
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 9, SEPTEMBER 1990 883

ERNEST: A Semantic Network System for Pattern
Understanding

HEINRICH NIEMANN, MEMBER, IEEE; GERHARD F. SAGERER, MEMBER, IEEE, STEFAN SCHRGDER,
AND FRANZ KUMMERT

Aktract-This paper gives a detailed account of a system environ-

ment for the treatment of general problems of image and speech un-

derstanding. It provides a framework for the representation of de-

clarative and procedural knowledge based on a suitable definition of a

semantic network. The syntax and semantics of the network are clearly

defined. In addition, the pragmatics of the network in its use for pat-

tern understanding is defined by several rules which are problem in-

dependent. This allows one to formulate problem-independent control
algorithms. Complete software environments are available to handle

the described structures. The general applicability of the network sys-

tem is demonstrated by short descriptions of three applications from

different task domains.

Index Terms-Graph search, image understanding, knowledge ac-

quisition, problem-independent control, semantic network, speech un-

derstanding, system shell.

I. INTRODUCTION

T HERE has been an increasing interest in the auto-
matic interpretation of sensor signals like images, im-

age sequences, or continuous speech. The goal is to com-
pute a symbolic description of those aspects or contents
of the signal which are relevant in a particular application;
this may be viewed as a general problem of pattern rec-
ognition. It is generally agreed that this requires the ac-
quisition, representation, and use of task-specific knowl-
edge by the system. Processing proceeds from the sensor
signal, represented by an array of integer sample values,
via different levels of more and more abstract represen-
tation of the content of the signal. Representational levels
in image understanding may be, for example, edges and
regions obtained from an initial segmentation, three-di-
mensional surfaces, symbolic names of objects and their
relations, conceptions of motion like a “heart cycle” or
a “pedestrian crossing a street,” interpretations concem-
ing a diagnostic description like “hypokinetic motional
behavior,” concerning a situation like “congested high-

way, ” or concerning an event like “placing a part into a
device for assembly. ” These examples demonstrate that
image understanding requires representation of knowl-
edge about quite different aspects of a sensor signal and
on different levels of abstraction. Several systems have

Manuscript received January 4, 1988; revised January 8, 1990. Rec-
ommended for acceptance by R. De Mori.

The authors are with the Lehrstuhl fiir Informatik 5 (Mustererkennung),
Friedrich-Alexander-UniversitLt Erlangen-Niimberg, D-8520 Erlangen,
West Germany.

IEEE Log Number 9036248.

been designed and realized demonstrating the feasibility
of knowledge-based processing of image or speech sig-
nals; for example, see the systems described in [4], [l 11,
LW, t311, [331, and [411.

A system capable of performing the above-mentioned
processing basically consists of the following four com-
ponents [29].

1) Methods for low-level preprocessing and initial seg-
mentation. This has usually been done so far without the
employment of explicitly represented knowledge, al-
though there are some exceptions to this, for example,
m.

2) Knowledge for doing task-specific recognition and
understanding of the segmentation results.

3) Control for determining a processing strategy by ac-
tivating the appropriate algorithms at the proper time using
a relevant subset of the available data.

4) Results database for storing the results of processing
and making them available to processing algorithms as
necessary.

It may be convenient to also have the following three
additional components in a system.

5) Knowledge acquisition for automatic learning of the
task-specific knowledge.

6) Explanation for a convenient assessment and visu-
alization of system activities and resources.

7) User interface to make system resources and capa-
bilities transparent also for the user who does not know
the details of the system.

There are several textbooks covering various topics in-
volved in the above system structure, for example, [11,
DOI, Hll, V41, WI, [381, 1451.

In this paper, we will outline a particular system shell,
called ERNEST, for knowledge representation which is
based on the ideas developed in [2], [20], and [48] con-
cerning semantic networks. The general background is
discussed in Section II. A first realization is described
shortly in [31] and in more detail in [41]. From this re-
sulted an extended and improved definition of the struc-
ture of and the inferences for the semantic network which
is described in Section III. It allows the integration of a
complete system for image or speech understanding in a
homogeneous network structure [32], [34]. An essential
prerequisite for such a homogeneous system is the possi-
bility to derive task-independent control algorithms; two
realized algorithms are outlined in Section IV. The ideas

0162-8828/90/0900-0883$01.00 0 1990 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 9. SEPTEMBER 1990

presented in Sections III and IV were realized in a ver-
satile software system to give the user a convenient work-
ing environment as outlined in Section V. This system
shell ERNEST also includes tools for knowledge acqui-
sition and explanation. But these two system components
will not be discussed in this paper. In order to restrict the
topics, we concentrate on knowledge representation and
utilization. Finally, in Section VI, we show with three
examples from different task domains that the ideas are
powerful and feasible, and we close the paper by an out-
look on further work in Section VII.

II. BACKGROUND

The problem of knowledge representation in general is
deeply discussed in a number of papers and textbooks,
e.g., [lo], [47], [22], [23]. Within the topic of this paper,
a short discussion on special considerations related to pat-
tern understanding will be presented. First of all, different
types and components of knowledge for pattern under-
standing will be separated. In order to make a decision for
a basic approach for the desired system shell, a few words
on adequacy criteria for knowledge representation lan-
guages are necessary. These criteria, together with the re-
marks on different schemes and languages, form the de-
cision to choose the semantic network approach for the
pattern understanding shell ERNEST. The very basis of
all the following ideas and discussions is the general sys-
tem architecture consisting of those components which
were enumerated in the Introduction.

A. Knowledge Components and Types

In order to achieve automatic descriptions of patterns,
different kinds of knowledge must be considered. First of
all, there are objects, events, and other problem-specific
knowledge concepts which must be modeled. This type of
knowledge is often called the declarative part of a knowl-
edge base. Such models can be used for the interpretation
of patterns. Therefore, it is necessary to know how they
can be used. The knowledge about the use of a declarative
model builds up the inference processes. This is a second
type, which we call procedural knowledge. Additionally,
structures describing signal areas are created during the
analysis of patterns. These are summarized by the term a
posteriori data and are built of instances. They connect
signal areas with concepts of the declarative knowledge.
So far, all three types of related to symbolic descriptions
of patterns. But this kind of description is only one com-
ponent of knowledge in a pattern analysis system. Be-
cause we are working with patterns, i.e., with sensor sig-
nals, other components must be taken into account.
Signals must be transferred into symbolic descriptions.
Each declarative concept is associated with numerical or
symbolic features or attributes. These features must be
defined for the concepts, and we need for each such fea-
ture special algorithms to detect it, and functions to com-
bine features to new ones. Therefore, a knowledge base
must contain an attribute component. Like the symbolic
component, it is divided into three different types of

knowledge and data. The declarative type defines the at-
tributes for the concepts by their domain and their con-
tent. The procedural type addresses the functions which
are needed to calculate and to combine the attributes. The
data type shows values of attributes in the context of in-
stances. A third component is based on the fact that sig-
nals are noisy. They are a source of errors and ambiguity.
No decision in terms of “yes” or “no” is possible, but
every decision is judged with some kind of certainty or
possibility. In order to allow the combination and the
comparison of such judgments of different intermediate
results, a calculus for judgments must be fixed for a pat-
tern analysis system. This fact should not imply that all
applications realized with the same system shell must use
the same judgment calculus. The shell must allow the def-
inition of a calculus for an application. This definition is
similar to the attribute and the symbolic description com-
ponent. If a calculus is chosen, the declarative type is
given by the data structures which are able to store the
judgments. Furthermore, the calculus gives the proce-
dural knowledge type by the functions to combine and to
compare judgments. The a posteriori type are the values
of judgments for symbolic descriptions and for attributes.
The ideas about the three types and the three components
of knowledge as described above are summarized in Fig.
1. Each of the components consists of the types declara-
tive knowledge, procedural knowledge, and results. The
system component “knowledge” of a pattern understand-
ing system must cover both procedural and declarative
knowledge for all three knowledge components concepts,
attributes, and judgments. The “result database” stores
the a posteriori data of all these knowledge components.
The system component “control” only uses the two
knowledge types and the results to guide the analysis pro-
cesses.

So far, it is shown what components and types of
knowledge a pattern analysis system has to take into ac-
count. It depends on the organization of the knowledge,
and how complex the retrieval and the activation of the
different types and components are for the component
“control.” This yields the problem of dependencies and
relationships between components and types. There are
several approaches which will be discussed in more detail
in Section II-B. A first decision for the organization of a
knowledge base is whether the procedural or the declar-
ative knowledge should be the main items. Or in other
words, should procedures dominate the declarative
knowledge or vice versa? A second decision addresses the
components. For example, in classical pattern recognition
systems, the judgments, i.e., the classifier, dominate the
attributes, and the concepts are only used in an implicit
manner. Contrarily, in most pattern analysis systems, the
judgments are subordinated to the attributes and concepts.
Also, the relationships between attributes and concepts
can be realized in two different ways. Features can be as-
sociated with special functions having concepts as argu-
ments or properties of concepts. In the first case, concepts
depend on attributes. They can be a member of the do-

NIEMANN ef al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 885

declarative procedural results
knowledge knowledge
**

concepts inferences instances
__---------------------

features extraction,combination feature values
,_______________________________________---------------------

scheme for judgements calculation and values
combination scheme
and functions

Fig. 1. Three types of knowledge (horizontal direction) and three com-
ponents of knowledge (vertical direction) for pattern understanding.

main of the function which represents the attribute or they
are not. In the second one, attributes are defined in the
context of one or more concepts. They are attributed to
the concepts and have a role in the definition of a concept.
The resulting questions are as follows.

Should knowledge representation for pattern analysis
use the procedural or the declarative point of view? What
component is used for the main entities of the knowledge
base, the symbolic one, the attributes, or the judgments?
Which structures and procedures must the “control”
component know to fulfil his task?

In order to give help in answering these questions, a
number of adequacy criteria for knowledge representation
schemes and languages were introduced in the literature.
Although these criteria do not allow us to measure the
adequacy of a knowledge representation approach in a
quantitative way, they give indications for examining or
at least discussing the quality of the organization tools for
knowledge bases.

B. Criteria for Calling a Knowledge Representation
Scheme Adequate

In [22], [2], and [42], the epistemological adequacy is
accentuated as the main criterion for knowledge represen-
tation languages. A compact definition for this criterion
is given in [22]: “A representation is called epistemolog-
ically adequate for a person or a machine if it can be used
practically to express the facts that one actually has about
the aspects of the world.” Brachman [2] pointed out that
an epistemologically adequate scheme must be neutral
with respect to a conceptional level of a knowledge base.
This level is built of those concepts and the relationships
between them, which are relevant for a given task do-
main. Therefore, a representation scheme should be in-
dependent of applications. Other criteria address the log-
ical completeness and decidability , the algorithmic
complexity, ergonomical comprehensibility, and psycho-
logical problems [42]. All of these criteria do not only ask
questions concerning the declarative types of knowledge.
Knowledge representation requires syntax, semantics, and
pragmatics of an artificial language. The definition of pure
syntactical structures-like a formal language or data
structures-is not sufficient. The definition of both an
interpretation and an interpreter is necessary. For all
knowledge representation languages, especially if they are
used for the interpretation of sensor signals, one should
take a further criterion into account: the handling of un-
certain data, and therefore uncertain decisions. In the
present state of the art, it is impossible to extract unique

symbolic attributes out of sensor signals, take them as
being correct, and finally run symbol to symbol inferences
as is done in “standard” expert systems. On the contrary,
sensor signals are a source of error and uncertainty. Pa-
rameters or initial symbolic descriptions derived from the
signal can only be scored or judged with respect to one
calculus like probabilities or fuzzy logic. Therefore, be-
sides uncertain knowledge of a task domain, uncertain in-
put data also must be handled by the representation lan-
guage. Intermediate results must be judged, and the
language has to offer the possibilities to do this job. Be-
cause of these facts, we introduce the criterion adequacy
for handling uncertainty for both knowledge and data.
Examples for knowledge bases which handle both kinds
of uncertainty are given, for example, in [5], [46], and
1411.

C. Knowledge Representation Schemes and Languages

Following [26], knowledge representation schemes can
be classified into the categories logical schemes, proce-
dural schemes, and semantic networks. But most knowl-
edge representation languages, e.g., PROLOG or PSN,
subsume more than one of these categories. The classifi-
cation problem is described in [26]: “When trying to clas-
sify representation schemes, we consider the world as a
collection of individuals and as a collection of relation-
ships that exist between them. The collection of all indi-
viduals and relationships at any time in any one world
constitutes a state, and there can be state transformations
that cause the creation/destruction of individuals or that
can change the relationship among them. ”

One example to illustrate this is the language PROLOG
[171. From one point of view, PROLOG is a logical rep-
resentation scheme. Therefore, it employs the notions of
constant, variable, function, predicate, logical connec-
tive, and quantifier in order to represent elementary facts.
A knowledge base is a collection of terms and formulas.
The sequence

of symbols represents a well-formed formula. No infor-
mation about the interpretation of such a formula is given.
It is just a sequence of symbols which satisfy rules for
building up syntactically correct sequences. Such well-
formed formulas are treated by a dual semantics. Besides
the traditional Tarskian semantics

“B, and B2 and - * * and B, implies A”

the procedural semantics

“if you want to establish A, try to establish BI and B2
and * * - and B,”

is used. The Tarskian semantics gives an interpretation
of the formula, while the procedural semantics offers an
interpreter. It shows how a formula can be used within
an analysis of a knowledge-based system. The static Tar-
skian interpretation is enlarged by a procedural compo-

886 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12, NO. 9, SEPTEMBER 1990

nent. Formulas are viewed as facts and programs at the
same time. The procedural semantics establishes a rough
method for proving theorems, and is therefore comparable
to the Gentzen calculus or the resolution method [2 11. For
the definition of a procedural semantics, the critical point
is the use of stored knowledge, i.e., the definition of
problem-independent inferences rules to construct a
knowledge representation language based on a knowledge
representation scheme. Because of this fact, we prefer the
notation that a pragmatics must be defined for a scheme
in order to get a language. The term “pragmatics” coin-
cides with linguistic theory, which defines a language by
the steps syntax, semantics, and pragmatics.

