler and Timoshenko models have

identical form as it is only necessary to define the displace-

ment wj ¼ 0 at the boundaries.

In view of Eqs. (25) and (38), one obtains the following

expression for Eringen’s small length scale coefficient in the

nonlocal Timoshenko beam theory (i.e. a ¼ 0):

e0 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4n2 sin2 p

2n

� �

p2 sin2 p
2n

� �
vuuuuut

¼ 1

2
ffiffiffi
3
p 1þ p2

40

1

n2
þ � � �

� �
! lim

n!1
e0 ¼

1

2
ffiffiffi
3
p : (40)

It is interesting to note that the value of e0 is the same value

as the one obtained for the nonlocal Euler beam. The quan-

tity n ¼ L
a denotes the ratio of the external length to the

internal characteristic length. When n > 10, the value of e0

converges to 1

2
ffiffi
3
p for the present nonlocal Timoshenko beam

with a ¼ 0.

To illustrate the formulation of e0 in Eq. (40), we gener-

ate the numerical values for buckling load from the micro-

structured Timoshenko beam based on Eqs. (37) and (38).

Consider the material properties given in the paper by Wang

et al.22 The buckling loads are also produced by nonlocal

Timoshenko beam with e0 ¼ 1

2
ffiffi
3
p . As shown in Figure 3, the

results by nonlocal Timoshenko beam match well with that

furnished by the microstructured Timoshenko model. Note

that the value e0 ¼ 1

2
ffiffi
3
p has been identified for nonlocal Euler

beam under buckling.19 It is therefore found that e0 is not

affected by the kinematic assumptions of the Timoshenko

theory.

IV. SUMMARY AND CONCLUSIONS

In this paper, an analytical expression has been obtained

for Eringen’s length scale coefficient e0 for the buckling

problem of nonlocal Timoshenko beams by using a micro-

structured Timoshenko beam model. The length scale coeffi-

cient is found to be asymptotic to e0 ¼ 1

2
ffiffi
3
p , which coincides

with the one obtained for nonlocal Euler beam. Future stud-

ies could examine the Eringen’s length scale coefficient e0

for buckling of nonlocal Timoshenko beams with other

boundary conditions.
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