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Aktract-This paper gives a detailed account of a system environ- 

ment for the treatment of general problems of image and speech un- 

derstanding. It provides a framework for the representation of de- 

clarative and procedural knowledge based on a suitable definition of a 

semantic network. The syntax and semantics of the network are clearly 

defined. In addition, the pragmatics of the network in its use for pat- 

tern understanding is defined by several rules which are problem in- 

dependent. This allows one to formulate problem-independent control 
algorithms. Complete software environments are available to handle 

the described structures. The general applicability of the network sys- 

tem is demonstrated by short descriptions of three applications from 

different task domains. 

Index Terms-Graph search, image understanding, knowledge ac- 

quisition, problem-independent control, semantic network, speech un- 

derstanding, system shell. 

I. INTRODUCTION 

T HERE has been an increasing interest in the auto- 
matic interpretation of sensor signals like images, im- 

age sequences, or continuous speech. The goal is to com- 
pute a symbolic description of those aspects or contents 
of the signal which are relevant in a particular application; 
this may be viewed as a general problem of pattern rec- 
ognition. It is generally agreed that this requires the ac- 
quisition, representation, and use of task-specific knowl- 
edge by the system. Processing proceeds from the sensor 
signal, represented by an array of integer sample values, 
via different levels of more and more abstract represen- 
tation of the content of the signal. Representational levels 
in image understanding may be, for example, edges and 
regions obtained from an initial segmentation, three-di- 
mensional surfaces, symbolic names of objects and their 
relations, conceptions of motion like a “heart cycle” or 
a “pedestrian crossing a street,” interpretations concem- 
ing a diagnostic description like “hypokinetic motional 
behavior,” concerning a situation like “congested high- 

way, ” or concerning an event like “placing a part into a 
device for assembly. ” These examples demonstrate that 
image understanding requires representation of knowl- 
edge about quite different aspects of a sensor signal and 
on different levels of abstraction. Several systems have 
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been designed and realized demonstrating the feasibility 
of knowledge-based processing of image or speech sig- 
nals; for example, see the systems described in [4], [l 11, 
LW, t311, [331, and [411. 

A system capable of performing the above-mentioned 
processing basically consists of the following four com- 
ponents [29]. 

1) Methods for low-level preprocessing and initial seg- 
mentation. This has usually been done so far without the 
employment of explicitly represented knowledge, al- 
though there are some exceptions to this, for example, 
m. 

2) Knowledge for doing task-specific recognition and 
understanding of the segmentation results. 

3) Control for determining a processing strategy by ac- 
tivating the appropriate algorithms at the proper time using 
a relevant subset of the available data. 

4) Results database for storing the results of processing 
and making them available to processing algorithms as 
necessary. 

It may be convenient to also have the following three 
additional components in a system. 

5) Knowledge acquisition for automatic learning of the 
task-specific knowledge. 

6) Explanation for a convenient assessment and visu- 
alization of system activities and resources. 

7) User interface to make system resources and capa- 
bilities transparent also for the user who does not know 
the details of the system. 

There are several textbooks covering various topics in- 
volved in the above system structure, for example, [ 11, 
DOI, Hll, V41, WI, [381, 1451. 

In this paper, we will outline a particular system shell, 
called ERNEST, for knowledge representation which is 
based on the ideas developed in [2], [20], and [48] con- 
cerning semantic networks. The general background is 
discussed in Section II. A first realization is described 
shortly in [31] and in more detail in [41]. From this re- 
sulted an extended and improved definition of the struc- 
ture of and the inferences for the semantic network which 
is described in Section III. It allows the integration of a 
complete system for image or speech understanding in a 
homogeneous network structure [32], [34]. An essential 
prerequisite for such a homogeneous system is the possi- 
bility to derive task-independent control algorithms; two 
realized algorithms are outlined in Section IV. The ideas 
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presented in Sections III and IV were realized in a ver- 
satile software system to give the user a convenient work- 
ing environment as outlined in Section V. This system 
shell ERNEST also includes tools for knowledge acqui- 
sition and explanation. But these two system components 
will not be discussed in this paper. In order to restrict the 
topics, we concentrate on knowledge representation and 
utilization. Finally, in Section VI, we show with three 
examples from different task domains that the ideas are 
powerful and feasible, and we close the paper by an out- 
look on further work in Section VII. 

II. BACKGROUND 

The problem of knowledge representation in general is 
deeply discussed in a number of papers and textbooks, 
e.g., [lo], [47], [22], [23]. Within the topic of this paper, 
a short discussion on special considerations related to pat- 
tern understanding will be presented. First of all, different 
types and components of knowledge for pattern under- 
standing will be separated. In order to make a decision for 
a basic approach for the desired system shell, a few words 
on adequacy criteria for knowledge representation lan- 
guages are necessary. These criteria, together with the re- 
marks on different schemes and languages, form the de- 
cision to choose the semantic network approach for the 
pattern understanding shell ERNEST. The very basis of 
all the following ideas and discussions is the general sys- 
tem architecture consisting of those components which 
were enumerated in the Introduction. 

A. Knowledge Components and Types 

In order to achieve automatic descriptions of patterns, 
different kinds of knowledge must be considered. First of 
all, there are objects, events, and other problem-specific 
knowledge concepts which must be modeled. This type of 
knowledge is often called the declarative part of a knowl- 
edge base. Such models can be used for the interpretation 
of patterns. Therefore, it is necessary to know how they 
can be used. The knowledge about the use of a declarative 
model builds up the inference processes. This is a second 
type, which we call procedural knowledge. Additionally, 
structures describing signal areas are created during the 
analysis of patterns. These are summarized by the term a 
posteriori data and are built of instances. They connect 
signal areas with concepts of the declarative knowledge. 
So far, all three types of related to symbolic descriptions 
of patterns. But this kind of description is only one com- 
ponent of knowledge in a pattern analysis system. Be- 
cause we are working with patterns, i.e., with sensor sig- 
nals, other components must be taken into account. 
Signals must be transferred into symbolic descriptions. 
Each declarative concept is associated with numerical or 
symbolic features or attributes. These features must be 
defined for the concepts, and we need for each such fea- 
ture special algorithms to detect it, and functions to com- 
bine features to new ones. Therefore, a knowledge base 
must contain an attribute component. Like the symbolic 
component, it is divided into three different types of 

knowledge and data. The declarative type defines the at- 
tributes for the concepts by their domain and their con- 
tent. The procedural type addresses the functions which 
are needed to calculate and to combine the attributes. The 
data type shows values of attributes in the context of in- 
stances. A third component is based on the fact that sig- 
nals are noisy. They are a source of errors and ambiguity. 
No decision in terms of “yes” or “no” is possible, but 
every decision is judged with some kind of certainty or 
possibility. In order to allow the combination and the 
comparison of such judgments of different intermediate 
results, a calculus for judgments must be fixed for a pat- 
tern analysis system. This fact should not imply that all 
applications realized with the same system shell must use 
the same judgment calculus. The shell must allow the def- 
inition of a calculus for an application. This definition is 
similar to the attribute and the symbolic description com- 
ponent. If a calculus is chosen, the declarative type is 
given by the data structures which are able to store the 
judgments. Furthermore, the calculus gives the proce- 
dural knowledge type by the functions to combine and to 
compare judgments. The a posteriori type are the values 
of judgments for symbolic descriptions and for attributes. 
The ideas about the three types and the three components 
of knowledge as described above are summarized in Fig. 
1. Each of the components consists of the types declara- 
tive knowledge, procedural knowledge, and results. The 
system component “knowledge” of a pattern understand- 
ing system must cover both procedural and declarative 
knowledge for all three knowledge components concepts, 
attributes, and judgments. The “result database” stores 
the a posteriori data of all these knowledge components. 
The system component “control” only uses the two 
knowledge types and the results to guide the analysis pro- 
cesses. 

So far, it is shown what components and types of 
knowledge a pattern analysis system has to take into ac- 
count. It depends on the organization of the knowledge, 
and how complex the retrieval and the activation of the 
different types and components are for the component 
“control.” This yields the problem of dependencies and 
relationships between components and types. There are 
several approaches which will be discussed in more detail 
in Section II-B. A first decision for the organization of a 
knowledge base is whether the procedural or the declar- 
ative knowledge should be the main items. Or in other 
words, should procedures dominate the declarative 
knowledge or vice versa? A second decision addresses the 
components. For example, in classical pattern recognition 
systems, the judgments, i.e., the classifier, dominate the 
attributes, and the concepts are only used in an implicit 
manner. Contrarily, in most pattern analysis systems, the 
judgments are subordinated to the attributes and concepts. 
Also, the relationships between attributes and concepts 
can be realized in two different ways. Features can be as- 
sociated with special functions having concepts as argu- 
ments or properties of concepts. In the first case, concepts 
depend on attributes. They can be a member of the do- 
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declarative procedural results 
knowledge knowledge 
**************************************************************** 

concepts inferences instances 
________________________________________--------------------- 

features extraction,combination feature values 
,_______________________________________--------------------- 

scheme for judgements calculation and values 
combination scheme 
and functions 

Fig. 1. Three types of knowledge (horizontal direction) and three com- 
ponents of knowledge (vertical direction) for pattern understanding. 

main of the function which represents the attribute or they 
are not. In the second one, attributes are defined in the 
context of one or more concepts. They are attributed to 
the concepts and have a role in the definition of a concept. 
The resulting questions are as follows. 