Procedural schemes view a knowledge base as a collec-
tion of active processes and agents. More or less, any pro-
gramming language can be looked at as a procedural
knowledge representation scheme. Schemes like produc-
tion systems [131 and PLANNER [141 offer activation
mechanisms for processes. In both schemes, a knowledge
base is built of pairs. Each pair consists of a pattern and
one or more actions which manipulate the working mem-
ory. If the pattern of a pair can be successfully matched
to the database, the corresponding theorem in PLANNER
or the action of the rule in a production system is exe-
cuted. The PLANNER control module uses the back-
tracking algorithm. This is also used in many applications
based on production systems. Nevertheless, numerous
other algorithms are used to control the search in such
systems.

Even though semantic networks are of large diversity,
there exists a most basic form. A priori and a posterior-i
knowledge is expressed by nodes and directed labeled
edges, called links. The nodes model concepts or classes
of concepts or are descriptions of individuals. Edges are
used to express binary relations between the nodes. To-
gether with their associated edges, nodes which stand for
concepts or classes of concepts build up the model for an
application. They represent the a priori knowledge. A
posteriori data which are generated during an analysis
process are represented by individual nodes and by edges
between individual nodes or between nodes for concepts
and individuals. Whereas identical concepts are identified
in formulas implicitly by utilization of identical names, a
concept is represented once in a semantic network. All
relationships with which the concept is associated are cen-
tered in the node standing for the concept. The main prob-
lem of the scheme was that most of the early languages
had little or no semantics for the types of nodes and links
they used. The necessity for a semantics and an episte-
mological adequacy was pointed out in [48], [2]. In order
to define a unique interpretation of the different types of
nodes and links in a language, this set must be restricted.
On the other hand, to get an epistemologically adequate
language, this set must be sufficient to build up knowl-
edge bases for all possible or at least a large number of
applications. Most network languages offer different or-
ganizational axes for structuring a knowledge base [lo].
We call an axis a hierarchy in the network if it defines a

partial nonreflexive order on the set of concepts. The most
used axes are the following.

Classijcation: A real world object is associated with
its generic type(s). This axis forces a distinction between
a concept, which is the intentional description or a pro-
totype of a concept, and an instance, which is a member
of the extensional set of a concept. Some languages like
PSN [20] use classification recursively with included
cycles.

Aggregation: This type connects a concept or an in-
stance with other concepts or instances, respectively,
which describes their components or parts.

Generalization: This type relates a concept to more
general ones. Generalization, often called is-a, defines a
hierarchy in the network due to a partial order. In most
approaches, attributes associated with a general concept
are inherited by the more special ones, unless they are
explicitly modified.

So far, semantic networks are a helpful scheme for an
efficient organization of declarative knowledge bases and
the corresponding results databases. A given semantics,
i.e., a unique interpretation, for the different types of
nodes and links is one condition to use a semantic network
in a knowledge-based system. In order to build a network
with respect to defining a language which can be used as
a kernel for a complete system, data structures must be
defined to cover the nodes and links. At this point, se-
mantic network approaches like KL-ONE [3] and PSN
[20] are influenced by the notation of frames [25]. Such
frames are complex data structures for representing ste-
reotypical informations for a task domain. A frame has
slots for the objects which play a role in the situation, as
well as conditions between the slots. Furthermore, pro-
cesses and facts are attached to the slots.

In KL-ONE and PSN, frame-like data structures are
used to build up the nodes of the semantic network. Links
are described within such a data structure by slots of dif-
ferent types, one for each link type. The interpretation of
the slots and their items is defined with respect to the se-
mantics of the semantic network. While KL-ONE only
uses a procedural attachment associated with the slots, in
PSN a pragmatics (procedural semantics) is also defined.
The slots in a concept are divided into prerequisites and
consequences with respect to the instantiation procedure
of the concept.

Asserting control to semantic network languages results
in a system shell if a pragmatics is defined for the lan-
guage. Therefore, they also propose a system architec-
ture. The resulting database is structured along organi-
zational axes, and inferences are created according to the
pragmatics definition of the network language.

Because of the following facts which are based on the
criteria in Section II-B and the claimed components for a
knowledge base in Fig. 1, we decided to use a semantic
network scheme for ERNEST (Erlangen Semantic Net-
work System and Tools). The node-centered representa-
tion of concepts supports the compact definition of knowl-
edge bases and working memories. It helps in evaluating

NIEMANN er al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 887

results of an analysis process. Therefore, semantic net-
works are at least near being ergonomically adequate.
Procedural attachment is useful for binding algorithms for
attributes to the concept, and subsequently to the attri-
butes for which they are used. PSN shows one way to
integrate inference mechanisms into the language defini-
tion of a semantic network. Running systems like ALVEN
[46] indicate a possible algorithmic adequacy and the ad-
equacy for handling uncertainty. There are semantic net-
work languages like KL-ONE which were developed in
order to be epistemologically adequate. Nevertheless,
Schefe [42] shows an example, given in Section III-B,
which can hardly be represented adequately in KL-ONE.
This indicates that the set of the epistemological primi-
tives is not sufficient in KL-ONE. Even if there is no proof
for the logical adequacy of a semantic network language,
there are some facts which should be mentioned. If se-
mantic networks are a syntactical variant of the first-order
predicate calculus [38], they are logically adequate. If
they have additional properties, at least the restrictions of
a network to this calculus is logically adequate. One con-
cept is represented by exactly one node in a semantic net-
work. For a translation of such a network into logical for-
mulas, the concept has to be denoted in as many formulas
as the links which connect the concept with other ones.
Because of this fact, McDermott [23] called a semantic
network “predicate calculus plus index-scheme.” If a
large knowledge base is necessary for some applications,
it will be easier to check a few hundred concepts com-
pared to a few thousand rules, theorems, or predicates.

III. THE SEMANTIC NETWORK IN ERNEST

After the general discussion of knowledge representa-
tion in the previous section, we now turn to the presen-
tation of the particular knowledge representation language
developed in ERNEST. There is a clear distinction of the
syntax, semantics, and pragmatics of the network (not of
the task domain!), and these aspects are described in the
three subsections to follow. By “syntax of the network,”
we mean the available data structures and the necessary
restrictions without regard to their relation to a particular
meaning of these structures. We think that it is useful to
start with a presentation of the syntax because it gives a
short overview of the relevant components of the net-
work. The meaning of the data structures, in particular of
the nodes, links, and substructures as well as their slots
and items, as used here, is described in the “semantics of
the network.” It is important to note that a semantic net-
work in an image or speech understanding system not only
is to represent some declarative and procedural knowl-
edge, but also has to provide the basis for its utilization
for knowledge-based signal understanding. This aspect is
described as the “pragmatics of the network” in the third
subsection.

A. The Syntax of the Network

Having decided upon a certain definition of a semantic
network approach, this definition may need extension,

modification, crispening, and improvement as new in-
sights emerge. Therefore, our definition of a syntax of the
network proceeded mainly in two steps. The first step only
will be considered very briefly. It consisted of an exper-
imental environment allowing an easy definition and mod-
ification of different semantic network structures; details
of this first step are given in [7]. This allowed a user to
define and test different structures of a semantic net. From
these tests and also from experiences obtained in different
applications of the semantic network, a kind of default
structure was derived in the second step. This default
structure is intended for the user who wants to use a com-
plete tool to solve a particular problem of image or speech
understanding, but who does not want to experiment with
different definitions of a semantic network. In the follow-
ing, we will discuss only the structure derived in the sec-
ond step.

Important problems in the definition of a network struc-
ture are epistemological and ergonomic adequacy, as
pointed out in Section II-A. Presently, we are not in a
position to give a formal and rigorous proof of the epis-
temological adequacy of our approach. This would re-
quire a formal definition of the section of the real world
which is to be represented in the knowledge base. An ex-
ample of such a formal definition is first-order predicate
calculus (FOPC), implying the assumption that every im-
portant or relevant aspect of the real world can be repre-
sented in FOPC. The limitations of FOPC have been dis-
cussed in the literature, for example, the exclusion of
probabilistic or nonmonotonic reasoning. It has been ar-
gued elsewhere, for example, in [121, [44], that semantic
networks are equivalent to FOPC. It is pointed out below
that we added several extensions to our network structure.
For example, the addition of arbitrary procedures allows
probabilistic and fuzzy reasoning. So from a formal view-
point, our definition is more powerful than FOPC. An in-
formal definition of epistemological adequacy was quoted
from [22] at the beginning of Section II-A. According to
this definition, our semantic network language is episte-
mologically adequate because we did not have problems
in representing the aspects of the world relevant to our
applications, as discussed in Section VI.

Besides epistemological adequacy, it is at least conve-
nient to also aim at ergonomic adequacy, a notion intro-
duced in Section II-A. Since this notion does not have a
formal definition, only intuitive arguments can be given.
For example, we added “sets of modality” to our net-
work structure. A modality set consists of one or more
sets of obligatory parts and concretes [see Section III-B2)]
of a concept and a set of one or more optional parts and
concretes. The concept can be instantiated if one of the
sets of obligatory parts and concretes has been instan-
tiated and any subset (including the empty one) of op-
tional parts and concretes. Clearly, the set of modality is
not required for reasons of epistemological adequacy, but
it is very useful for ergonomic reasons because it allows
a more compact and transparent representation of knowl-
edge. Considerations of ergonomic adequacy may rec-

888 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 9. SEPTEMBER 1990

ommend a modification of a network structure, even if
this structure is epistemologically adequate.

The general data types and the details of the data struc-
tures used in ERNEST are given in Figs. 2 and 3, respec-
tively. They are the result of careful considerations of
epistemological and ergonomic adequacy. In this section,
we only give a condensed overview of these structures,
leaving a detailed discussion to the next section. The net-
work consists of three nodes, five links, and nine sub-
structures as shown in Fig. 2. The three nodes are the
“concept,” the “modified concept,” and the “in-
stance. ’ ’ A node is itself a complex data structure defined
by a set of 26 slots as shown in Fig. 3 for the concept
node. The data structures of the three nodes are identical,
except that a pointer to a function in a concept is replaced
by the computed value in the corresponding instance; a
modified concept is distinguished from a concept only by
more restricted ranges for the attribute values. The five
links are the “specialization,” the “part,” the “con-
crete, ’ ’ the ‘ ‘instance, ’ ’ and the “model” link. The links
“specialization,” “part,” and “instance” are used in
most approaches of semantic networks. They correspond
to the terms “generalization,” “aggregation,” and
“classification,” respectively, in Section II-C. On the
contrary, “concrete” and “model” are links introduced
in the ERNEST network language to establish relation-
ships between different levels of abstraction, respectively,
between model schemes and automatically acquired con-
cepts. Conceptually, the most important and also the in-
tuitively understandable slots are attributes and relations.
Each one is itself described by a substructure called “at-
tribute description, ” “link description,” and “relation
description. ” The six other substructures are the “mo-
dality description” for the definition of the above-men-
tioned sets of modality, the “function description” for a
standard function definition, the “adjacency” for the rep-
resentation of time or space relations, the “range” for the
description of ranges of attribute values, the “value de-
scription” for storing one parameter of the range descrip-
tion (e.g., a lower bound), and the “identification” for
distinguishing alternative instantiation paths. Details of
these substructures are discussed in the next section.
Every substructure in turn is defined by a set of items. A
user can work conveniently with the network by means of
the software environment described in Section V.