Should knowledge representation for pattern analysis 
use the procedural or the declarative point of view? What 
component is used for the main entities of the knowledge 
base, the symbolic one, the attributes, or the judgments? 
Which structures and procedures must the “control” 
component know to fulfil his task? 

In order to give help in answering these questions, a 
number of adequacy criteria for knowledge representation 
schemes and languages were introduced in the literature. 
Although these criteria do not allow us to measure the 
adequacy of a knowledge representation approach in a 
quantitative way, they give indications for examining or 
at least discussing the quality of the organization tools for 
knowledge bases. 

B. Criteria for Calling a Knowledge Representation 
Scheme Adequate 

In [22], [2], and [42], the epistemological adequacy is 
accentuated as the main criterion for knowledge represen- 
tation languages. A compact definition for this criterion 
is given in [22]: “A representation is called epistemolog- 
ically adequate for a person or a machine if it can be used 
practically to express the facts that one actually has about 
the aspects of the world.” Brachman [2] pointed out that 
an epistemologically adequate scheme must be neutral 
with respect to a conceptional level of a knowledge base. 
This level is built of those concepts and the relationships 
between them, which are relevant for a given task do- 
main. Therefore, a representation scheme should be in- 
dependent of applications. Other criteria address the log- 
ical completeness and decidability , the algorithmic 
complexity, ergonomical comprehensibility, and psycho- 
logical problems [42]. All of these criteria do not only ask 
questions concerning the declarative types of knowledge. 
Knowledge representation requires syntax, semantics, and 
pragmatics of an artificial language. The definition of pure 
syntactical structures-like a formal language or data 
structures-is not sufficient. The definition of both an 
interpretation and an interpreter is necessary. For all 
knowledge representation languages, especially if they are 
used for the interpretation of sensor signals, one should 
take a further criterion into account: the handling of un- 
certain data, and therefore uncertain decisions. In the 
present state of the art, it is impossible to extract unique 

symbolic attributes out of sensor signals, take them as 
being correct, and finally run symbol to symbol inferences 
as is done in “standard” expert systems. On the contrary, 
sensor signals are a source of error and uncertainty. Pa- 
rameters or initial symbolic descriptions derived from the 
signal can only be scored or judged with respect to one 
calculus like probabilities or fuzzy logic. Therefore, be- 
sides uncertain knowledge of a task domain, uncertain in- 
put data also must be handled by the representation lan- 
guage. Intermediate results must be judged, and the 
language has to offer the possibilities to do this job. Be- 
cause of these facts, we introduce the criterion adequacy 
for handling uncertainty for both knowledge and data. 
Examples for knowledge bases which handle both kinds 
of uncertainty are given, for example, in [5], [46], and 
1411. 

C. Knowledge Representation Schemes and Languages 

Following [26], knowledge representation schemes can 
be classified into the categories logical schemes, proce- 
dural schemes, and semantic networks. But most knowl- 
edge representation languages, e.g., PROLOG or PSN, 
subsume more than one of these categories. The classifi- 
cation problem is described in [26]: “When trying to clas- 
sify representation schemes, we consider the world as a 
collection of individuals and as a collection of relation- 
ships that exist between them. The collection of all indi- 
viduals and relationships at any time in any one world 
constitutes a state, and there can be state transformations 
that cause the creation/destruction of individuals or that 
can change the relationship among them. ” 

One example to illustrate this is the language PROLOG 
[ 171. From one point of view, PROLOG is a logical rep- 
resentation scheme. Therefore, it employs the notions of 
constant, variable, function, predicate, logical connec- 
tive, and quantifier in order to represent elementary facts. 
A knowledge base is a collection of terms and formulas. 
The sequence 

of symbols represents a well-formed formula. No infor- 
mation about the interpretation of such a formula is given. 
It is just a sequence of symbols which satisfy rules for 
building up syntactically correct sequences. Such well- 
formed formulas are treated by a dual semantics. Besides 
the traditional Tarskian semantics 

“B, and B2 and - * * and B, implies A” 

the procedural semantics 

“if you want to establish A, try to establish BI and B2 
and * * - and B,” 

is used. The Tarskian semantics gives an interpretation 
of the formula, while the procedural semantics offers an 
interpreter. It shows how a formula can be used within 
an analysis of a knowledge-based system. The static Tar- 
skian interpretation is enlarged by a procedural compo- 
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nent. Formulas are viewed as facts and programs at the 
same time. The procedural semantics establishes a rough 
method for proving theorems, and is therefore comparable 
to the Gentzen calculus or the resolution method [2 11. For 
the definition of a procedural semantics, the critical point 
is the use of stored knowledge, i.e., the definition of 
problem-independent inferences rules to construct a 
knowledge representation language based on a knowledge 
representation scheme. Because of this fact, we prefer the 
notation that a pragmatics must be defined for a scheme 
in order to get a language. The term “pragmatics” coin- 
cides with linguistic theory, which defines a language by 
the steps syntax, semantics, and pragmatics. 

Procedural schemes view a knowledge base as a collec- 
tion of active processes and agents. More or less, any pro- 
gramming language can be looked at as a procedural 
knowledge representation scheme. Schemes like produc- 
tion systems [ 131 and PLANNER [ 141 offer activation 
mechanisms for processes. In both schemes, a knowledge 
base is built of pairs. Each pair consists of a pattern and 
one or more actions which manipulate the working mem- 
ory. If the pattern of a pair can be successfully matched 
to the database, the corresponding theorem in PLANNER 
or the action of the rule in a production system is exe- 
cuted. The PLANNER control module uses the back- 
tracking algorithm. This is also used in many applications 
based on production systems. Nevertheless, numerous 
other algorithms are used to control the search in such 
systems. 

Even though semantic networks are of large diversity, 
there exists a most basic form. A priori and a posterior-i 
knowledge is expressed by nodes and directed labeled 
edges, called links. The nodes model concepts or classes 
of concepts or are descriptions of individuals. Edges are 
used to express binary relations between the nodes. To- 
gether with their associated edges, nodes which stand for 
concepts or classes of concepts build up the model for an 
application. They represent the a priori knowledge. A 
posteriori data which are generated during an analysis 
process are represented by individual nodes and by edges 
between individual nodes or between nodes for concepts 
and individuals. Whereas identical concepts are identified 
in formulas implicitly by utilization of identical names, a 
concept is represented once in a semantic network. All 
relationships with which the concept is associated are cen- 
tered in the node standing for the concept. The main prob- 
lem of the scheme was that most of the early languages 
had little or no semantics for the types of nodes and links 
they used. The necessity for a semantics and an episte- 
mological adequacy was pointed out in [48], [2]. In order 
to define a unique interpretation of the different types of 
nodes and links in a language, this set must be restricted. 
On the other hand, to get an epistemologically adequate 
language, this set must be sufficient to build up knowl- 
edge bases for all possible or at least a large number of 
applications. Most network languages offer different or- 
ganizational axes for structuring a knowledge base [lo]. 
We call an axis a hierarchy in the network if it defines a 

partial nonreflexive order on the set of concepts. The most 
used axes are the following. 

Classijcation: A real world object is associated with 
its generic type(s). This axis forces a distinction between 
a concept, which is the intentional description or a pro- 
totype of a concept, and an instance, which is a member 
of the extensional set of a concept. Some languages like 
PSN [20] use classification recursively with included 
cycles. 

Aggregation: This type connects a concept or an in- 
stance with other concepts or instances, respectively, 
which describes their components or parts. 

Generalization: This type relates a concept to more 
general ones. Generalization, often called is-a, defines a 
hierarchy in the network due to a partial order. In most 
approaches, attributes associated with a general concept 
are inherited by the more special ones, unless they are 
explicitly modified. 

So far, semantic networks are a helpful scheme for an 
efficient organization of declarative knowledge bases and 
the corresponding results databases. A given semantics, 
i.e., a unique interpretation, for the different types of 
nodes and links is one condition to use a semantic network 
in a knowledge-based system. In order to build a network 
with respect to defining a language which can be used as 
a kernel for a complete system, data structures must be 
defined to cover the nodes and links. At this point, se- 
mantic network approaches like KL-ONE [3] and PSN 
[20] are influenced by the notation of frames [25]. Such 
frames are complex data structures for representing ste- 
reotypical informations for a task domain. A frame has 
slots for the objects which play a role in the situation, as 
well as conditions between the slots. Furthermore, pro- 
cesses and facts are attached to the slots. 

In KL-ONE and PSN, frame-like data structures are 
used to build up the nodes of the semantic network. Links 
are described within such a data structure by slots of dif- 
ferent types, one for each link type. The interpretation of 
the slots and their items is defined with respect to the se- 
mantics of the semantic network. While KL-ONE only 
uses a procedural attachment associated with the slots, in 
PSN a pragmatics (procedural semantics) is also defined. 
The slots in a concept are divided into prerequisites and 
consequences with respect to the instantiation procedure 
of the concept. 

Asserting control to semantic network languages results 
in a system shell if a pragmatics is defined for the lan- 
guage. Therefore, they also propose a system architec- 
ture. The resulting database is structured along organi- 
zational axes, and inferences are created according to the 
pragmatics definition of the network language. 

Because of the following facts which are based on the 
criteria in Section II-B and the claimed components for a 
knowledge base in Fig. 1, we decided to use a semantic 
network scheme for ERNEST (Erlangen Semantic Net- 
work System and Tools). The node-centered representa- 
tion of concepts supports the compact definition of knowl- 
edge bases and working memories. It helps in evaluating 
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results of an analysis process. Therefore, semantic net- 
works are at least near being ergonomically adequate. 
Procedural attachment is useful for binding algorithms for 
attributes to the concept, and subsequently to the attri- 
butes for which they are used. PSN shows one way to 
integrate inference mechanisms into the language defini- 
tion of a semantic network. Running systems like ALVEN 
[46] indicate a possible algorithmic adequacy and the ad- 
equacy for handling uncertainty. There are semantic net- 
work languages like KL-ONE which were developed in 
order to be epistemologically adequate. Nevertheless, 
Schefe [42] shows an example, given in Section III-B, 
which can hardly be represented adequately in KL-ONE. 
This indicates that the set of the epistemological primi- 
tives is not sufficient in KL-ONE. Even if there is no proof 
for the logical adequacy of a semantic network language, 
there are some facts which should be mentioned. If se- 
mantic networks are a syntactical variant of the first-order 
predicate calculus [38], they are logically adequate. If 
they have additional properties, at least the restrictions of 
a network to this calculus is logically adequate. One con- 
cept is represented by exactly one node in a semantic net- 
work. For a translation of such a network into logical for- 
mulas, the concept has to be denoted in as many formulas 
as the links which connect the concept with other ones. 
Because of this fact, McDermott [23] called a semantic 
network “predicate calculus plus index-scheme.” If a 
large knowledge base is necessary for some applications, 
it will be easier to check a few hundred concepts com- 
pared to a few thousand rules, theorems, or predicates. 

III. THE SEMANTIC NETWORK IN ERNEST 

After the general discussion of knowledge representa- 
tion in the previous section, we now turn to the presen- 
tation of the particular knowledge representation language 
developed in ERNEST. There is a clear distinction of the 
syntax, semantics, and pragmatics of the network (not of 
the task domain!), and these aspects are described in the 
three subsections to follow. By “syntax of the network,” 
we mean the available data structures and the necessary 
restrictions without regard to their relation to a particular 
meaning of these structures. We think that it is useful to 
start with a presentation of the syntax because it gives a 
short overview of the relevant components of the net- 
work. The meaning of the data structures, in particular of 
the nodes, links, and substructures as well as their slots 
and items, as used here, is described in the “semantics of 
the network.” It is important to note that a semantic net- 
work in an image or speech understanding system not only 
is to represent some declarative and procedural knowl- 
edge, but also has to provide the basis for its utilization 
for knowledge-based signal understanding. This aspect is 
described as the “pragmatics of the network” in the third 
subsection. 

A. The Syntax of the Network 

Having decided upon a certain definition of a semantic 
network approach, this definition may need extension, 

modification, crispening, and improvement as new in- 
sights emerge. Therefore, our definition of a syntax of the 
network proceeded mainly in two steps. The first step only 
will be considered very briefly. It consisted of an exper- 
imental environment allowing an easy definition and mod- 
ification of different semantic network structures; details 
of this first step are given in [7]. This allowed a user to 
define and test different structures of a semantic net. From 
these tests and also from experiences obtained in different 
applications of the semantic network, a kind of default 
structure was derived in the second step. This default 
structure is intended for the user who wants to use a com- 
plete tool to solve a particular problem of image or speech 
understanding, but who does not want to experiment with 
different definitions of a semantic network. In the follow- 
ing, we will discuss only the structure derived in the sec- 
ond step. 

Important problems in the definition of a network struc- 
ture are epistemological and ergonomic adequacy, as 
pointed out in Section II-A. Presently, we are not in a 
position to give a formal and rigorous proof of the epis- 
temological adequacy of our approach. This would re- 
quire a formal definition of the section of the real world 
which is to be represented in the knowledge base. An ex- 
ample of such a formal definition is first-order predicate 
calculus (FOPC), implying the assumption that every im- 
portant or relevant aspect of the real world can be repre- 
sented in FOPC. The limitations of FOPC have been dis- 
cussed in the literature, for example, the exclusion of 
probabilistic or nonmonotonic reasoning. It has been ar- 
gued elsewhere, for example, in [ 121, [44], that semantic 
networks are equivalent to FOPC. It is pointed out below 
that we added several extensions to our network structure. 
For example, the addition of arbitrary procedures allows 
probabilistic and fuzzy reasoning. So from a formal view- 
point, our definition is more powerful than FOPC. An in- 
formal definition of epistemological adequacy was quoted 
from [22] at the beginning of Section II-A. According to 
this definition, our semantic network language is episte- 
mologically adequate because we did not have problems 
in representing the aspects of the world relevant to our 
applications, as discussed in Section VI. 

Besides epistemological adequacy, it is at least conve- 
nient to also aim at ergonomic adequacy, a notion intro- 
duced in Section II-A. Since this notion does not have a 
formal definition, only intuitive arguments can be given. 
For example, we added “sets of modality” to our net- 
work structure. A modality set consists of one or more 
sets of obligatory parts and concretes [see Section III-B2)] 
of a concept and a set of one or more optional parts and 
concretes. The concept can be instantiated if one of the 
sets of obligatory parts and concretes has been instan- 
tiated and any subset (including the empty one) of op- 
tional parts and concretes. Clearly, the set of modality is 
not required for reasons of epistemological adequacy, but 
it is very useful for ergonomic reasons because it allows 
a more compact and transparent representation of knowl- 
edge. Considerations of ergonomic adequacy may rec- 



888 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12. NO. 9. SEPTEMBER 1990 

ommend a modification of a network structure, even if 
this structure is epistemologically adequate. 

The general data types and the details of the data struc- 
tures used in ERNEST are given in Figs. 2 and 3, respec- 
tively. They are the result of careful considerations of 
epistemological and ergonomic adequacy. In this section, 
we only give a condensed overview of these structures, 
leaving a detailed discussion to the next section. The net- 
work consists of three nodes, five links, and nine sub- 
structures as shown in Fig. 2. The three nodes are the 
“concept,” the “modified concept,” and the “in- 
stance. ’ ’ A node is itself a complex data structure defined 
by a set of 26 slots as shown in Fig. 3 for the concept 
node. The data structures of the three nodes are identical, 
except that a pointer to a function in a concept is replaced 
by the computed value in the corresponding instance; a 
modified concept is distinguished from a concept only by 
more restricted ranges for the attribute values. The five 
links are the “specialization,” the “part,” the “con- 
crete, ’ ’ the ‘ ‘instance, ’ ’ and the “model” link. The links 
“specialization,” “part,” and “instance” are used in 
most approaches of semantic networks. They correspond 
to the terms “generalization,” “aggregation,” and 
“classification,” respectively, in Section II-C. On the 
contrary, “concrete” and “model” are links introduced 
in the ERNEST network language to establish relation- 
ships between different levels of abstraction, respectively, 
between model schemes and automatically acquired con- 
cepts. Conceptually, the most important and also the in- 
tuitively understandable slots are attributes and relations. 
Each one is itself described by a substructure called “at- 
tribute description, ” “link description,” and “relation 
description. ” The six other substructures are the “mo- 
dality description” for the definition of the above-men- 
tioned sets of modality, the “function description” for a 
standard function definition, the “adjacency” for the rep- 
resentation of time or space relations, the “range” for the 
description of ranges of attribute values, the “value de- 
scription” for storing one parameter of the range descrip- 
tion (e.g., a lower bound), and the “identification” for 
distinguishing alternative instantiation paths. Details of 
these substructures are discussed in the next section. 
Every substructure in turn is defined by a set of items. A 
user can work conveniently with the network by means of 
the software environment described in Section V. 