However, definition of the syntax is not yet complete.
It was mentioned in the Introduction that it is important
to have task-independent control algorithms. In order to
achieve this, we impose a set of restrictions on the links.
The reasons for those restrictions are discussed in Sec-
tions III-B2) and IV. A graphical representation of the
restrictions is given in Fig. 4. Basically, the restrictions
guarantee that certain cycles in the network are avoided.
A consequence is that now there is also a well-defined
ordering of nodes along the three links “part,” “con-
crete,” and “specialization. ” These links may be viewed
as a three-dimensional coordinate system where every
node has a well-defined position which is represented by

GENERAL-TYPES: n&
NODE-TYPES: concept

modified concept
instance
/each node is defined by slots /

Fig. 2. The general data

-TYPES: specialization
part
concrete
model
instance
/ the inverselinks
specialization of
part of

,are alsodefined: /

concrete of
model of
instance of

s!bstrucur?
SUBSTRUCTURE-TYPE: attribute description

link description
relation description
modality description
value description
function description
adjacency
range
identification
/each substructure is defined by items /

types in the syntactic
structure ERNEST.

definition of the network

the slot “degree” in a node. The degree of a concept C
is a tuple (dl, d2, d3, d4) of integers. The number dl
is the length of the longest path leading from some con-
cept K along specialization links to concept C, the number
d2 is the longest path along concrete-of links (including
inherited ones) to C, the number d 3 is the longest path
along part-of links (including inherited ones) to C, and
the number d4 is the longest path along model-of links to
C. The various links are introduced in Section III-B2). It
is assumed that every link connecting two concepts has a
path length of one unit. Two special classes of concepts
are the minimal concepts and the inter$zce concepts. The
minimal concepts have a minimal value of d2 and d 3; to
put it differently, they are concepts having no parts and
no concretes. The interface concepts have at least one at-
tribute without arguments; for the notion of attributes and
arguments, the reader is refered to Section III-B3). Usu-
ally, minimal concepts are also interface concepts, but
there may also be interface concepts which are not mini-
mal concepts. The interface concepts provide the inter-
face between a purely algorithmic bottom-up phase of
processing and a knowledge-based phase alternating be-
tween top-down and bottom-up processing; they also are
the port for user interaction if such interaction is desira-
ble. Degrees are computed and restrictions are checked
automatically by the software environment.

The syntax of the network provides several extensions
with respect to other definitions. They are stated briefly
in the following eight points. The usefulness of this syn-
tax will become apparent from Sections III-B and III-C.
The main extensions in our definition of a semantic net
are as follows.

1) The node type “modified concept” allowing the
representation of constraints on uninstantiated concepts
resulting from computed instances of other concepts.

2) The extension of the definition of the node type
“concept” to facilitate automatic acquisition of concepts.

ATTRIBUTE DESCRIPTION
text text
4 integer YES or NO or DELETED or role
5 integer NO or DELETED or role
text value type [INTEGER, REAL, . . .]
link to concepts range
list of linka to concept 222 integer [min,mex/min,msx]
list of linke to concepts function description
list of linke to concepts YES or NO
list of ConceDts
list of links t; concepts

thction description
list of range%

list of link descriptions function description
list of linke to concepts 2 integer
bt of link descripitona name of function
list of modality descriptions n&me of function
list of attribute description6 name of function
list of attribute descriptione name of function
Ret of attribute deecriptione 1 integer
list of relation descriptions
list of relation deecriptions LINK DESCBJPI TON I
list of identiAcations I tale text
function description YES or NO or DELETED OI role

list of instances NO or DELETED or role
fonction description list of concepts [x01 liet]
name of function node type [CONCEPT, . . .]
neme of function YES or NO
1 integer 2 integer [min,max]

list of value descriptions
MODALITY DESCRIPTION fhction description

list of ranges
integer
YES or NO
2 integer
name of function

VALUE DESCRIPTION name of function
value type PNTEGER, REAL, .] name of function
meaning [CENTER, FUZZYPAR, . . .] frequency 1 + 1 integer

RELATION DESCRIPTION
ADJACENCY text

YES or NO or DELETED or role
NO or DELETED or role
function description

+ bitmatrix YES or NO
- YESor NO 2 integer

name of function
RANGE name of function

range kind [INTERVAL, FUZZY, . . .] 1 frequency 1 - 1 integer
value type [INTEGER, REAL, . . .]
YES or NO FUNCTION DESCRIPTION
list of value descriptions name

ar ument
IDENTIFICATION

path of roles or UNIQUE
path of roles Ed

name of function
list of arguments [{role.}role]

inverted function name of function
test of ergumeete name of function

fusion of er uments name of function

Pig. 3. ERNEST data structures. The slots relevant only for knowledge acquisition are marked as slanted. As mentioned in the
text, knowledge acquisition is not a topic of this paper.

NIEMANN et al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING

then not permitted

889

3) The link type “concrete” allowing the representa-
@A%@ tion of different conceptional systems.

4) The link type “model” allowing the representation
of the relation between a priori knowledge and automat-
ically acquired knowledge.

5) The distinction between “context-dependent” and
“context-independent” parts allowing the representation

con of context-sensitive relations.
cxps@) 6 The introduction of “sets of modality” allowing the

efficient representation of different object descriptions in
one concept.

@+ ‘.. -+@ = @-@(Dp “’ +(BJ 7) The “adjacency matrix” allowing the efficient rep-

Fig. 4. The restrictions on the links. The left, middle, and right parts prc-
resentation of time and space constraints.

sent independent alternative restrictions. For example, the left part means 8) The inclusion of a standard function definition fa-
that if a concept B can be reached from A by a sequence of specialization
links, then there must not be specialization links from B to A, nor con-

cilitating constraint propagation by modified concepts.

Crete links from either A to B or B to A, nor part links from either A to These extensions of the syntax are supplemented by two
BorBtoA. points concerning the use of the networks.

890 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 9. SEPTEMBER 1990

1) The formulation of six task-independent rules pre-
cisely defining the computation of modified concepts and
instances.

2) The combination of these rules with graph search
algorithms to handle the control problem.

B. The Semantics of the Network

1) Types of Nodes: In this section, the interpretation
of the different types building up an ERNEST network is
given. The point of view with which we will look at the
network is: how is a certain section of the real world and
how are certain aspects of this section modeled in the
knowledge representation language of an automatic sys-
tem? As mentioned in the last section, three types of nodes
are distinguished, which are the concept, modified con-
cept, and instance node.

A basic requirement for any image or speech under-
standing system is the ability to represent classes of ob-
jects, events, or abstract conceptions having certain com-
mon properties. This is done in ERNEST (and in other
approaches to semantic nets) by a special node type, called
a concept. The special case that a concept represents pre-
cisely one element is not excluded. In the context of im-
age or speech understanding, an important step is to as-
sociate certain intervals of the sensor data with certain
concepts in the knowledge base. For example, some sub-
set of pixels in a TV image is recognized as a truck, where
TRUCK is a concept in the knowledge base. This partic-
ular manifestation of a member of the concept TRUCK is
called an instance and is represented by another node type,
the instance node. A concept and an instance of it are
related by an instance link. This was mentioned as the
“classification axis” in Section II-B.

In addition to the concept and instance node, a third
node type is provided, the modified concept. The basic
activity of an image or speech understanding system is the
computation of instances which are consistent with the
stored knowledge and the observed sensor data. In an in-
termediate state of processing, it may occur that instances
of some concepts already have been computed, but that
instances of some other concepts cannot yet be computed
because certain prerequisites are missing. A precise defi-
nition of those prerequisites is given in Section III-C be-
low. Nevertheless, the information available from the in-
stances may be used to constrain or to modify the
uninstantiated concepts; this results in the modi$ed con-
cepts. For example, the values of certain attributes of an
instance may be used to constrain the range of values of
certain attributes of an uninstantiated concept. This in turn
results in a more constrained knowledge base and in a
reduction of the complexity of the instantiation process.
An example of constraining the value of an attribute is
given in Section III-B3).

According to classification, instances are associated
with concepts. The connection among instance nodes,
concept nodes, and real world objects is illustrated in Fig.
5. Each instance establishes a connection between exactly
one concept and a unique collection of real world objects

concept

Fig. 5. Potential relationships among concepts, instances, and real world
objects.

or events (to be more precise, sensor data resulting from
real world objects and events). A collection of real world
objects or events can be connected to more than one con-
cept via instances and vice versa. Notice that there are
connections between one real world object and different
concepts which are acceptable, and other ones which es-
tablish a contradiction. In Fig. 5, for example, the CIR-
CLE and the WHEEL classifications for identical objects
are correct. But only one of the connections between the
middle object and the concepts CAR, respectively,
TRUCK, is admissible. A concept in the ERNEST net-
work is a model (i.e., a description) of a class of objects
or events, but not a prototype (i.e., not an example or a
typical representative of the class). Therefore, such a con-
cept may be restricted, dependent on different situations
in an analysis process. For example, if the x, y position
of a wheel is known for the truck in Fig. 5, the a priori
free positions of the other wheels then are restricted with
respect to the detected one. Although no instance is built
up for a second wheel, the situation has changed. The
concept WHEEL in the context “second wheel of a truck
with one wheel detected” can be restricted. We say a
modijied concept, as mentioned above, can be built up.

2) Types of Links: With the interpretation of the three
node types, the link types instance and instance-of also
are fixed according to the links between concepts and in-
stances in Fig. 5.

In the following, the example of a truck is used to il-
lustrate the realization of a network and the meaning of
the different structures. Fig. 6(a) shows a rough model of
a truck, and Fig. 6(b) the related network. Fig. 7 shows
the textual representation of the concepts TRUCK and
DRIVERS-CAB.

Besides the instance relationship, four organizational
axes are distinguished. All of them define a partial order
on the set of concepts. It is common practice to define a
concept with reference to other concepts, as introduced
already in Section II-B. These references are made ex-
plicit by special types of links. From Fig. 2, it is evident
that the inverse links are also provided, although this will
not be mentioned in the following. A concept K may be
defined as a refinement of a more general concept A by

NIEMANN er al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 891

(a) (a)

VEHICLE VEHICLE

ARC ARC CIRCLE CIRCLE RECTANGLE RECTANGLE WLYGON WLYGON

(b)
Fig. 6. (a) A simple graphic representation of a truck. (b) A network of the model TRUCK.

stating the additional and/or modified properties of K, and
by assuming that otherwise, K inherits the properties of
A. By “properties,” we summarize the slots part, con-
crete, attribute, analysis parameter, structural relation,
and analysis relation in the data structure of a concept
node. The relation between the general concept A and the
specialized concept K is indicated by a specialization link
from A to K. A modification of properties is represented
in the item “modifies” of the corresponding “attribute,”
“relation,” and/or “link description” in Fig. 3. In our
example, the concept TRUCK is a specialization of the
concept VEHICLE as shown in Fig. 6(b).

In addition, a concept may be composed of certain parts
or components Ul, U2, * . * , UN. For example, in Figs.
6(b), 7(a), parts of the TRUCK are the SPOILER, the
FRONT-WHEEL, the REAR-WHEEL, and so on. The
relation between a concept K and one of its parts U is
represented by a part link from K to U. From Figs. 6(b),
7(a), it can be seen that FRONT-WHEEL and REAR-
-WHEEL are just particular “roles” within the concept
WHEEL. In general, the values of a part may be defined
by one or more concepts, and a part may be given a par-
ticular role. Another example is the part WINDOW in Fig.
7(b) having the role WINDOW defined by the concept
WINDOW. In ERNEST, a part or a concrete is defined
in the substructure link description. The link description
in Fig. 3 contains an item “goal node” to represent the
defining concepts and an item “role” to represent the par-
ticular role of a part.

In image or speech understanding, it often occurs that
a certain part can only be recognized in the context of the
corresponding object having this part. For example, in
Fig. 6(a), the window of the truck is seen as a rectangle.
This rectangle obtains its meaning only in the context of
the whole image. Therefore, the concept WINDOW in
Fig. 7(b) is defined as a context-dependent part of the
DRIVERS-CAB. In the ERNEST representation of this
situation, the slot “context of” of the concept WINDOW
has the entry “DRIVERS-CAB. ” In the concept DRIV-
ERS-CAB, the slot “part” contains a list of link descrip-
tions, one of which has the role WINDOW. The item
‘ ‘context depending” of this link description has entry
“YES” [see also Fig. 7(b)]. On the other hand, there may
be parts which can be recognized individually. An ex-
ample is the front wheel in Fig. 6(a). Therefore, the front
wheel is a context-independent part of the TRUCK. In
Fig. 7(a), an explicit indication of context independence
is omitted. In the ERNEST representation the correspond-
ing slot, “context of” would have entry “NIL,” and the
corresponding item “context depending” would have en-
try “NO.” It should be noted that context-dependent and
context-independent parts are treated differently during
instantiation of concepts; this point is discussed in Section
III-C.