However, definition of the syntax is not yet complete. 
It was mentioned in the Introduction that it is important 
to have task-independent control algorithms. In order to 
achieve this, we impose a set of restrictions on the links. 
The reasons for those restrictions are discussed in Sec- 
tions III-B2) and IV. A graphical representation of the 
restrictions is given in Fig. 4. Basically, the restrictions 
guarantee that certain cycles in the network are avoided. 
A consequence is that now there is also a well-defined 
ordering of nodes along the three links “part,” “con- 
crete,” and “specialization. ” These links may be viewed 
as a three-dimensional coordinate system where every 
node has a well-defined position which is represented by 

GENERAL-TYPES: n& 
NODE-TYPES: concept 

modified concept 
instance 
/each node is defined by slots / 

Fig. 2. The general data 

-TYPES: specialization 
part 
concrete 
model 
instance 
/ the inverselinks 
specialization of 
part of 

,are alsodefined: / 

concrete of 
model of 
instance of 

s!bstrucur? 
SUBSTRUCTURE-TYPE: attribute description 

link description 
relation description 
modality description 
value description 
function description 
adjacency 
range 
identification 
/each substructure is defined by items / 

types in the syntactic 
structure ERNEST. 

definition of the network 

the slot “degree” in a node. The degree of a concept C 
is a tuple (dl, d2, d3, d4) of integers. The number dl 
is the length of the longest path leading from some con- 
cept K along specialization links to concept C, the number 
d2 is the longest path along concrete-of links (including 
inherited ones) to C, the number d 3 is the longest path 
along part-of links (including inherited ones) to C, and 
the number d4 is the longest path along model-of links to 
C. The various links are introduced in Section III-B2). It 
is assumed that every link connecting two concepts has a 
path length of one unit. Two special classes of concepts 
are the minimal concepts and the inter$zce concepts. The 
minimal concepts have a minimal value of d2 and d 3; to 
put it differently, they are concepts having no parts and 
no concretes. The interface concepts have at least one at- 
tribute without arguments; for the notion of attributes and 
arguments, the reader is refered to Section III-B3). Usu- 
ally, minimal concepts are also interface concepts, but 
there may also be interface concepts which are not mini- 
mal concepts. The interface concepts provide the inter- 
face between a purely algorithmic bottom-up phase of 
processing and a knowledge-based phase alternating be- 
tween top-down and bottom-up processing; they also are 
the port for user interaction if such interaction is desira- 
ble. Degrees are computed and restrictions are checked 
automatically by the software environment. 

The syntax of the network provides several extensions 
with respect to other definitions. They are stated briefly 
in the following eight points. The usefulness of this syn- 
tax will become apparent from Sections III-B and III-C. 
The main extensions in our definition of a semantic net 
are as follows. 

1) The node type “modified concept” allowing the 
representation of constraints on uninstantiated concepts 
resulting from computed instances of other concepts. 

2) The extension of the definition of the node type 
“concept” to facilitate automatic acquisition of concepts. 



ATTRIBUTE DESCRIPTION 
text text 
4 integer YES or NO or DELETED or role 
5 integer NO or DELETED or role 
text value type [INTEGER, REAL, . . .] 
link to concepts range 
list of linka to concept 222 integer [min,mex/min,msx] 
list of linke to concepts function description 
list of linke to concepts YES or NO 
list of ConceDts 
list of links t; concepts 

thction description 
list of range% 

list of link descriptions function description 
list of linke to concepts 2 integer 
bt of link descripitona name of function 
list of modality descriptions n&me of function 
list of attribute description6 name of function 
list of attribute descriptione name of function 
Ret of attribute deecriptione 1 integer 
list of relation descriptions 
list of relation deecriptions LINK DESCBJPI TON I 
list of identiAcations I tale text 
function description YES or NO or DELETED OI role 

list of instances NO or DELETED or role 
fonction description list of concepts [x01 liet] 
name of function node type [CONCEPT, . . .] 
neme of function YES or NO 
1 integer 2 integer [min,max] 

list of value descriptions 
MODALITY DESCRIPTION fhction description 

list of ranges 
integer 
YES or NO 
2 integer 
name of function 

VALUE DESCRIPTION name of function 
value type PNTEGER, REAL, .] name of function 
meaning [CENTER, FUZZYPAR, . . .] frequency 1 + 1 integer 

RELATION DESCRIPTION 
ADJACENCY text 

YES or NO or DELETED or role 
NO or DELETED or role 
function description 

+ bitmatrix YES or NO 
- YESor NO 2 integer 

name of function 
RANGE name of function 

range kind [INTERVAL, FUZZY, . . .] 1 frequency 1 - 1 integer 
value type [INTEGER, REAL, . . .] 
YES or NO FUNCTION DESCRIPTION 
list of value descriptions name 

ar ument 
IDENTIFICATION 

path of roles or UNIQUE 
path of roles Ed 

name of function 
list of arguments [{role.}role] 

inverted function name of function 
test of ergumeete name of function 

fusion of er uments name of function 

Pig. 3. ERNEST data structures. The slots relevant only for knowledge acquisition are marked as slanted. As mentioned in the 
text, knowledge acquisition is not a topic of this paper. 
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then not permitted 
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3) The link type “concrete” allowing the representa- 
@A%@ tion of different conceptional systems. 

4) The link type “model” allowing the representation 
of the relation between a priori knowledge and automat- 
ically acquired knowledge. 

5) The distinction between “context-dependent” and 
“context-independent” parts allowing the representation 

con of context-sensitive relations. 
cxps@ ) 6 The introduction of “sets of modality” allowing the 

efficient representation of different object descriptions in 
one concept. 

@+ ‘.. -+@ = @-@(Dp “’ +(BJ 7) The “adjacency matrix” allowing the efficient rep- 

Fig. 4. The restrictions on the links. The left, middle, and right parts prc- 
resentation of time and space constraints. 

sent independent alternative restrictions. For example, the left part means 8) The inclusion of a standard function definition fa- 
that if a concept B can be reached from A by a sequence of specialization 
links, then there must not be specialization links from B to A, nor con- 

cilitating constraint propagation by modified concepts. 

Crete links from either A to B or B to A, nor part links from either A to These extensions of the syntax are supplemented by two 
BorBtoA. points concerning the use of the networks. 
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1) The formulation of six task-independent rules pre- 
cisely defining the computation of modified concepts and 
instances. 

2) The combination of these rules with graph search 
algorithms to handle the control problem. 

B. The Semantics of the Network 

1) Types of Nodes: In this section, the interpretation 
of the different types building up an ERNEST network is 
given. The point of view with which we will look at the 
network is: how is a certain section of the real world and 
how are certain aspects of this section modeled in the 
knowledge representation language of an automatic sys- 
tem? As mentioned in the last section, three types of nodes 
are distinguished, which are the concept, modified con- 
cept, and instance node. 

A basic requirement for any image or speech under- 
standing system is the ability to represent classes of ob- 
jects, events, or abstract conceptions having certain com- 
mon properties. This is done in ERNEST (and in other 
approaches to semantic nets) by a special node type, called 
a concept. The special case that a concept represents pre- 
cisely one element is not excluded. In the context of im- 
age or speech understanding, an important step is to as- 
sociate certain intervals of the sensor data with certain 
concepts in the knowledge base. For example, some sub- 
set of pixels in a TV image is recognized as a truck, where 
TRUCK is a concept in the knowledge base. This partic- 
ular manifestation of a member of the concept TRUCK is 
called an instance and is represented by another node type, 
the instance node. A concept and an instance of it are 
related by an instance link. This was mentioned as the 
“classification axis” in Section II-B. 

In addition to the concept and instance node, a third 
node type is provided, the modified concept. The basic 
activity of an image or speech understanding system is the 
computation of instances which are consistent with the 
stored knowledge and the observed sensor data. In an in- 
termediate state of processing, it may occur that instances 
of some concepts already have been computed, but that 
instances of some other concepts cannot yet be computed 
because certain prerequisites are missing. A precise defi- 
nition of those prerequisites is given in Section III-C be- 
low. Nevertheless, the information available from the in- 
stances may be used to constrain or to modify the 
uninstantiated concepts; this results in the modi$ed con- 
cepts. For example, the values of certain attributes of an 
instance may be used to constrain the range of values of 
certain attributes of an uninstantiated concept. This in turn 
results in a more constrained knowledge base and in a 
reduction of the complexity of the instantiation process. 
An example of constraining the value of an attribute is 
given in Section III-B3). 

According to classification, instances are associated 
with concepts. The connection among instance nodes, 
concept nodes, and real world objects is illustrated in Fig. 
5. Each instance establishes a connection between exactly 
one concept and a unique collection of real world objects 

concept 

Fig. 5. Potential relationships among concepts, instances, and real world 
objects. 

or events (to be more precise, sensor data resulting from 
real world objects and events). A collection of real world 
objects or events can be connected to more than one con- 
cept via instances and vice versa. Notice that there are 
connections between one real world object and different 
concepts which are acceptable, and other ones which es- 
tablish a contradiction. In Fig. 5, for example, the CIR- 
CLE and the WHEEL classifications for identical objects 
are correct. But only one of the connections between the 
middle object and the concepts CAR, respectively, 
TRUCK, is admissible. A concept in the ERNEST net- 
work is a model (i.e., a description) of a class of objects 
or events, but not a prototype (i.e., not an example or a 
typical representative of the class). Therefore, such a con- 
cept may be restricted, dependent on different situations 
in an analysis process. For example, if the x, y position 
of a wheel is known for the truck in Fig. 5, the a priori 
free positions of the other wheels then are restricted with 
respect to the detected one. Although no instance is built 
up for a second wheel, the situation has changed. The 
concept WHEEL in the context “second wheel of a truck 
with one wheel detected” can be restricted. We say a 
modijied concept, as mentioned above, can be built up. 