In order to motivate some of the formal restrictions in
Fig. 4 and the link type concrete, the description of ag-
gregation in [26] is reported: “for example, the parts of
John Smith, viewed as a physical object, are his head,

892 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 9. SEPTEMBER 1990

TRUCK

PART: spoiler

GOAL-NODE:

CONTEXT-DEP:

PART: front-wheel

GOAL-NODE:

CONTEXT-DEP:

JUDGEMENT:

INV-FUNCT:

PART: rear-wheel

GOAL-NODE:

CONTEXT-DEP:

JUDGEMENT:

INV-FUNCT:

SPOILER

NO

WHEEL

NO

reatr-radius

inv-restr-radius

WHEEL

NO

restr-radius

inv-restr-radius

PART: coachwork

GOAL-NODE:

CONTEXT-DEP:

PART: hood

GOAL-NODE:

CONTEXT-DEP:

PART: tailboard

GOAL-NODE:

CONTEXT-DEP:

PART: drivers-cab

GOAL-NODE:

CONTEXT-DEP:

COACHWORK

NO

HOOD

NO

TAILBOARD

NO

DRIVERS-CAB

NO

MODALIM:

OBLIGATORY: front-wheel. rear-wheel. coochwork. drivers-cab

OPTIONAL: spoiler

INHERENT: ---

MODALIM:

OBLIGATORY: front-wheel, rear-wheel, tailboard. hood, drivers-cab

OPTIONAL: spoiler

INHERENT: ---

AlTRIBUT: height

MPE-OF-VAL:

NUMB-OF-‘/AL:

RESTRICTION:

COMP-OF-‘/AL:

ARGUMENT:

INV-FUNCT

ATTRIBUT: length

TYPE-OF-VAL:

NUMB-DF-VAL:

RESTRICTION:

COMP-OF-VAL:

ARGUMENT:

INV-FUNCT

REAL

12.0 - 3.51

compute-height

front-wheel.radius. rear-wheeLradius, coochwork.height

hood.height. tailboard.height

inv-compute-height

REAL

f6.0 - 12.01

compute-length

drivers-cab.length. hood.length, coachwork.length

inv-compute-length

STRUCTURAL-RELATION: height-smaller-length

JUDGEMENT: judge-h-s-l

ARGUMENT: height, length

INV-FUNCT: inv-judge-h-s-l

ANALYSIS-RELATION: wheels-down

JUDCEMENT: judge-w-d

ARGUMENT: front-wheelxentre, rear-wheelxentre, coachwork.angles

toilboord.angles, drivers-cab.angles

INV-FUNCT: inv-judge-w-d

JUDGEMEN7: judge-truck

ARGUMENT: spoiler, front-wheel, rear-wheel. coachwork

hood, tailboard, drivers-cob. height, length

height-smaller-length. wheels-down

(a)

DRIVERS-CAB

PART: window

GOAL-NODE: WINDOW

CONTEXT-DEP: YES

PART: door

GOAL-NODE: DOOR

CONTEXT-DEP: YES

CONCRETE: geometry

GOAL-NODE: RECTANGLE, POLYGON

MODALITAET:

OBLIGATORY: window. door, geometry

OPTIONAL: ---

INHERENT: door

ATRIEUT: height

TYPE-OF-VAL: REAL

NUMB-OF-VAL: 1

RESTRICTION: Il.5 - 3.01
COMP-OF-VAL: compute-height

ARGUMENT: angles

INV-FUNCT inv-compute-height

ATrRIBUT: length

TYPE-OF-VAL: REAL

NUMB-OF-VAL: 1

RESTRICTION: LO.75 - 3.01
COMP-OF-VAL: compute-length

ARGUMENT: angles

INV-FUNCT inv-compute-length

ANALYSIS-PARAMETER: angles

TYPE-OF-VAL: RECORD, point

NUMB-OF-VAL: 12

RESTRICTION: ---

COMP-OF-VAL: compute-angles

ARGUMENT: door.anglcs, window.ongles. geometry.ongleS

INV-FUNCT inv-compute-angles

STRUCTURAL-RELATION: height-greater-length

JUDGEMENT: judge-h-g-l

ARGUMENT: height, length

INV-FUNCT: inv-judge-h-g-l

ANALYSIS-RELATION: window-angles-inside

JUDGEMENT: judge-w-a-i

ARGUMENT: angles

INV-FUNCT: inv-judge-w-o-i

JUDGEMENT: judge-drivers-cab

ARGUMENT: window, door, geometry. height. length. angles

height-greater-length. window-angles-inside

(b)

Fig. 7. (a) The concept TRUCK. (b) The concept DRIVERS-CAB

arms, etc. When viewing as a social object, they are its For the examples mentioned above, the organizations
address, social insurance number, etc.” Two “worlds”
or conceptional systems are distinguished in this example.
A concept modeling a person has different parts within
each of these systems. Parts in the social system are social
conceptions; parts in the physical system are physical
conceptions. In complex applications, more than one such
conceptional system will occur, e.g., in image under-
standing, conceptional systems like geometry, named ob-
jects, or motions will occur. Conceptional systems like
syntax, semantics, and pragmatics build up the knowl-
edge base for speech understanding tasks. In the ERNEST
network, part and specialization relationships are re-
stricted in the way that they are only allowed inside the
same conceptional system. For analysis purposes, con-
ceptual systems must be ordered in the sense that a hier-
archy of levels of abstraction is established. Each level
corresponds to one conceptional system and vice versa.

image-lines-geometry-named objects-motions
and

speech-signal-phonemes-words-syntax-
semantics-pragmatics-dialogue

may build up sequences of such levels with increasing ab-
straction. Relationships between concepts belonging to
different levels of abstraction are established by the con-
crete link. Each level of abstraction consists of concepts
having identical degree with respect to the concrete links;
compare Fig. 4 and Section III-A. The membership of
concepts to different conceptional systems also influences
the compatibility of corresponding instances. Because the
concepts WHEEL and CIRCLE in Fig. 5 belong to dif-
ferent systems, instances connecting both concepts to
identical real world objects can all be correct. On the con-
trary, because TRUCK and CAR are within the same con-

NIEMANN et al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 893

ceptional system and are not in part relationship, in-
stances connecting both to an identical object compete
with each other. See also Fig. 6(b) for the distinction be-
tween parts and concretes.

In the definition of a concept, there may be parts and/
or concretes (including inherited ones) which are obliga-
tory and others which are optional. A set of obligatory
parts and concretes together with the associated set of op-
tional parts and concretes is called a modality set. In order
to increase the compactness of a knowledge base, we al-
low that a concept is defined by several modality sets;
each individual modality set is sufficient to compute an
instance. In ERNEST, a modality set is defined by the
substructure modality description, and the modality de-
scriptions are attached to the slot “modality” of the de-
fined concept. From Fig. 3, it can be seen that a modality
description has items “inherent” and “adjacency” in ad-
dition to the obligatory and optional elements. Inherent
parts and concretes are those which can be inferred from
the instantiation of a concept, but which are not manifest
in the sensor data. For example, when seeing a truck (or
after computing an instance of the concept TRUCK), one
may usually assume that it has an engine, although this
will not be visible under standard viewing conditions. The
concept TRUCK has two modality descriptions. In our
example, a truck must have front wheels, rear wheels, a
driver’s cab, and either a coachwork or a tailboard and a
hood. In both cases, a spoiler is optional. If necessary and
appropriate, the item “adjacency” allows one to impose
a certain temporal (or spatial) order on parts and con-
cretes. This temporal order is defined in the substructure
adjacency by means of a bit matrix. For example, assume
that the modality description contains only the concepts
A, B, and C, that A must precede B, and that C may pre-
cede B, but not A. A bit matrix then has rows A, B, C and
columns A, B, C. An entry “ 1” in row i and column j
indicates that part i must precede part j in time, and so
on. The item “coherent” indicates whether parts have to
be spatially or temporally adjacent. For example, the sky
is above the meadow in an image under standard viewing
conditions, but there may be something in between (e.g.,
a mountain range); therefore, sky and meadow are not
coherent. On the other hand, a roof is above a gable, and
they are coherent for a standard house.

The relationships specialization, part, and concrete
build up the three-dimensional hierarchy of an ERNEST
knowledge base. They provide the means for well-struc-
tured representation of knowledge. The instance link con-
nects concepts in the knowledge base to instances com-
puted from sensor data. In order to facilitate automatic
knowledge acquisition, a fifth link, the model link, was
introduced. In this paper, however, we concentrate on
knowledge representation and utilization. Therefore, no
further explanation is given about knowledge acquisition
in ERNEST. More information can be found in [43].

The above discussion introduced the three node types
(concept, modified concept, and instance) and the five link
types (specialization, part, concrete, instance, and

model). In comparison to other network definitions, the
concept and the instance node are standard elements of a
semantic network and are necessary for reasons of epis-
temological adequacy. The modified concept was intro-
duced only to increase the efficiency of knowledge utili-
zation. The specialization, part, and instance link are also
standard elements in other versions of semantic networks
and are necessary for reasons of epistemological ade-
quacy. The distinction between context-dependent and in-
dependent parts is necessary in our applications. The con-
crete link is epistemologically necessary, while the model
link is introduced for reasons of ergonomic adequacy. The
modality sets enhance the compactness of a knowledge
base.

3) Attributes, Relations, and Other Substructures:
From Fig. 3, it is apparent that a concept node is an elab-
orate data structure defined by several slots. Some of them
are self-explaining (e . g . , “name of concept”), some have
been introduced above (e.g., “degree” or “model”), and
the remaining ones will be introduced in the following.

A physical object or an event usually has certain attri-
butes which are physical quantities, for example, size,
weight, color, or prize. In ERNEST, an arbitrary number
of attributes may be attached to the slot “attribute” in the
corresponding concept. In addition, we distinguish the lo-
cal attribute which is not transferred to specializations of
the concept. An attribute is transferred to specializations
unless this is excluded explicitly in the item “modifies”
of the substructure “attribute description. ’ ’ Apparently,
the local attribute is not necessary because it also can be
replaced by modification of attributes, but it is convenient
to have this option. Furthermore, we provide analysis pa-
rameters which are not attributes of an object and do not
contribute to the intensional description, but they are pa-
rameters required for pattern analysis. Typical examples
are the frame length and repetition rate in speech under-
standing or the number of images in an image sequence.
Attributes, local attributes, and analysis parameters are
defined by the substructure attribute description. It seems
unnecessary to discuss every item of the attribute descrip-
tion. The main items are the “role,” the “type of val-
ues , ” the “restriction,” the “number of values,” and the
‘ ‘computation of value. ’ ’ The “role” gives the functional
role of the attribute. The “type of values” defines the
general type of the attribute values. In ERNEST, the types
Boolean, Character, Integer, Real, Set, Tree, and Record
are allowed. The “restriction” specifies the allowed or
expected set of,values via “range” and “value descrip-
tion.” An example is the attribute “height” in Fig. 7(a),
a real-valued attribute restricted to 2 .O-3.5 units of length.
Thus, type and restriction define the range of values of an
attribute. The “number of values” defines the required
number of attribute values, for example, the number of
elements of a vector or matrix. The item ‘ ‘computation of
value’ ’ contains just a pointer to a function description
referencing a function which can compute an actual value
of the attribute given the sensor data. This function needs
certain arguments. The function definition and the argu-

894 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 9, SEPTEMBER 1990

ments are treated below. There may be special attributes
referencing a function having no arguments, for example,
a function reading a value from a file. This occurs only in
the “interface concepts” introduced in Section III-A. An
attribute of this type provides the means for transferring
results of initial segmentation to the knowledge base.

Parts or concretes of a concept may have to be arranged
in a certain spatial and/or temporal order. For example,
the positions of the wheels of a truck form a rectangle, or
a traffic light should become green before a car starts
moving. Certain relationships between parts and/or con-
cretes of a concept are listed in the slot structural relation
of this concept. Every element in a structural relation is
defined by a substructure relation description. The main
items in this substructure are the “role” of a particular
relation and its “judgment,” which is a pointer to a func-
tion testing the relation. The value returned by the func-
tion measures the degree of fulfillment of the relation. If
the temporal relation is only a time sequence of objects
or events, an alternative representation in ERNEST is the
above-mentioned modality set combined with the adja-
cency substructure. Although this alternative is not nec-
essary for reasons of epistemological adequacy, it is use-
ful for reasons of efficient implementation of time or space
adjacency relations. Similar to the distinction between at-
tributes and analysis parameters, we distinguish between
structural relations and analysis relations. An example is
a relation among the number of pixels, depth, and object
size.

The original sample values of images or speech usually
are corrupted by noise; the results of initial segmentation
are far from being perfect. Therefore, an instance of a
concept may be more or less erroneous. The slot judgment
of a concept contains a pointer to a function description
computing a “judgment” of an instance. We avoid terms
like score or certainty because a judgment in ERNEST
may be a tuple of real numbers measuring the quality,
certainty, and static and dynamic priority of an instance.
The quality measures the average value of a result, for
example, the expected probability of correctly recogniz-
ing a word or a line of a certain length. The certainty
measures the individual reliability of an instance, for ex-
ample, of a particular word or a particular line. The static
priority measures the closeness to primitive concepts (im-
portant in top-down processing) and to goal concepts (im-
portant in bottom-up processing). The dynamic priority
measures the ambiguity of an intermediate result with re-
spect to task-specific knowledge. In general, the certainty
CF of an instance is based on a function of the type

CF = g(certainties of parts, certainties of concretes,

certainties of attributes, certainties of relations).

Arguments of this function are the judgments of the parts,
concretes, link descriptions, attribute descriptions, and of
both kinds of relations. All arguments are referred by the
role of the corresponding substructure. The scheme to
judge an instance is not fixed in ERNEST. Depending on

the application, fuzzy logic, distance measurements, or
probabilities are used.