2) Types of Links: With the interpretation of the three 
node types, the link types instance and instance-of also 
are fixed according to the links between concepts and in- 
stances in Fig. 5. 

In the following, the example of a truck is used to il- 
lustrate the realization of a network and the meaning of 
the different structures. Fig. 6(a) shows a rough model of 
a truck, and Fig. 6(b) the related network. Fig. 7 shows 
the textual representation of the concepts TRUCK and 
DRIVERS-CAB. 

Besides the instance relationship, four organizational 
axes are distinguished. All of them define a partial order 
on the set of concepts. It is common practice to define a 
concept with reference to other concepts, as introduced 
already in Section II-B. These references are made ex- 
plicit by special types of links. From Fig. 2, it is evident 
that the inverse links are also provided, although this will 
not be mentioned in the following. A concept K may be 
defined as a refinement of a more general concept A by 



NIEMANN er al.: ERNEST-NETWORK SYSTEM FOR PATTERN UNDERSTANDING 891 

(a) (a) 

VEHICLE VEHICLE 

ARC ARC CIRCLE CIRCLE RECTANGLE RECTANGLE WLYGON WLYGON 

(b) 
Fig. 6. (a) A simple graphic representation of a truck. (b) A network of the model TRUCK. 

stating the additional and/or modified properties of K, and 
by assuming that otherwise, K inherits the properties of 
A. By “properties,” we summarize the slots part, con- 
crete, attribute, analysis parameter, structural relation, 
and analysis relation in the data structure of a concept 
node. The relation between the general concept A and the 
specialized concept K is indicated by a specialization link 
from A to K. A modification of properties is represented 
in the item “modifies” of the corresponding “attribute,” 
“relation,” and/or “link description” in Fig. 3. In our 
example, the concept TRUCK is a specialization of the 
concept VEHICLE as shown in Fig. 6(b). 

In addition, a concept may be composed of certain parts 
or components Ul, U2, * . * , UN. For example, in Figs. 
6(b), 7(a), parts of the TRUCK are the SPOILER, the 
FRONT-WHEEL, the REAR-WHEEL, and so on. The 
relation between a concept K and one of its parts U is 
represented by a part link from K to U. From Figs. 6(b), 
7(a), it can be seen that FRONT-WHEEL and REAR- 
-WHEEL are just particular “roles” within the concept 
WHEEL. In general, the values of a part may be defined 
by one or more concepts, and a part may be given a par- 
ticular role. Another example is the part WINDOW in Fig. 
7(b) having the role WINDOW defined by the concept 
WINDOW. In ERNEST, a part or a concrete is defined 
in the substructure link description. The link description 
in Fig. 3 contains an item “goal node” to represent the 
defining concepts and an item “role” to represent the par- 
ticular role of a part. 

In image or speech understanding, it often occurs that 
a certain part can only be recognized in the context of the 
corresponding object having this part. For example, in 
Fig. 6(a), the window of the truck is seen as a rectangle. 
This rectangle obtains its meaning only in the context of 
the whole image. Therefore, the concept WINDOW in 
Fig. 7(b) is defined as a context-dependent part of the 
DRIVERS-CAB. In the ERNEST representation of this 
situation, the slot “context of” of the concept WINDOW 
has the entry “DRIVERS-CAB. ” In the concept DRIV- 
ERS-CAB, the slot “part” contains a list of link descrip- 
tions, one of which has the role WINDOW. The item 
‘ ‘context depending” of this link description has entry 
“YES” [see also Fig. 7(b)]. On the other hand, there may 
be parts which can be recognized individually. An ex- 
ample is the front wheel in Fig. 6(a). Therefore, the front 
wheel is a context-independent part of the TRUCK. In 
Fig. 7(a), an explicit indication of context independence 
is omitted. In the ERNEST representation the correspond- 
ing slot, “context of” would have entry “NIL,” and the 
corresponding item “context depending” would have en- 
try “NO.” It should be noted that context-dependent and 
context-independent parts are treated differently during 
instantiation of concepts; this point is discussed in Section 
III-C. 

In order to motivate some of the formal restrictions in 
Fig. 4 and the link type concrete, the description of ag- 
gregation in [26] is reported: “for example, the parts of 
John Smith, viewed as a physical object, are his head, 
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TRUCK 

PART: spoiler 

GOAL-NODE: 

CONTEXT-DEP: 

PART: front-wheel 

GOAL-NODE: 

CONTEXT-DEP: 

JUDGEMENT: 

INV-FUNCT: 

PART: rear-wheel 

GOAL-NODE: 

CONTEXT-DEP: 

JUDGEMENT: 

INV-FUNCT: 

SPOILER 

NO 

WHEEL 

NO 

reatr-radius 

inv-restr-radius 

WHEEL 

NO 

restr-radius 

inv-restr-radius 

PART: coachwork 

GOAL-NODE: 

CONTEXT-DEP: 

PART: hood 

GOAL-NODE: 

CONTEXT-DEP: 

PART: tailboard 

GOAL-NODE: 

CONTEXT-DEP: 

PART: drivers-cab 

GOAL-NODE: 

CONTEXT-DEP: 

COACHWORK 

NO 

HOOD 

NO 

TAILBOARD 

NO 

DRIVERS-CAB 

NO 

MODALIM: 

OBLIGATORY: front-wheel. rear-wheel. coochwork. drivers-cab 

OPTIONAL: spoiler 

INHERENT: --- 

MODALIM: 

OBLIGATORY: front-wheel, rear-wheel, tailboard. hood, drivers-cab 

OPTIONAL: spoiler 

INHERENT: --- 

AlTRIBUT: height 

MPE-OF-VAL: 

NUMB-OF-‘/AL: 

RESTRICTION: 

COMP-OF-‘/AL: 

ARGUMENT: 

INV-FUNCT 

ATTRIBUT: length 

TYPE-OF-VAL: 

NUMB-DF-VAL: 

RESTRICTION: 

COMP-OF-VAL: 

ARGUMENT: 

INV-FUNCT 

REAL 

12.0 - 3.51 

compute-height 

front-wheel.radius. rear-wheeLradius, coochwork.height 

hood.height. tailboard.height 

inv-compute-height 

REAL 

f6.0 - 12.01 

compute-length 

drivers-cab.length. hood.length, coachwork.length 

inv-compute-length 

STRUCTURAL-RELATION: height-smaller-length 

JUDGEMENT: judge-h-s-l 

ARGUMENT: height, length 

INV-FUNCT: inv-judge-h-s-l 

ANALYSIS-RELATION: wheels-down 

JUDCEMENT: judge-w-d 

ARGUMENT: front-wheelxentre, rear-wheelxentre, coachwork.angles 

toilboord.angles, drivers-cab.angles 

INV-FUNCT: inv-judge-w-d 

JUDGEMEN7: judge-truck 

ARGUMENT: spoiler, front-wheel, rear-wheel. coachwork 

hood, tailboard, drivers-cob. height, length 

height-smaller-length. wheels-down 

(a) 

DRIVERS-CAB 

PART: window 

GOAL-NODE: WINDOW 

CONTEXT-DEP: YES 

PART: door 

GOAL-NODE: DOOR 

CONTEXT-DEP: YES 

CONCRETE: geometry 

GOAL-NODE: RECTANGLE, POLYGON 

MODALITAET: 

OBLIGATORY: window. door, geometry 

OPTIONAL: --- 

INHERENT: door 

ATRIEUT: height 

TYPE-OF-VAL: REAL 

NUMB-OF-VAL: 1 

RESTRICTION: Il.5 - 3.01 
COMP-OF-VAL: compute-height 

ARGUMENT: angles 

INV-FUNCT inv-compute-height 

ATrRIBUT: length 

TYPE-OF-VAL: REAL 

NUMB-OF-VAL: 1 

RESTRICTION: LO.75 - 3.01 
COMP-OF-VAL: compute-length 

ARGUMENT: angles 

INV-FUNCT inv-compute-length 

ANALYSIS-PARAMETER: angles 

TYPE-OF-VAL: RECORD, point 

NUMB-OF-VAL: 12 

RESTRICTION: --- 

COMP-OF-VAL: compute-angles 

ARGUMENT: door.anglcs, window.ongles. geometry.ongleS 

INV-FUNCT inv-compute-angles 

STRUCTURAL-RELATION: height-greater-length 

JUDGEMENT: judge-h-g-l 

ARGUMENT: height, length 

INV-FUNCT: inv-judge-h-g-l 

ANALYSIS-RELATION: window-angles-inside 

JUDGEMENT: judge-w-a-i 

ARGUMENT: angles 

INV-FUNCT: inv-judge-w-o-i 

JUDGEMENT: judge-drivers-cab 

ARGUMENT: window, door, geometry. height. length. angles 

height-greater-length. window-angles-inside 

(b) 