It was mentioned frequently that functions can be at-
tached to slots or items of concepts or substructures, re-
spectively. In order to enhance standarization of attached
functions, the substructures function description and value
description are provided as a basis of procedural attach-
ment. A function definition in the ERNEST network in-
cludes the explicit notation of the “arguments,” and it is
possible to also refer the inverse. It should be mentioned
that it is not possible, but also not necessary to refer the
inversions of all functions in a knowledge base. However,
our experiences with knowledge-based systems showed
that a lot of functions calculating attributes or relations
are very simple, e.g., attributes may be defined by the
sum or product of other ones. An example for relations
which is also very simple is that different parts of an ob-
ject are not allowed to cover overlapping image areas and
should be neighbored in some sense. The inversion is quite
simple. Given one part, the area of the other ones is re-
stricted to the complement in the image, and the required
neighborhood can be expressed by marking a few pixels.
This simple restriction is able to reduce the detection of
other parts very powerfully because only a small subset
of the image must be analyzed. Relevant functions are
those for computing the “judgment” (in a concept, or an
attribute, link, or relation description), and the “compu-
tation of value” (in an attribute description). All of these
functions have to be defined in an ERNEST network by
the substructure “function description”; see Fig. 3. Here,
the arguments of the function, the name of the function,
and the name of the inverse of the function with respect
to each argument are denoted. By the definition of the
network formalism, the set of potential arguments is re-
stricted for each of the functions mentioned above. In or-
der to identify arguments, we use the “roles” which are
defined uniquely by each of the relevant substructures of
a concept. Those are the “link description,” the “attrib-
ute description,” and the “relation description.” For the
different functions, the following roles can be used to rep-
resent arguments.

1) For “judgment” of a concept: roles of links, attri-
butes, and relations, which are defined for the same con-
cept.

2) For “judgment” in the link descriptions and attrib-
ute descriptions: no explicit argument can be noted.

3) For “computation of value”: pairs SELF. rI where
rl is the role of an attribute which is defined for the same
concept; pairs rl. r2 where rl is the role of a link descrip-
tion in the same concept, and r2 is the role of an attribute
in one of those concepts which are referred in the “goal
node” of the link description with role r,; pairs SUPER. r2
where r2 is the role of an attribute in one of those concepts
which are referred in the slot “context of” in the same
concept.

4) For “judgment” in the relation description: pairs
SELF. rl and pairs rl. r2 as above.

While the activation of the function itself results in con-

NIEMANN et al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 895

Crete values if all arguments are known, the inverse is
able to further constrain the “restriction” of attributes in
modified concepts. In a similar way, the values of an at-
tribute may be restricted, if not all of the argument values
are known (see Section III-C). As an example of restrict-
ing the values of an attribute, consider a concept
PIECE OF-LAND having parts SIDE-1 and SIDE-2.
The attribute “a” (area) of PIECE-OF-LAND is com-
puted by a = lw where “I” and “w” are the attributes
length of side 1 and length of side 2, respectively. As-
sume that in the three attributes descriptions, the item
“restriction” imposes the constraints 400 m* 5 a I loo0
m*, 8 m I w I 20 m, and 40 m I 1 5 100 m. Having
an instance of SIDE-2 giving 1 = 80 m allows one to
compute (bottom 4) a modified concept of PIECE-OF
-LAND with 640 m I a 5 1000 m2. From this modified
concept, one may compute (top down) a modified concept
of SIDE-1 with 8 m 5 w I 12.5 m. This step also re-
quires that the “inverse function” w = a/l can be ref-
erenced. The substructure “function description” con-
tains an item “inverted function” which gives the facility
to also reference the inverse function.

To also allow a graphical representation of the content
of concepts (e.g., wire frame) or attributes (e.g., a con-
tour), a “graphic” slot is provided. It references a func-
tion generating the graphic representation.

In order to allow some flexibility in the design of a con-
cept representing a certain conception, it is useful to dis-
tinguish different constraints in the instantiation of a con-
cept. For example, assume that a chair has among its parts
four legs. One possibility of modeling this is to actually
attach four different parts LEG to the concept CHAIR. If
all four legs are geometrically (almost) identical, the con-
cepts representing the parts are (almost) identical. In this
case, it may be convenient to attach only one part LEG to
CHAIR, but indicating in the item “number of links” in
the link description that four (different) instances of LEG
are necessary. Representing a triangle can be done by a
concept TRIANGLE having a part SIDE, and the SIDE
has a part EDGE. In this case three different instances of
both SIDE and EDGE are necessary. An instance of SIDE
needs two instances of EDGE, so it must be possible to
indicate that, for example, two instances of EDGE have
one instance of SIDE in common. Again, an alternative
way of representing a triangle would be to represent three
different parts SIDE and three different parts EDGE. Our
intention is to leave the choice of the model to the de-
signer, and not to enforce a certain representation by the
network realization. Another example is the representa-
tion of a heart cycle by a concept CYCLE having the three
parts CONTRACTION, STAGNATION, and EXPAN-
SION, which in turn all refer to the moving object
HEART. In this case, for one instance of CYCLE, in-
stances of CONTRACTION, STAGNATION, and EX-
PANSION are necessary, all of which need one and the
same instance of HEART. In ERNEST, the different con-
straints on instantiation are defined by the substructure
identijcation which is refered to in the slot “identifica-

X

A B

Q33 C 0 E

F

Fig. 8. Specification of alternative constraints on the instantiation of X. In
the notation below, in, (K) denotes the ith instance of a concept K. All
links in the above figure are part links, the same constraints may be
specified for concrete links. Case 1: No entry in the slot “identification”
of concepts A and B (this is the default situation). Computed instances:
in(X) {in(A) [in(C) in,(F)] [in(D) in*(F)] in(B) [in(E) in,(F)}.
Case 2: Pointer to substructure identification; entry UNIQUE in item
“path 1” of concept F. Computed instances: in (X) { in (A) [in (C)
in(F)] [in(D) in(F)] in(B) [in(E) in(F)}. Case 3: Pointer to sub-
structure identification; entry in item “path 1” of concept A: C, F, entry
in item “path 2” of concept A: D, F. in(X) {in(A) [in(C) in,(F)]
[in(D) in,(F)] in(B) [in(E) in*(F)]}.

tion” of the corresponding concept. The three types of
constraints introduced by the above examples are sum-
marized in Fig. 8. In the first case, there are no entries in
the slot identification of the concepts A and B. Via two
links, the concept F is referred twice by A and once by B.
That is the conceptual point of view. If one associates,
e.g., the concept A with “car,” B with “airplane,” and
F with “window,” it is evident that one instance of “win-
dow” is not sufficient to fill the properties of “window
of car” and “window of airplane.” Therefore, different
instances of F are necessary. For each binding of F in Fig.
8, one instance is necessary. Associate, for the second
case, A with “contraction of a heart,” B with “expansion
of a heart,” and F with “heart”; then only one instance
for F is necessary, as for the instantiation of A and B, the
same heart has to be used. Therefore, the concept F is
marked unique to guarantee this. For the third case, as-
sociate A with “passing of two cars” C, respectively D,
with one “car” and F with “street”; then by the identi-
fication path, one can mark that C and D must be on the
same street if they pass. Another car (concept E) natu-
rally can drive on another street in the picture.

C. The Pragmatics of the Network

Besides the epistemological and ergonomic adequacy of
a definition of a semantic network, another important as-
pect is the utilization of this network for image or speech
understanding. As mentioned above, the main activity in
the network is the computation of instances out of con-
cepts given certain sensor data. Computation of instances
only depends on the syntax of the network; in particular,
it depends on the three organizational hierarchies of spe-
cialization, part, and concrete, on the distinction between
context-dependent and independent parts, on the intro-
duction of modified concepts and sets of modality, and on
the definition of certain paths of instantiation via the iden-
tification substructure. It turns out that six rules are suf-
ficient to define the instantiation process. These rules
complete the definition of the network by defining the

896 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 9. SEPTEMBER 1990

pragmatics of the formalism in the sense of the procedural
semantics [171. Different from PSN, the rules for building
up instances are defined globally for the whole network,
without respect to a task domain. This is possible because
the rules only make use of the syntax of the network lan-
guage, not of the semantics or the meaning of concepts in
the network. The six rules are the basis for problem-in-
dependent control as discussed in Section IV.

In the following, the rules will be illustrated by the for-
mal example in Fig. 9 and by the network in Fig. 6(b)
which gives a simple example from image analysis. It is
assumed that the goal concept for the instantiation is the
concept TRUCK with respect to the first modality set [see
Fig. 7(a)]. It is further assumed in Fig. 10 that we con-
sider the situation where the hth instance in,, (RECTAN-
GLE) [see Fig. 1 l(a)] of the concept RECTANGLE (a
concrete of the concept DRIVERS-CAB) has been com-
puted so far.

In order to compute an instance of a concept A in Fig.
9, there must be instances of all of its concretes and parts,
including those inherited from more general concepts. In-
stances of parts and concretes are only necessary if they
belong to the obligatory parts and concretes of some set
of modality. Furthermore, requiring an instance of a part
is only possible if it is a context-independent part. If a
concept A is a context-dependent part of some concepts X
and Y, there must be at least one instance of either X or Y
when instantiating A. Obviously, computation of in-
stances mainly proceeds bottom up. This causes the prob-
lem that computation of an instance of A having a context-
dependent part M and context-independent parts L and N
requires instances of L and N and also of M. But comput-
ing an instance of M requires an instance of A. The prob-
lem is handled by first computing a partial instance of A
by requiring only instances of the context-independent
parts. This is summarized in Rule 1 below. Having the
partial instance of A, an instance of the context-dependent
part M can be computed. Having an instance of M, the
partial instance A can be completed. This process is sum-
marized by Rule 2. Of course, a recursive application of
Rule 1 may be necessary. In Fig. 9, the concept A is itself
a context-dependent part of X and Y. So at first, a partial
instance of X (or of Y) has to be constructed by Rule 1
before a partial instance of A can be constructed. The first
rule is as follows.

Rule 1:
IF for a concept A or a tnodijed concept modj (A) with

respect to one obligatory set of a modality of A, instances
for those concepts exist, which are referred to by the fol-
lowing slots in A or slots inherited to A without modifi-
cation:

l concrete AND
l part, if the item context depending in the link de-

scription is equal to NO AND
l one partial instance of one concept referred in con-

rext-of, if this slot is not equal to NIL
THEN build up partial instances inpk (A) as follows:
l construct an empty instance of A

Fig. 9. An example for use of Rule 1; the abbreviations obl, opt, cd, and
ci stand for obligatory, optional, context dependent, and context inde-
pendent, respectively. All links are part links from the upper to the lower
concept; for example, concept A is an obligatory context-dependent part
of Y, and A has P as an optional context-independent part.

d &EL WHEEL COACHWORK

1 d&MOW Ib DOOR c 9-s
s

irh(RKTANGLE)

Fig. 10. An example of an analysis process

l connect the instance with those referred to by the
premise

l activate the attached functions in the sequence: judg-
ments of links, calculation of attributes, judgments of at-
tributes, judgment of relations, judgment of the concept.

Because of context-dependent parts and optional links,
values do not exist for all arguments of the activated func-
tions [e.g., the attribute “angles” in Fig. 7(b)]. Never-
theless, the knowledge of existing values of arguments
and the function itself can be used if the following strat-
egy is applied. The restriction values are also transferred
to the functions. The functions themselves decide whether
the existing values and the restrictions are sufficient for
the estimation of results. In the case of attributes, this
estimation is a new and tighter restriction. For the other
cases, which are all judgments, the estimation must be
optimistic.

Rule 2:
IF a partial instance inpj (A) of a concept A exists AND

instances for all those concepts exist, which are referred
to as part with item context depending equal to YES in
the link description and are members of the obligatory set
which was used for the construction of inpi

THEN build up new instances ink (A) out of inpi (A) as
described above.

Since Rules 1 and 2 only consider obligatory parts and
concretes of a set of modality, Rule 3 checks whether there
are instances of optional parts or concretes. If this is the
case, an instance is extended by these optional compo-

NIEMANN et al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 897

in,,(RECTANGLE)

ATrRIBUTE: angles

RESTRICTION ---

VALUE I (30.75) (70.75) (70.136) (30,136) 1

JUDGEMENT: 0.93

(a)

inpi(DRIVERS-CAB)

CONCRETE: geometry

COAL-NODE inh(RECTANGLE)

ATTRIBUTE: height

RESTRICTION t2.9 - 2.91

VALUE 2.9

ATTRIBUTE: length

RESTRICTION ct.7 - 1.71

VALUE 1.7

ANALYSIS-PARAMETER: angles

RESTRICTION [(X.X) (X.X) (4 b.4

(x.x) (x.x) (x.x) (w)

(30.75) (70.75) (70.138) (30.136) 1

STRUCTURAL-RELATION: haight-greater-length

VALUE 0.96

ANALYSIS-RELATION: window-angles-inside

VALUE 1 .O (optimistic)

JUDGEMENT: 0.96 (optimistic)

(b)

inj(DRIVERS-CAB)

PART: window

GOAL-NODE ink(WINDOW)

PART: door

GOALNODE inl(DOOR)

CONCRETE: geometry

GOAL-NODE inh(RECTANGLE)

AllRIBUTE: height

RESTRICTION 12.9 - 2.91
VALUE 2.9

AlTRIBUTE: length

RESTRICTION 11.7 - 1.71

VALUE 1.7

ANALYSIS-PARAMETER: angles

RESTRICTION ---

VALUE [(38.85) (62.65) (62,130) (36.130)

(40,110) (60,110) (60,125) (40,125)

(30.75) (70,75) (70.136) (30.136) 1

STRUCTURAL-RELATION: height-greater-length

VALUE 0.96

ANALYSIS-RELATION: window-angles-inside

VALUE 0.95

JUDGEMENT: 0.63

Cc)

Fig. 11. (a) The instance in, (RECTANGLE). (b) The partial instance
inp,(DRIVERS-CAB). (c) The instance inj(DRIVERS-CAB).

nents. For example, if there is an instance of 0 but not of
P in Fig. 9, the instance of A is extended by in (0).

Rule 3:
IF an instance inj (A) of a concept A exists AND at

least one instance of a concept exists, which is optional
due to the modality used for constructing inj (A)

THEN build up extended instances ink (A) out of
inj(A).

In the situation of Fig. 10, the premise of Rule 1 is
satisfied for the concept DRIVERS-CAB [see Fig. 7(b)]
because both part links are context dependent. The result
is the partial instance inpi (DRIVERS-CAB) which is
shown in Fig. 11 (b). By not knowing all arguments of the
analysis parameter “angles,” only the “restriction” could

be further restricted. After the instantiation of the context-
dependent concepts WINDOW and DOOR, the second
rule can be applied. This results in the instance
inj (DRIVERS-CAB) [see Fig. 1 l(c)] where all attributes
are calculated and all judgments are done.

If a goal concept for an analysis process is known, re-
cursive application of these three rules results in a search
tree for the goal concept according to the modalities of a
concept and optional links. By competing instances, gen-
erated for a concept, this search tree is additionally ex-
panded. Based on the judgments for instances, judgments
for concepts restricted to one path of the tree can be es-
timated. This yields to judgments for the nodes of the
search tree which can be used for the A* algorithm.
Therefore, the rules for instantiation in connection with
the A* algorithm form the skeleton for different control
strategies (see Section IV).

Rules l-3 are sufficient to define the instantiation of
concepts if no modified concepts are allowed. As men-
tioned above, a modified concept of A can be computed
if some instances have been computed, but instantiation
of A is not yet possible. For example, having an instance
of N in Fig. 9 may allow one to compute a more refined
range of attribute values for A. This bottom-up creation
of modified concepts is summarized in Rule 4 below. On
the other hand, having a modified concept of A, this may
in turn be used to restrict attribute values of L in a new
modified concept of L. This top-down creation of modi-
fied concepts is summarized in Rule 5. The situation is
similar if not an instance of N is computed, but a modified
concept, a case which is also handled by Rules 4 and 5.

Rule 4:
IF for a concept A or a modijed concept modj (A), a

new modified concept or a new instance were created for
a concept, which is referred to as part, or concrete, or
context-of by the concept A

THEN create a new modijied concept modk (A) out of
A or modj (A), respectively, as follows:

l construct an empty modified concept of A
l connect this modified concept to all instances re-

ferred to by the premise and those which are already re-
ferred to by modj(A)

l activate the functions like in Rule 1.
By building up modified concepts top down, one can

use the inverse functions to constrain a concept due to
expectations and due to knowledge gained during the
analysis. This is done by Rule 5.

Rule 5:
IF for a concept A or for a modijed concept modj (A),

a new modified concept or a new partial instance were
created for a concept 2, which is referred to as part-of or
concrete-of by the concept A

THEN create a new modijied concept modk (A) out of
A or modj (A), respectively, as follows:

l activate the functions in the following sequence:
inverse judgment of link description of 2, inverse com-

putation of attributes of 2, inverse judgments of relations
of 2, judgments of links of A, computation of attributes

898 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 9, SEPTEMBER 1990

mod,(TRUCK)

PART: drivers-cab

COAL-NODE inj(DRIVERS-CAB)

ATTRIBUTE: height

RESTRICTION 12.9 - 3.51

VALUE ---

AlTRIBUTE: length

RESTRICTION c6.0 - 12.01

VALUE ---

STRUCTURAL-RELATION: height-smaller-length

VALUE 1 .O (optimistic:)

ANALYSIS-RELATION: wheels-down

VALUE 1 .O (optimistic)

JUDCEMENT: 0.97 (optimistic)

Fig. 12. The modified-concept mod, (TRUCK).

of A, judgment of attributes of A, judgment of relations
of A, judgment of A.

After the instantiation of DRIVERS-CAB, the premise
of Rule 4 is satisfied for the concept TRUCK [see Fig.
7(a)]. The restrictions made in the modified concept
mod,, (TRUCK) are illustrated in Fig. 12. Notice that no
value, but only a new restriction is calculated for the at-
tribute ‘ ‘height. ’ ’ With mod,, (TRUCK), the premise for
Rule 5 becomes true for the concept WHEEL and the con-
cept CARGO-SPACE. The resulting modified concept
mod, (WHEEL) of the link “front-wheel” is shown in
Fig. 13(b). Since the concept WHEEL may be also a part
of a concept CAR, the lower bound of the restriction of
the attribute “radius” is 0.20. The minimum radius of a
truck wheel, however, is 0.3. This restriction on the links
“front wheel” and “rear-wheel” can be inverted by
constr&ing the lower bound of the attribute “radius” to
0.3. Furthermore, by the application of the inverse cal-
culation of the attribute “height” in the concept TRUCK,
the higher bound of the restriction of the attribute “ra-
dius” in mod, (WHEEL) can be restricted additionally
because a radius of more than 0.5 would exceed the max-
imum value of the restriction of mod, (TRUCK). Analo-
gously by the inverse judgment of the relation “wheels-
-down,” the restriction of the attribute “center” can be
restricted, as one knows the values of the angles of the
instance inj (DRIVERS-CAB).

In order to incorporate results of initial segmentation in
a bottom-up manner, a sixth rule is introduced. It uses the
attribute and concept lists introduced in Section IV below.
Basically, an attribute list contains tuples [concept, role,
type] computed from the knowledge base. If from initial
segmentation a segmentation object having an attribute
with a certain role and type is obtained, this may indicate
the occurrence of the concept in the corresponding row of
the attribute list. A concept list contains the names of all
concepts having a set of tuples [role, type]. One or several
attributes are not sufficient in general to compute an in-
stance of the concept, but they may be used to compute a
modified concept and its judgment. This is summarized
in the following.

Rule 6:
IF initial segmentation provides attributes with [role,

type], AND there is a concept K in some row of the at-

WHEEL

CONCRETE: geometry

GOAL-NODE: CIRCLE

ANALYSIS-PARAMETER: radius

TYPE-OF-VAL: REAL

NUMB-OF-VAL: 1

RESTRICTION: LO.25 - 0.751

COMP-OF-VAL: compute-radius

ARGUMENT: gcomstry.radius

INV-FUNCT inv-compute-radius

ANALYSIS-PARAMETER: centra

-tfPE-OF-‘/AL: RECORD, point

NUMB-OF-VAL: 1

RESTRICTION: I (0.0) - (512.512) I

COMP-OF-VAL: compute-centra

ARGUMENT: gsometry.centrs

INV-FUNCT inv-compute-centre

JUDGEMENT: judge-wheel

ARGUMENT: geometry. radius. csntre

(a)

modl(WHEEL)

ANALYSIS-ATTRIBUTE: radius

RESTRICTION rO.35 - 0.61

VALUE ---

ANALYSIS-ATTRIBUTE: centre

RESTRICTION f (30,O) (100,100) I

VALUE ---

JUDGEMENT: 0.95 (optimistic)

(b)

Fig. 13. (a) The concept WHEEL. (b) The modified concept
mod, (WHEEL).

tribute list or concept list having the roles and types among
its attributes,

THEN create a modified concept mod (K) of K as fol-
lows: generate an empty modified concept, connect it to
those referenced in the premise, activate functions in the
order of Rule 1.

The above six rules precisely define the computation of
instances and modified concepts. As mentioned above,
they are the basis for problem-independent control, but
they are not sufficient to guarantee efficient analysis of
image or speech signals. The reason is the ambiguity of
these signals causing the computation of competing in-
stances. An efficient control strategy should focus on the
most promising instances and avoid the useless ones. Ap-
proaches to such control strategies are treated in the next
section.

IV. PROBLEM-INDEPENDENT CONTROL

In a first realization of the knowledge structure [41],
the control strategy can be described as a strict top-down
graph search algorithm within the semantic network. In
that system, the user interactively selects a goal concept
from the network. The system task then is to instantiate
the chosen goal concept, that is, to verify the goal con-
cept. In other words, the control algorithm is trying to
build up an instance of the concept with respect to the
input data. The instantiation of a goal concept can be di-
vided into two steps; the first step is a top-down expansion
of the network to find all concepts which are a necessary
prerequisite for the instantiation of the goal concept; the
second step is a bottom-up instantiation of expanded con-
cepts. The rules for instantiation (Rule 1, Rule 2, and Rule

NIEMANN et of.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 899

3) together with the A* algorithm form a first complete
control strategy and build the base for extended strategies.
Before describing some extensions, a sketch of the two
main steps of the basic strategy will be given. For sim-
plicity, it is assumed in the following that there are no
dependencies on the context and no sets of modality, and
that any attribute of a concept only depends on attributes
of parts directly linked to it.

Given a goal concept, the control starts with top-down
,. expansion of the network. As mentioned in Section III-C,
the instantiation rule Rule 1 is applicable to every concept
of the network. It determines which concepts are a nec-
essary prerequisite for the instantiation of that concept.
Before instantiating the goal concept, first there must be
instances of parts and concretes directly linked to that
concept. In general, these concepts themselves have parts
and concretes, and so on. So one has to expand the net-
work top down along the “part” and the “concrete”
links, starting with the goal concept. This expansion pro-
cess stops at the level of minimal concepts. Minimal con-
cepts are defined by having no parts and no concretes (see
Section III-A). It is assumed that minimal concepts can
be instantiated immediately on image (or speech) data,
using results from image preprocessing and segmentation.
After instantiation of such minimal concepts, successive
concepts on higher levels can be instantiated, until the
goal concept is reached. Network expansion is done in a
depth-first manner. Because of ambiguities arising by the
possibility of instantiating a concept in different ways on
the same input data, there may be more than one instance
for a concept. To handle this problem of competing in-
stances, a search algorithm based on the A* algorithm is
used.

This simple presentation of expansion and instantiation
should be enough to give an idea of what is meant. For
further details, see [4 11. It should be noted that the pro-
cess of expanding a goal concept is simplified by the re-
strictions defined in Fig. 4. By these restrictions, cycles
are avoided which otherwise would have to be tested for
during expansion.

This control algorithm has the advantage of being con-
ceptually simple and sufficient for moderately complex
problems. But it also has two weak points. First, the se-
lection and instantiation of a goal concept results in a
strictly top-down analysis. The processing is model-
driven, and there are no possibilities for the control to act
flexibly with respect to the input data. Second, the inter-
active selection of a goal concept by the user may be a
critical point. If the network contains a lot of concepts
and the user always selects the most general concept, the
control algorithm always expands and instantiates a great
part of the network. In order to avoid this, the user may
select a goal concept at a lower level of the network. This
reduces the number of concepts to be expanded and in-
stantiated, but it leaves the problem of goal selection to
the user.

Because of this, another more flexible control strategy
has been designed, allowing a mixed top-down and bot-

tom-up analysis without interaction of the user. A crucial
point of this bidirectional control algorithm is the use of
attributes leading to additional knowledge sources that can
be used to direct analysis and limit the search space. There
are several possibilities for making use of attributes. One
version of a bidirectional control algorithm only uses at-
tributes whose set of values is a finite set. Examples are
a finite set of colors, shapes, or locations. Details of this
approach are given in [37]. A more general approach is
described in this paper.

The idea of the bidirectional control algorithm pre-
sented here is to determine an attribute list by the rule

IF (a concept has an attribute with a certain role and
type),

THEN (insert the triple [concept, role, type] into an
attribute list).

Examples of tuples (attribute.role, attribute.type) are
(length, real), (color, set of colors), or (speed, real). From
initial segmentation, one obtains segmentation objects like
lines, regions, or vertices having certain attributes. Using
the attributes of segmentation objects and the attribute list,
a set A of concepts possibly corresponding to these attri-
butes is determined. The selection of concepts can be con-
strained more tightly by a concept table. This contains the
names of all concepts having a certain set of tuples [role,
type], not just one.