Fig. 7. (a) The concept TRUCK. (b) The concept DRIVERS-CAB 

arms, etc. When viewing as a social object, they are its For the examples mentioned above, the organizations 
address, social insurance number, etc.” Two “worlds” 
or conceptional systems are distinguished in this example. 
A concept modeling a person has different parts within 
each of these systems. Parts in the social system are social 
conceptions; parts in the physical system are physical 
conceptions. In complex applications, more than one such 
conceptional system will occur, e.g., in image under- 
standing, conceptional systems like geometry, named ob- 
jects, or motions will occur. Conceptional systems like 
syntax, semantics, and pragmatics build up the knowl- 
edge base for speech understanding tasks. In the ERNEST 
network, part and specialization relationships are re- 
stricted in the way that they are only allowed inside the 
same conceptional system. For analysis purposes, con- 
ceptual systems must be ordered in the sense that a hier- 
archy of levels of abstraction is established. Each level 
corresponds to one conceptional system and vice versa. 

image-lines-geometry-named objects-motions 
and 

speech-signal-phonemes-words-syntax- 
semantics-pragmatics-dialogue 

may build up sequences of such levels with increasing ab- 
straction. Relationships between concepts belonging to 
different levels of abstraction are established by the con- 
crete link. Each level of abstraction consists of concepts 
having identical degree with respect to the concrete links; 
compare Fig. 4 and Section III-A. The membership of 
concepts to different conceptional systems also influences 
the compatibility of corresponding instances. Because the 
concepts WHEEL and CIRCLE in Fig. 5 belong to dif- 
ferent systems, instances connecting both concepts to 
identical real world objects can all be correct. On the con- 
trary, because TRUCK and CAR are within the same con- 
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ceptional system and are not in part relationship, in- 
stances connecting both to an identical object compete 
with each other. See also Fig. 6(b) for the distinction be- 
tween parts and concretes. 

In the definition of a concept, there may be parts and/ 
or concretes (including inherited ones) which are obliga- 
tory and others which are optional. A set of obligatory 
parts and concretes together with the associated set of op- 
tional parts and concretes is called a modality set. In order 
to increase the compactness of a knowledge base, we al- 
low that a concept is defined by several modality sets; 
each individual modality set is sufficient to compute an 
instance. In ERNEST, a modality set is defined by the 
substructure modality description, and the modality de- 
scriptions are attached to the slot “modality” of the de- 
fined concept. From Fig. 3, it can be seen that a modality 
description has items “inherent” and “adjacency” in ad- 
dition to the obligatory and optional elements. Inherent 
parts and concretes are those which can be inferred from 
the instantiation of a concept, but which are not manifest 
in the sensor data. For example, when seeing a truck (or 
after computing an instance of the concept TRUCK), one 
may usually assume that it has an engine, although this 
will not be visible under standard viewing conditions. The 
concept TRUCK has two modality descriptions. In our 
example, a truck must have front wheels, rear wheels, a 
driver’s cab, and either a coachwork or a tailboard and a 
hood. In both cases, a spoiler is optional. If necessary and 
appropriate, the item “adjacency” allows one to impose 
a certain temporal (or spatial) order on parts and con- 
cretes. This temporal order is defined in the substructure 
adjacency by means of a bit matrix. For example, assume 
that the modality description contains only the concepts 
A, B, and C, that A must precede B, and that C may pre- 
cede B, but not A. A bit matrix then has rows A, B, C and 
columns A, B, C. An entry “ 1” in row i and column j 
indicates that part i must precede part j in time, and so 
on. The item “coherent” indicates whether parts have to 
be spatially or temporally adjacent. For example, the sky 
is above the meadow in an image under standard viewing 
conditions, but there may be something in between (e.g., 
a mountain range); therefore, sky and meadow are not 
coherent. On the other hand, a roof is above a gable, and 
they are coherent for a standard house. 

The relationships specialization, part, and concrete 
build up the three-dimensional hierarchy of an ERNEST 
knowledge base. They provide the means for well-struc- 
tured representation of knowledge. The instance link con- 
nects concepts in the knowledge base to instances com- 
puted from sensor data. In order to facilitate automatic 
knowledge acquisition, a fifth link, the model link, was 
introduced. In this paper, however, we concentrate on 
knowledge representation and utilization. Therefore, no 
further explanation is given about knowledge acquisition 
in ERNEST. More information can be found in [43]. 

The above discussion introduced the three node types 
(concept, modified concept, and instance) and the five link 
types (specialization, part, concrete, instance, and 

model). In comparison to other network definitions, the 
concept and the instance node are standard elements of a 
semantic network and are necessary for reasons of epis- 
temological adequacy. The modified concept was intro- 
duced only to increase the efficiency of knowledge utili- 
zation. The specialization, part, and instance link are also 
standard elements in other versions of semantic networks 
and are necessary for reasons of epistemological ade- 
quacy. The distinction between context-dependent and in- 
dependent parts is necessary in our applications. The con- 
crete link is epistemologically necessary, while the model 
link is introduced for reasons of ergonomic adequacy. The 
modality sets enhance the compactness of a knowledge 
base. 

3) Attributes, Relations, and Other Substructures: 
From Fig. 3, it is apparent that a concept node is an elab- 
orate data structure defined by several slots. Some of them 
are self-explaining (e . g . , “name of concept”), some have 
been introduced above (e.g., “degree” or “model”), and 
the remaining ones will be introduced in the following. 

A physical object or an event usually has certain attri- 
butes which are physical quantities, for example, size, 
weight, color, or prize. In ERNEST, an arbitrary number 
of attributes may be attached to the slot “attribute” in the 
corresponding concept. In addition, we distinguish the lo- 
cal attribute which is not transferred to specializations of 
the concept. An attribute is transferred to specializations 
unless this is excluded explicitly in the item “modifies” 
of the substructure “attribute description. ’ ’ Apparently, 
the local attribute is not necessary because it also can be 
replaced by modification of attributes, but it is convenient 
to have this option. Furthermore, we provide analysis pa- 
rameters which are not attributes of an object and do not 
contribute to the intensional description, but they are pa- 
rameters required for pattern analysis. Typical examples 
are the frame length and repetition rate in speech under- 
standing or the number of images in an image sequence. 
Attributes, local attributes, and analysis parameters are 
defined by the substructure attribute description. It seems 
unnecessary to discuss every item of the attribute descrip- 
tion. The main items are the “role,” the “type of val- 
ues , ” the “restriction,” the “number of values,” and the 
‘ ‘computation of value. ’ ’ The “role” gives the functional 
role of the attribute. The “type of values” defines the 
general type of the attribute values. In ERNEST, the types 
Boolean, Character, Integer, Real, Set, Tree, and Record 
are allowed. The “restriction” specifies the allowed or 
expected set of,values via “range” and “value descrip- 
tion.” An example is the attribute “height” in Fig. 7(a), 
a real-valued attribute restricted to 2 .O-3.5 units of length. 
Thus, type and restriction define the range of values of an 
attribute. The “number of values” defines the required 
number of attribute values, for example, the number of 
elements of a vector or matrix. The item ‘ ‘computation of 
value’ ’ contains just a pointer to a function description 
referencing a function which can compute an actual value 
of the attribute given the sensor data. This function needs 
certain arguments. The function definition and the argu- 
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ments are treated below. There may be special attributes 
referencing a function having no arguments, for example, 
a function reading a value from a file. This occurs only in 
the “interface concepts” introduced in Section III-A. An 
attribute of this type provides the means for transferring 
results of initial segmentation to the knowledge base. 

Parts or concretes of a concept may have to be arranged 
in a certain spatial and/or temporal order. For example, 
the positions of the wheels of a truck form a rectangle, or 
a traffic light should become green before a car starts 
moving. Certain relationships between parts and/or con- 
cretes of a concept are listed in the slot structural relation 
of this concept. Every element in a structural relation is 
defined by a substructure relation description. The main 
items in this substructure are the “role” of a particular 
relation and its “judgment,” which is a pointer to a func- 
tion testing the relation. The value returned by the func- 
tion measures the degree of fulfillment of the relation. If 
the temporal relation is only a time sequence of objects 
or events, an alternative representation in ERNEST is the 
above-mentioned modality set combined with the adja- 
cency substructure. Although this alternative is not nec- 
essary for reasons of epistemological adequacy, it is use- 
ful for reasons of efficient implementation of time or space 
adjacency relations. Similar to the distinction between at- 
tributes and analysis parameters, we distinguish between 
structural relations and analysis relations. An example is 
a relation among the number of pixels, depth, and object 
size. 

The original sample values of images or speech usually 
are corrupted by noise; the results of initial segmentation 
are far from being perfect. Therefore, an instance of a 
concept may be more or less erroneous. The slot judgment 
of a concept contains a pointer to a function description 
computing a “judgment” of an instance. We avoid terms 
like score or certainty because a judgment in ERNEST 
may be a tuple of real numbers measuring the quality, 
certainty, and static and dynamic priority of an instance. 
The quality measures the average value of a result, for 
example, the expected probability of correctly recogniz- 
ing a word or a line of a certain length. The certainty 
measures the individual reliability of an instance, for ex- 
ample, of a particular word or a particular line. The static 
priority measures the closeness to primitive concepts (im- 
portant in top-down processing) and to goal concepts (im- 
portant in bottom-up processing). The dynamic priority 
measures the ambiguity of an intermediate result with re- 
spect to task-specific knowledge. In general, the certainty 
CF of an instance is based on a function of the type 

CF = g(certainties of parts, certainties of concretes, 

certainties of attributes, certainties of relations). 

Arguments of this function are the judgments of the parts, 
concretes, link descriptions, attribute descriptions, and of 
both kinds of relations. All arguments are referred by the 
role of the corresponding substructure. The scheme to 
judge an instance is not fixed in ERNEST. Depending on 

the application, fuzzy logic, distance measurements, or 
probabilities are used. 

It was mentioned frequently that functions can be at- 
tached to slots or items of concepts or substructures, re- 
spectively. In order to enhance standarization of attached 
functions, the substructures function description and value 
description are provided as a basis of procedural attach- 
ment. A function definition in the ERNEST network in- 
cludes the explicit notation of the “arguments,” and it is 
possible to also refer the inverse. It should be mentioned 
that it is not possible, but also not necessary to refer the 
inversions of all functions in a knowledge base. However, 
our experiences with knowledge-based systems showed 
that a lot of functions calculating attributes or relations 
are very simple, e.g., attributes may be defined by the 
sum or product of other ones. An example for relations 
which is also very simple is that different parts of an ob- 
ject are not allowed to cover overlapping image areas and 
should be neighbored in some sense. The inversion is quite 
simple. Given one part, the area of the other ones is re- 
stricted to the complement in the image, and the required 
neighborhood can be expressed by marking a few pixels. 
This simple restriction is able to reduce the detection of 
other parts very powerfully because only a small subset 
of the image must be analyzed. Relevant functions are 
those for computing the “judgment” (in a concept, or an 
attribute, link, or relation description), and the “compu- 
tation of value” (in an attribute description). All of these 
functions have to be defined in an ERNEST network by 
the substructure “function description”; see Fig. 3. Here, 
the arguments of the function, the name of the function, 
and the name of the inverse of the function with respect 
to each argument are denoted. By the definition of the 
network formalism, the set of potential arguments is re- 
stricted for each of the functions mentioned above. In or- 
der to identify arguments, we use the “roles” which are 
defined uniquely by each of the relevant substructures of 
a concept. Those are the “link description,” the “attrib- 
ute description,” and the “relation description.” For the 
different functions, the following roles can be used to rep- 
resent arguments. 

1) For “judgment” of a concept: roles of links, attri- 
butes, and relations, which are defined for the same con- 
cept. 

2) For “judgment” in the link descriptions and attrib- 
ute descriptions: no explicit argument can be noted. 

3) For “computation of value”: pairs SELF. rI where 
rl is the role of an attribute which is defined for the same 
concept; pairs rl. r2 where rl is the role of a link descrip- 
tion in the same concept, and r2 is the role of an attribute 
in one of those concepts which are referred in the “goal 
node” of the link description with role r,; pairs SUPER. r2 
where r2 is the role of an attribute in one of those concepts 
which are referred in the slot “context of” in the same 
concept. 

4) For “judgment” in the relation description: pairs 
SELF. rl and pairs rl. r2 as above. 

While the activation of the function itself results in con- 
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Crete values if all arguments are known, the inverse is 
able to further constrain the “restriction” of attributes in 
modified concepts. In a similar way, the values of an at- 
tribute may be restricted, if not all of the argument values 
are known (see Section III-C). As an example of restrict- 
ing the values of an attribute, consider a concept 
PIECE OF-LAND having parts SIDE-1 and SIDE-2. 
The attribute “a” (area) of PIECE-OF-LAND is com- 
puted by a = lw where “I” and “w” are the attributes 
length of side 1 and length of side 2, respectively. As- 
sume that in the three attributes descriptions, the item 
“restriction” imposes the constraints 400 m* 5 a I loo0 
m*, 8 m I w I 20 m, and 40 m I 1 5 100 m. Having 
an instance of SIDE-2 giving 1 = 80 m allows one to 
compute (bottom 4) a modified concept of PIECE-OF 
-LAND with 640 m I a 5 1000 m2. From this modified 
concept, one may compute (top down) a modified concept 
of SIDE-1 with 8 m 5 w I 12.5 m. This step also re- 
quires that the “inverse function” w = a/l can be ref- 
erenced. The substructure “function description” con- 
tains an item “inverted function” which gives the facility 
to also reference the inverse function. 

To also allow a graphical representation of the content 
of concepts (e.g., wire frame) or attributes (e.g., a con- 
tour), a “graphic” slot is provided. It references a func- 
tion generating the graphic representation. 

In order to allow some flexibility in the design of a con- 
cept representing a certain conception, it is useful to dis- 
tinguish different constraints in the instantiation of a con- 
cept. For example, assume that a chair has among its parts 
four legs. One possibility of modeling this is to actually 
attach four different parts LEG to the concept CHAIR. If 
all four legs are geometrically (almost) identical, the con- 
cepts representing the parts are (almost) identical. In this 
case, it may be convenient to attach only one part LEG to 
CHAIR, but indicating in the item “number of links” in 
the link description that four (different) instances of LEG 
are necessary. Representing a triangle can be done by a 
concept TRIANGLE having a part SIDE, and the SIDE 
has a part EDGE. In this case three different instances of 
both SIDE and EDGE are necessary. An instance of SIDE 
needs two instances of EDGE, so it must be possible to 
indicate that, for example, two instances of EDGE have 
one instance of SIDE in common. Again, an alternative 
way of representing a triangle would be to represent three 
different parts SIDE and three different parts EDGE. Our 
intention is to leave the choice of the model to the de- 
signer, and not to enforce a certain representation by the 
network realization. Another example is the representa- 
tion of a heart cycle by a concept CYCLE having the three 
parts CONTRACTION, STAGNATION, and EXPAN- 
SION, which in turn all refer to the moving object 
HEART. In this case, for one instance of CYCLE, in- 
stances of CONTRACTION, STAGNATION, and EX- 
PANSION are necessary, all of which need one and the 
same instance of HEART. In ERNEST, the different con- 
straints on instantiation are defined by the substructure 
identijcation which is refered to in the slot “identifica- 

X 

A B 

Q33 C 0 E 

F 

Fig. 8. Specification of alternative constraints on the instantiation of X. In 
the notation below, in, (K ) denotes the ith instance of a concept K. All 
links in the above figure are part links, the same constraints may be 
specified for concrete links. Case 1: No entry in the slot “identification” 
of concepts A and B (this is the default situation). Computed instances: 
in(X) {in(A) [in(C) in,(F)] [in(D) in*(F)] in(B) [in(E) in,(F)}. 
Case 2: Pointer to substructure identification; entry UNIQUE in item 
“path 1” of concept F. Computed instances: in (X ) { in (A) [in ( C ) 
in(F)] [in(D) in(F)] in(B) [in(E) in(F)}. Case 3: Pointer to sub- 
structure identification; entry in item “path 1” of concept A: C, F, entry 
in item “path 2” of concept A: D, F. in(X) {in(A) [in(C) in,(F)] 
[in(D) in,(F)] in(B) [in(E) in*(F)]}. 

tion” of the corresponding concept. The three types of 
constraints introduced by the above examples are sum- 
marized in Fig. 8. In the first case, there are no entries in 
the slot identification of the concepts A and B. Via two 
links, the concept F is referred twice by A and once by B. 
That is the conceptual point of view. If one associates, 
e.g., the concept A with “car,” B with “airplane,” and 
F with “window,” it is evident that one instance of “win- 
dow” is not sufficient to fill the properties of “window 
of car” and “window of airplane.” Therefore, different 
instances of F are necessary. For each binding of F in Fig. 
8, one instance is necessary. Associate, for the second 
case, A with “contraction of a heart,” B with “expansion 
of a heart,” and F with “heart”; then only one instance 
for F is necessary, as for the instantiation of A and B, the 
same heart has to be used. Therefore, the concept F is 
marked unique to guarantee this. For the third case, as- 
sociate A with “passing of two cars” C, respectively D, 
with one “car” and F with “street”; then by the identi- 
fication path, one can mark that C and D must be on the 
same street if they pass. Another car (concept E) natu- 
rally can drive on another street in the picture. 