So far, the value of an attribute has not been used. The
first step of the control algorithm is to compute a modified
concept for every concept in the set A using Rule 6. The
function to compute a judgment is invoked for every mod-
ified concept; the judgment was outlined in Section III-
B3). From this discussion, it is evident that the judgment
of an attribute influences the judgment of a modified con-
cept. For example, assume a line L from initial segmen-
tation to have (attribute.role = length, attribute. type =
real, attribute.value = 10 m), and two concepts X and Y
to have (attribute.role = length, attribute. type = real,
attribute.restriction = (10 m, 20 m) and (attribute.role
= length, attribute.type = real, attribute.restriction =
(40 m, 100 m), respectively. Let us assume that the judg-
ment functions of the two attributes of X and Y are com-
puting the degree of membership by using fuzzy mem-
bership functions. Irrespective of the precise fuzzy
membership functions, the degree of membership of the
attribute of L when given X will be high, and that of L
when given Y will be low. By this approach, a judgment
of every modified concept is computed. The modified
concepts are viewed as nodes in a search space. Fig. 14
gives an overview of the complete algorithm. Its idea is
to apply the A* algorithm to the search space initialized
by the modified concepts. In every step of the algorithm,
the best node in the search space is selected, and it is tried
to compute additional instances.

The modified concepts obtained from segmentation re-
sults will be on a fairly low level of abstraction, As
pointed out in Section III-B2), different levels of abstrac-
tion or different conceptional systems are represented by
the hierarchy of concrete links in the network. A node in

900 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 9, SEPTEMBER 1990

from segmentation results and concept tables compute a set A of
concepts corresponding to segmentation results

generate one successor node V of the root R in the search space S

apply RULE6 to Kto compute a modified concept mod(K)
the judgement ofV is equal to the judgement of mod(K)

WHILE specified degrees of concretes and parts have not yet been

I I THEN: choose the first concept C on P(N)
instantiate C by using RULE1 and RULE2 I

generate one successor node 0 ofN
compute judgement of 0 by rules of algorithm A*
generate list P(0) for the node 0

determine a set B of superior concepts of Z(N)

F~hconceptKinsetBLTO: 1

generate one successor node V ofN in space S
apply RULE4 to K to compute a modified concept mod(K)
the judgement of V is equal to the judgementofmod(K)
generate list P(V) forK and V, Z(V) =K

initialize the search space S by the root node R

Fig. 14. An outline of a bidirectional control algorithm. RULE, refers to
the corresponding rule described in Section III-C. The generation of list
P is described in Fig. 15.

the search space may represent an uninstantiated concept
(in which case the premise list P in Fig. 14 is not empty;
this list follows from Rules 1 and 2) or an instantiated
concept (in which case P is empty). Since initially con-
cepts are on a low level of abstraction, one will not want
to stop on this level. Therefore, a set B of superior con-
cepts is determined where “superior” may be defined in
different ways. An approach is to determine less concrete
and less general concepts, that is, higher in degrees d 1
and d2. Rule 4 is used to generate modified concepts for
the concepts in B. A node in the search space is generated
for every modified concept and a judgment is computed.

The algorithm ends if a specified level of abstraction
(or a specified degree of the concrete and part links of an
instantiated concept) has been reached. It initializes mod-
ified concepts in a bottom-up phase. It alternates between
top-down instantiation of a node in the search space and
bottom-up determination of superior concepts. The activ-
ity is directed only by judgments of nodes in the search
space according to the strategy of the A* algorithm. It is
more general than the previous algorithm in [37] since it
makes use of all attributes, and it is more uniform since
it uses only one uniform search space, whereas the former
algorithm used several search spaces, the so-called local
search spaces.

Although the above algorithm is more complex and
more powerful than the strict top-down algorithm outlined
in the beginning, it still does not make full use of the
potentials of the network. In fact, it only uses Rules 1, 2,

4, and 6 in Section III-C. So it is possible to design other
control algorithms. However, we think the most impor-
tant point is that all those algorithms will be special ver-
sions of graph search algorithms. The combination of se-
mantic networks and graph search thus provides a
framework to treat the control problem and to design dif-
ferent classes of control algorithms which can be used in
various task domains.

V. NETWORK ENVIRONMENT

In order to provide a comfortable environment for
working with semantic networks, it is necessary to have
tools which support the generation, the modification, and
the consistency test of a semantic network, and an easy
utilization of the stored knowledge. Those tools which are
written in C are implemented in the network environment
of ERNEST, including an editor for easy manipulation of
networks. Furthermore, access routines to the network
structures and routines for developing control algorithms
are available.

Besides the tools for creating and manipulating a se-
mantic network, there are programs which allow a simple
utilization of the coded knowledge for an analysis pro-
cess. The following tools are feasible if a network for a
special application was successfully tested for its consis-
tency. To make knowledge utilization more efficient, the
network can be prepared for an analysis process. This
means that all information necessary for a control algo-
rithm is computed in advance whenever possible. For all
concepts, the substructures are calculated which are in-
herited from concepts referred to “specialization of”
links. Pointers to these are inserted in the considered con-
cept. The gain in efficiency is obvious because for the
access of a substructure, no search along the links “spe-
cialization of” is necessary. Since for the calculation of
attributes and analysis parameters values of attributes and
analysis parameters of the same concepts also can be used,
it is necessary that these self-references are consistent. In
addition, a certain order for the calculation has to be fol-
lowed, and therefore, the so-called concepr jiowcharr is
created. On the one hand, it indicates the order of calcu-
lation, and on the other hand, it represents the self-refer-
ences between the arguments.

A further tool in the preparing of a network for the anal-
ysis is the calculation of the initial search graph for every
concept. It represents all possible paths for the instantia-
tion of this concept which result from the first two rules
for instantiation; this corresponds to the list P in Fig. 15.
This information also increases the efficiency of an anal-
ysis because the search tree for an analysis process is
closely connected to the initial search graph.

In a network prepared in this way, one can use tools for
building up instances and modified concepts. According
to the pragmatics of the network (see Section III-C), there
are routines which create partial instances, which com-
plete partial instances, and which extend instances by op-
tional links. Furthermore, one can create modified con-
cepts and modify modified concepts top down and bottom

compute_list-(K,P)

FOR all concepts A [(which are a context independent part ofK
OR which are a concrete of K) AND (where an instance of A is
not yet on node V(K)] DO:

compute list(A,P)

(K has context dependent parts),

attach Kto the end of P

Fig. 15. Algorithm for the computation of list P for concept K and search

space node V(K) corresponding to K.

up. These complex routines are powerful tools for the
analysis because they execute the main steps of analysis
independently of a concrete control algorithm, namely,
local adaptation of the knowledge base and instantiation
of concepts and modified concepts.

VI. APPLICATIONS

At our Institute, three pattern analysis applications use
the ERNEST system. The problems attacked by these ap-
plications are quite different. Common to all is that sensor
data input is used. The differences between the tasks and
the underlying data indicate the epistemological adequacy
of the network approach and also the problem-indepen-
dent structure of the total ERNEST system.

A. Scintigraphic Image Analysis

The task of this system is to automatically give a de-
scription in diagnostic terms of image sequences of the
heart. The input data are Tc-99m gated blood pool studies
with a spatial resolution of 64 x 64 pixels and 12-32
images per sequence. A sequence represents the motility
behavior of the heart between two R waves of the ECG.
An example of such an image sequence filtered by a 7 x

7 median is shown in Fig. 16. The knowledge base of the
system consists of about 180 concepts. A condensed view
of the network is shown in Fig. 17. Each block in this
figure stands for a collection of concepts having identical
degree with respect to the specialization and concrete
links. Inside a block, concepts are connected via part
links. The network consists of eight conceptional systems
from the interface system at the bottom to the complete
interpretation system at the top. In between the medical
objects, the frame-to-frame motility, motility paths, seg-
mentation of the left ventricle volume curve, diagnostic
interpretations for the motility of the different objects, and
the interpretations of the form and proportions of the heart
are represented. In the total network, a few hundred links,
attributes, and relations are defined. An analysis process
is monitored by the A* algorithm. For the judgments of
instances [in the sense of Section III-B3)] and search graph
nodes, fuzzy logic is used as certainty measurement.

A detailed description of this system and the results are
reported in [3 l] and [41]. Therefore, we only mention

901 NIEMANN et 01.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING

Fig. 16. An image sequence of the motility behavior of the heart.

that in a test of 21 image sequences, 18 were interpreted
correctly and three were rejected.

B. Analysis of Industrial Scenes

The purpose of analysis of industrial scenes may be the
detection of objects, fault detection, or working area con-
trol. Therefore, the description as the result of analysis
differs depending on the purpose. In any case, the analysis
starts with processing one image or one stereo-image pair.
Image processing results are edges and regions with as-
sociated features. These features may be 2-D, 2.5-D, or
3-D features.

The purpose of the image analysis system that we are
presently implementing is workpiece recognition and de-
tection for flexible automatic manufacturing. The algo-
rithms used for feature extraction include stereo and
shape-from-shading algorithms. Using a model repre-
sented by a semantic network, a combination of the above-
described control algorithms monitors the analysis.

To make the image analysis system flexible enough as
is necessary for modern manufacturing, we have inte-
grated a knowledge acquisition component in ERNEST.
This component itself can be easily adopted to a special
task domain. A description of it is omitted here due to
space limitations. Details can be found in [43]. The input
of the knowledge acquisition consists of images of the
object that has to be learned and of the corresponding
CAD data.

A preliminary version of the image analysis system has
been completed. It uses a contour-based segmentation and
models of the views of stable positions of the workpieces.
The assembly of electric motors is an experimental task
where this system has been used for object identification
and location determination. Different tests of the image
analysis system have shown that it reliably recognizes and
localizes parts under variable viewing conditions. The au-
tomatically generated models consist of 5-100 concepts,
depending on the complexity of the object. The analysis
time on a VAX Station 3200 took from 2 CPU s up to 5
CPU min. By not using all features of an object but only
the most robust ones, the time can be reduced to less than
10 CPU s for all objects. The location defect was about
two pixels. The results have shown that the requirements
of an industrial environment can be met by an image anal-
ysis system that has been developed under ERNEST.

C. Speech Understanding

The aim of the project EVAR [30], [36] is the auto-
matic understanding of continuous German speech.
Therefore, a homogeneous hierarchical knowledge base

902 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 9. SEPTEMBER 1990

MOTILITY

I con

con

COHFLEK

INTERPRETATION

diagnostic terms

for the

7
(objecls-

lnterpretatlon

of the local

motility of

con
I

con con

IN FORM AND

INPUT SEWNCE

DESCRIPTION

Fig. 17. Overview of the network for diagnostic description of scintigraphic image sequences

[34] was created based on existing work. It represents the
syntax and semantics of the German language and the pro-
totypical task domain “intercity-train-information.” Fig.
18 gives a detail of the knowledge base.

In the lowest level, there are concepts (i.e., H-
WORD-HYPOTHESIS) which build the main interface
between word recognition and linguistic analysis. The in-
stances of those concepts are computed from the actual
set of word hypotheses. Besides that, on other locations
in the network, communication takes place between these
two parts of analysis. So one can create hypotheses based
on modified concepts or instances which also use linguis-
tic knowledge for the judgment, or one may verify a word
chain.

The basis for the syntactic judgment of an interpretation
is the concept SYNTAX and its specialization. The syn-
tactic classes (i.e., SY-NOUN, SY-PRON) are modeled
here, which are the connection to the lowest level. Based
on those, greater syntactical units, i.e., noun phrase
(SY-NP), are described by the links part.

The next level contains concepts which represent the
semantics based on the case grammar 191. The concepts
for deep cases opened by noun frames, verb frames, and
adjective frames are connected to the concepts represent-
ing these frames.

The highest level reflects the pragmatics given by the
task domain ‘ ‘intercity-train-information. ” Three kinds
of concepts are distinguished, namely, goal concepts

NIEMANN er al. : ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 903

Fig. 18. Detail of a network for speech understanding covering the abstraction levels of words, syntax,
matics.

(i . e . , P-TRAIN-CONNECTION) , frames of meaning
(i.e., P-V-FAHREN), and pragmatical intentions (i.e.,
P-DESTINATION). The last two kinds of concepts are
analogous to the frames and deep cases in the semantics.

The first tests were done with a knowledge base of about
120 concepts and with a lexicon of 1600 items. For the
analysis, the 100 best scored word hypotheses were used
and augmented by the deficient correct word hypothesis
without changing the score. In an initial phase, the ten
best scored word hypotheses with a relevant pragmatical
class were used to estimate possible goal concepts which
the control algorithm, described in Section IV, tried to
instantiate. For two sentences, the analysis could be fin-
ished successfully. This means that the correct pragmati-
cal instance (P-TIME-TABLE-INFO) with the correct
pragmatical intentions was built up. For four other sen-
tences, the analysis did not come to an end due to storage
limitation (more than 1500 search tree nodes). The reason
was a very bad rank (less than 2000) of some correct word
hypotheses on the boundaries of the speech signal because
these regions were insufficiently digitized. For the two
recognized sentences, 640/760 search tree nodes were
expanded, 600 / 7 15 instances, and 703 / 824 modified
concepts were created. On a VAX Station 2000, the anal-
ysis consumed about 12 CPU min and about 8 Mbyte stor-
age. As one can see, the number of instances and modi-
fied concepts increases approximately linearly with the
number of search tree nodes.

VII. CONCLUSIONS AND OUTLOOK

A system environment based on a special definition of
a semantic network has been described which is specially

semantics, and Pw

designed for knowledge-based image and speech under-
standing. It allows one to represent high-level task-spe-
cific knowledge on different levels of abstraction. Low-
level (or task-independent) process is incorporated into
the system via minimal concepts and their direct instan-
tiation. The use of the knowledge base is defined by six
task-independent rules for the instantiation and modifi-
cation of concepts. The rules allow one to design different
control algorithms for the analysis of an image or an ut-
terance. Appropriate tools for the design, test, and mod-
ification of knowledge bases are available, and the syntax
of the network is checked automatically. The approach is
being used successfully in three different application
areas, two in image understanding, and one in speech un-
derstanding .

We are presently extending the approach in the direc-
tion of providing a separate explanation facility which is
designed to work on the network structure, but which
should be task-independent to a large extent. Another plan
for the future is to explore. and design facilities for a truth-
maintenance system.

It has been demonstrated in [44] that computations in a
particular type of semantic network can be done in a time
order depending on the depth of the network-in our ter-
minology, depending on the order of the concretization
hierarchy. Another direction for future research thus may
be to explore parallel instantiation of concepts in our more
elaborate network structure.

REFERENCES

[ll D. H. Ballard and C. M. Brown, Cornpurer Vision. Englewood
Cliffs, NJ: 1982.

904 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 9, SEPTEMBER 1990

[2] R. J. Brachman, “On the epistemological status of semantic net-
works,” in N. V. Findler, Ed., Associative Networks. New York:
Academic, 1979.

[3] R. J. Brachman and I. A. Schmolze, “An overview of the KL-ONE
knowledge representation language,” Cognitive Sci., vol. 9, pp. 171-
216, 1985.

[4] R. Brooks, “Symbolic reasoning among 3-D models and 2-D im-
ages,” Artificial Intell., vol. 17, pp. 285-341, 1981.

[5] R. De Mori, Computer Models of Speech Using Fuzzy Algorithms.
New York: Plenum, 1983.

[6] W. Eichhom and H. Niemann, “A bidirectional control strategy in a
hierarchical knowledge structure,” in Proc. 8th Int. Conf. Pattern
Recognition, Paris, France, 1986, pp. 181-183.

[7] W. Eichhom, “Eine aktive hierarchische Wissensstruktur fiir die
Musteranalyse,” dissertation, Lehrstuhl fiir Informatik 5 (Musterer-
kennung), UniversitCt Erlangen-Niimberg, Erlangen, W. Germany,
1988.

[8] L. D. Erman and V. R. Lesser, “The Hearsay-II speech understand-
ing system: A tutorial, ” in W. A. Lea, Trends in Speech Recognition.
Englewood Cliffs, NJ: Prentice-Hall, 1980, pp. 361-381.

[9] C. J. Fillmore, in The Case for Case. Universals in Linguistic The-
ory, E. Bach and R. T. Harms, Eds. New York: Holt, Rinehart, and
Winston, pp. l-88.

[lo] N. V. Findler, Ed., Associative Networks. New York: Academic,
1979.

[11] A. R. Hanson and E. M. Riseman, Eds., Computer Vision Systems.
New York: Academic, 1978.

[12] J. P. Hayes, “The logic of frames, ” in D. Metzing, Ed., Frame Con-
ceptions and Text Understanding. Berlin: de Gruyter, 1979, pp. 46-

61.
(131 F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, Eds., Building

Expert Systems. New York: McGraw-Hill, 1982.
(141 C. Hewitt, “PLANNER: A language for proving theorems in ro-

bots,” in Proc. IJCAI 2, 1971.
[15] -, “Viewing control structures as patterns of passing messages,”

Artificial Intell., vol. 8, pp. 323-364, 1977.
[16] I. Hofmann, R. Glmlich, and H. Niemann, “A human interface for

control of an image processing system, ” in Proc. 8th Int. ConJ: Pat-
tern Recognition, Paris, France, 1986, pp. 1256-1258.

[17] R. Kowalski, “Predicate logic as a programming language,” in In-
formation Processing 74. Amsterdam: North-Holland, 1974, pp.
569-574.

[18] F. Kummert, H. Niemann, G. Sagerer, and S. SchrBder, “Werkzeuge
zur modellgesteuerten Bildanalyse und Wissensakqusition-Das Sys-
tem ERNEST,” in M. Paul (Hrsg.), GI-17. Juhrestagung Computer-
integrierter Arbeitsplatz im B&o. Berlin: Springer-Verlag, 1987,
pp. 556-570.

[19] W. A. Lea, Trends in Speech Recognition. Englewood Cliffs, NJ:
Prentice-Hall, 1980.

[20] H. Levesque and J. Mylopoulos, “A procedural semantics for se-
mantic networks,” in N. V. Findler, Ed., Associative Networks.
New York: Academic, 1979, pp. 93-121.

[21] Z. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill, 1974.

1221 J. McCarthy and P. J. Hayes, “Some philosophical problems from
the standpoint of artificial intelligence,” in B. Meltzer and D. Rit-
chic, Eds., Machine Intelligence 4. Edinburgh, Scotland: Edin-
burgh Univ. Press, 1969, pp. 463-502.

[23] D. McDermott, “The last survey of representation of knowledge,”
in Proc. AISB Conf., Hamburg, W. Germany, 1978, pp. 206-221.

[24] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Machine
Learning, An Artijcial Intelligence Approach. Palo Alto, CA:
Tioga, 1983.

[25] M. Minsky, “A framework for representing knowledge,” in P. H.
Winston, Ed., The Psychology of Computer Vision. New York:
McGraw-Hill, 1975, pp. 211-277.

[26] J. Mylopoulos and H. Levesque, “An overview of knowledge rep-
resentation,” in M. Brodie, J. Mylopoulos, and J. V. Schmidt, Eds.,
On Conceptual Modelling: Perspectives from Artijicial Intelligence,
Databases, and Programming Languages. New York: Springer-
Verlag, 1983.

1271 M. Nagao and T. Matsuyama, A Structural Analysis of Complex Aer-
ial Photographs. New York: Plenum, 1980.

[28] A. M. Nazif and M. D. Levine, “Low level image segmentation: An
expert system, ” IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-6, pp. 555-577, 1984.

[29] H. Niemann, Pattern Analysis. Berlin: Springer, 1981,

[30] H. Niemann and G. Sagerer, “Semantische Netze als Ansatz zur Re-
prgsentation von Wissen fiir die automatische Bildanalyse,” Robot-
ersysteme I, pp. 139-150, 1985.

[31] H. Niemann, H. Bunke, I. Hofmann, G. Sagerer, F. Wolf, and H.
Feistel, “A knowledge based system for analysis of gated blood pool
studies,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7,
pp. 246-259, 1985.

1321 H. Niemann. “A homogeneous architecture for knowledge based im- _
age understanding,” in Proc. 2nd Conf. Artificial [itell. Appl.,
Miami, FL, 1985, pp. 88-93.

1331 H. Niemann, A. Brietzmann, R. Miihlfeld, P. Regel, and G. Schukat,
“The speech understanding and dialog system EVAR,” in R. De Mori
and S. Y. Suen, Ed., New Systems and Architectures for Automatic
Speech Recognition and Synthesis, NATO ASI Series F16. Berlin:
Springer, 1985, pp. 271-302.

[34] H. Niemann, A. Brietzmann, U. Erhlich, and G. Sagerer, “Repre-
sentation of a continuous speech understanding and dialog system in
a homogeneous semantic net architecture,” in Proc. ICASSP’86, To-
kyo, Japan, 1986, pp. 1581-1584.

[35] H. Niemann and H. Bunke, Kiinstliche Intelligenz in Bild- und
Sprachanalyse. Stuttgart: Teubner, 1987.

[36] H. Niemann, A. Brietzmann, U. Ehrlich, S. Posch, P. Regel, G. Sag-
erer, R. Salzbrunn, and G. Schukat-Talamazzini, “A knowledge based
speech understanding system,” Int. J. Pattern Recognition Art. In-
tell., vol. 2, pp. 321-350, 1988.

(371 H. Niemann, G. Sagerer, and W. Eichhom, “Control strategies in a
hierarchical knowledge structure,” Int. J. Pattern Recognition Art.
Intell., vol. 3, pp. 557-572, 1988.

[38] N. J. Nilsson, Principles of Artificial Intelligence. Berlin: Springer,
1982.

[39] W. A. Perkins, “INSPECTOR: A computer vision system that learns
to inspect parts,” IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-5, pp. 584-592, 1986.

[40] H. Prade, “A computational approach to approximate and plausible
reasoning with applications to expert systems,” IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-7, pp. 260-283, 1985.

[41] G. Sagerer, “Darstellung und Nutzung von Expertenwissen fiir ein
Biidanalysesystem, ” in informatik Fachberichte. Berlin: Springer,
1985.

[42] P. Schefe, Kiinstliche Intelligenz-oberblick und Grundlagen.
Mannheim, Wien, Ziirich: Bibliographisches Institut, 1986.

[43] S. Schriider, H. Niemann, and G. Sagerer, “Knowledge acquisition
for a knowledge based image analysis system,” in Proc. European
Knowledge Acquisition Workshop (EKA W88), Gesellschaft fiir Math-
ematik und Datenverarbeitung mBH, Bonn, W. Germany, 1988, pp.
29/l-29/15.

[44] L. Shastri, Semantic Networks: An Evidential Formalization and Its
Connectionist Realization. London: Pitman, 1988.

[45] Y. Shirai, Three-Dimensional Computer Vision. Berlin: Springer,
1987.

[46] J. K. Tsotsos, “A framework for visual motion understanding,
“Ph.D. dissertation, Dep. Comput. Sci., Univ. Toronto, Toronto,
Ont., Canada, 1980.

[47] P. H. Winston, Artificial Intelligence, 2nd ed. Reading, MA: Ad-
dison-Wesley, 1984.

[48] W. Woods, “What’s in a link. Foundations for semantic networks,”
in D. Bobrow and A. Collins, Ed., Representation and Understand-
ing. New York: Academic, 1975.

[49] M. Yashida and S. Tsuji, “A versatile machine vision system for
complex industrial parts,” IEEE Trans. Comput., vol. C-26, pp. 882-
894, 1977.

Heinrich Niemann (M’77) received the DipI.-
Ing. degree in electrical engineering and the Dr.-
Ing. degree from the Technical University of Han-
nover, Hannover, West Germany, in 1966 and
1969, respectively.

From 1967 to 1972 he was with Fraunhofer ln-
stitut fiir Informationsverarbeitung in Technik ung
Biologie, Karlsruhe, working in the field of pat-
tern recognition and biological cybernetics. Dur-
ing 1973-1975 he was teaching in the Department
of Electrical Engineering. Fachhochschule Gies-

sen. Since 1975 he has been a Professor of Computer Science at the Uni-
versity of Erlangen-Niimberg, Erlangen, West Germany, and since 1988
he has also been Head of the research group “Knowledge Processing” at
the Bavarian Research Institute for Knowledge Based Systems (FOR-

NIEMANN et al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 905

WISS). His fields of research are image and speech understanding and the
application of artificial intelligence techniques in these fields. During 1979-
1981 he was Dean of the Engineering Faculty of the University, in 1982
he was Program Chairman of the 6th International Conference on Pattern
Recognition, Miinchen, and in 1987 he was Director of the NATO Ad-
vanced Study Institute on “Recent Advances in Speech Understanding and
Dialog Systems.” He is on the Editorial Board of Signal Processing and
Pattern Recognition Letters and is the author, coauthor, or editor of nine
books and more than 100 technical papers.

Dr. Niemann is a member of EURASIP, GI, and VDE.

Gerhard F. Sagerer (M’88) received the diploma
and the Ph.D.(Dr.-Ing.) degree in computer sci-
ence from the University of Erlangen-Numberg,
Erlangen, West Germany, in 1980 and 1985, re-
spectively.

His research interest is knowledge representa-
tion and control algorithms and their application
in the field of image and speech understanding.
From 1980 to 1985 he worked on the automatic
interpretation of scintigraphic image sequences of
the human heart. Since 1984 he has been working

on projects for knowledge-based speech understanding and the interpreta-
tion of industrial scenes. He has published numerous papers in these fields,
is author of a book on knowledge representations and its use in the appli-
cation of image analysis, and coeditor of a book on speech understanding
and dialog systems.

Dr. Sagerer is a member of the German Computer Society (Gl) and the
European Society for Signal Processing (EURASIP).

Stefan Schriider received the Dipl.-lnf. degree in
informatics (computer science) from the Univer-
sity of Erlangen-Nilmberg, Erlangen, West Ger-
many, in 1985.

Since 1985 he has been with the lnstitut fur In-
formatik, Mustererkennung (pattern recognition),
University of Erlangen-Numberg. His field of re-
search is knowledge-based image analysis,
knowledge acquisition, and artificial intelligence.

Franz Kummert was born in Hahnbach, West
Germany, on November 18, 1960. He received the
Dip].-Inf. degree in informatics (computer sci-
ence) in 1986 from the University of Erlangen-
Nilmberg, Erlangen, West Germany.

Since 1987 he has been with the Institut fur ln-
formatik, Mustererkennung (pattern recognition)
at the University of Erlangen-Numberg. His field
of research is knowledge-based speech under-
standing.