C. The Pragmatics of the Network 

Besides the epistemological and ergonomic adequacy of 
a definition of a semantic network, another important as- 
pect is the utilization of this network for image or speech 
understanding. As mentioned above, the main activity in 
the network is the computation of instances out of con- 
cepts given certain sensor data. Computation of instances 
only depends on the syntax of the network; in particular, 
it depends on the three organizational hierarchies of spe- 
cialization, part, and concrete, on the distinction between 
context-dependent and independent parts, on the intro- 
duction of modified concepts and sets of modality, and on 
the definition of certain paths of instantiation via the iden- 
tification substructure. It turns out that six rules are suf- 
ficient to define the instantiation process. These rules 
complete the definition of the network by defining the 
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pragmatics of the formalism in the sense of the procedural 
semantics [ 171. Different from PSN, the rules for building 
up instances are defined globally for the whole network, 
without respect to a task domain. This is possible because 
the rules only make use of the syntax of the network lan- 
guage, not of the semantics or the meaning of concepts in 
the network. The six rules are the basis for problem-in- 
dependent control as discussed in Section IV. 

In the following, the rules will be illustrated by the for- 
mal example in Fig. 9 and by the network in Fig. 6(b) 
which gives a simple example from image analysis. It is 
assumed that the goal concept for the instantiation is the 
concept TRUCK with respect to the first modality set [see 
Fig. 7(a)]. It is further assumed in Fig. 10 that we con- 
sider the situation where the hth instance in,, (RECTAN- 
GLE) [see Fig. 1 l(a)] of the concept RECTANGLE (a 
concrete of the concept DRIVERS-CAB) has been com- 
puted so far. 

In order to compute an instance of a concept A in Fig. 
9, there must be instances of all of its concretes and parts, 
including those inherited from more general concepts. In- 
stances of parts and concretes are only necessary if they 
belong to the obligatory parts and concretes of some set 
of modality. Furthermore, requiring an instance of a part 
is only possible if it is a context-independent part. If a 
concept A is a context-dependent part of some concepts X 
and Y, there must be at least one instance of either X or Y 
when instantiating A. Obviously, computation of in- 
stances mainly proceeds bottom up. This causes the prob- 
lem that computation of an instance of A having a context- 
dependent part M and context-independent parts L and N 
requires instances of L and N and also of M. But comput- 
ing an instance of M requires an instance of A. The prob- 
lem is handled by first computing a partial instance of A 
by requiring only instances of the context-independent 
parts. This is summarized in Rule 1 below. Having the 
partial instance of A, an instance of the context-dependent 
part M can be computed. Having an instance of M, the 
partial instance A can be completed. This process is sum- 
marized by Rule 2. Of course, a recursive application of 
Rule 1 may be necessary. In Fig. 9, the concept A is itself 
a context-dependent part of X and Y. So at first, a partial 
instance of X (or of Y) has to be constructed by Rule 1 
before a partial instance of A can be constructed. The first 
rule is as follows. 

Rule 1: 
IF for a concept A or a tnodijed concept modj (A) with 

respect to one obligatory set of a modality of A, instances 
for those concepts exist, which are referred to by the fol- 
lowing slots in A or slots inherited to A without modifi- 
cation: 

l concrete AND 
l part, if the item context depending in the link de- 

scription is equal to NO AND 
l one partial instance of one concept referred in con- 

rext-of, if this slot is not equal to NIL 
THEN build up partial instances inpk (A) as follows: 
l construct an empty instance of A 

Fig. 9. An example for use of Rule 1; the abbreviations obl, opt, cd, and 
ci stand for obligatory, optional, context dependent, and context inde- 
pendent, respectively. All links are part links from the upper to the lower 
concept; for example, concept A is an obligatory context-dependent part 
of Y, and A has P as an optional context-independent part. 

d &EL WHEEL COACHWORK 

1 d&MOW Ib DOOR c 9-s 
s 

irh(RKTANGLE) 

Fig. 10. An example of an analysis process 

l connect the instance with those referred to by the 
premise 

l activate the attached functions in the sequence: judg- 
ments of links, calculation of attributes, judgments of at- 
tributes, judgment of relations, judgment of the concept. 

Because of context-dependent parts and optional links, 
values do not exist for all arguments of the activated func- 
tions [e.g., the attribute “angles” in Fig. 7(b)]. Never- 
theless, the knowledge of existing values of arguments 
and the function itself can be used if the following strat- 
egy is applied. The restriction values are also transferred 
to the functions. The functions themselves decide whether 
the existing values and the restrictions are sufficient for 
the estimation of results. In the case of attributes, this 
estimation is a new and tighter restriction. For the other 
cases, which are all judgments, the estimation must be 
optimistic. 

Rule 2: 
IF a partial instance inpj (A) of a concept A exists AND 

instances for all those concepts exist, which are referred 
to as part with item context depending equal to YES in 
the link description and are members of the obligatory set 
which was used for the construction of inpi 

THEN build up new instances ink (A) out of inpi (A) as 
described above. 

Since Rules 1 and 2 only consider obligatory parts and 
concretes of a set of modality, Rule 3 checks whether there 
are instances of optional parts or concretes. If this is the 
case, an instance is extended by these optional compo- 
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in,,(RECTANGLE) 

ATrRIBUTE: angles 

RESTRICTION --- 

VALUE I (30.75) (70.75) (70.136) (30,136) 1 

JUDGEMENT: 0.93 

(a) 

inpi(DRIVERS-CAB) 

CONCRETE: geometry 

COAL-NODE inh(RECTANGLE) 

ATTRIBUTE: height 

RESTRICTION t2.9 - 2.91 

VALUE 2.9 

ATTRIBUTE: length 

RESTRICTION ct.7 - 1.71 

VALUE 1.7 

ANALYSIS-PARAMETER: angles 

RESTRICTION [ (X.X) (X.X) (4 b.4 

(x.x) (x.x) (x.x) (w) 

(30.75) (70.75) (70.138) (30.136) 1 

STRUCTURAL-RELATION: haight-greater-length 

VALUE 0.96 

ANALYSIS-RELATION: window-angles-inside 

VALUE 1 .O (optimistic) 

JUDGEMENT: 0.96 (optimistic) 

(b) 

inj(DRIVERS-CAB) 

PART: window 

GOAL-NODE ink(WINDOW) 

PART: door 

GOALNODE inl(DOOR) 

CONCRETE: geometry 

GOAL-NODE inh(RECTANGLE) 

AllRIBUTE: height 

RESTRICTION 12.9 - 2.91 
VALUE 2.9 

AlTRIBUTE: length 

RESTRICTION 11.7 - 1.71 

VALUE 1.7 

ANALYSIS-PARAMETER: angles 

RESTRICTION --- 

VALUE [ (38.85) (62.65) (62,130) (36.130) 

(40,110) (60,110) (60,125) (40,125) 

(30.75) (70,75) (70.136) (30.136) 1 

STRUCTURAL-RELATION: height-greater-length 

VALUE 0.96 

ANALYSIS-RELATION: window-angles-inside 

VALUE 0.95 

JUDGEMENT: 0.63 

Cc) 

Fig. 11. (a) The instance in, (RECTANGLE). (b) The partial instance 
inp,( DRIVERS-CAB). (c) The instance inj( DRIVERS-CAB). 

nents. For example, if there is an instance of 0 but not of 
P in Fig. 9, the instance of A is extended by in (0). 

Rule 3: 
IF an instance inj (A) of a concept A exists AND at 

least one instance of a concept exists, which is optional 
due to the modality used for constructing inj (A) 

THEN build up extended instances ink (A) out of 
inj(A). 

In the situation of Fig. 10, the premise of Rule 1 is 
satisfied for the concept DRIVERS-CAB [see Fig. 7(b)] 
because both part links are context dependent. The result 
is the partial instance inpi (DRIVERS-CAB) which is 
shown in Fig. 11 (b). By not knowing all arguments of the 
analysis parameter “angles,” only the “restriction” could 

be further restricted. After the instantiation of the context- 
dependent concepts WINDOW and DOOR, the second 
rule can be applied. This results in the instance 
inj ( DRIVERS-CAB ) [see Fig. 1 l(c)] where all attributes 
are calculated and all judgments are done. 

If a goal concept for an analysis process is known, re- 
cursive application of these three rules results in a search 
tree for the goal concept according to the modalities of a 
concept and optional links. By competing instances, gen- 
erated for a concept, this search tree is additionally ex- 
panded. Based on the judgments for instances, judgments 
for concepts restricted to one path of the tree can be es- 
timated. This yields to judgments for the nodes of the 
search tree which can be used for the A* algorithm. 
Therefore, the rules for instantiation in connection with 
the A* algorithm form the skeleton for different control 
strategies (see Section IV). 

Rules l-3 are sufficient to define the instantiation of 
concepts if no modified concepts are allowed. As men- 
tioned above, a modified concept of A can be computed 
if some instances have been computed, but instantiation 
of A is not yet possible. For example, having an instance 
of N in Fig. 9 may allow one to compute a more refined 
range of attribute values for A. This bottom-up creation 
of modified concepts is summarized in Rule 4 below. On 
the other hand, having a modified concept of A, this may 
in turn be used to restrict attribute values of L in a new 
modified concept of L. This top-down creation of modi- 
fied concepts is summarized in Rule 5. The situation is 
similar if not an instance of N is computed, but a modified 
concept, a case which is also handled by Rules 4 and 5. 

Rule 4: 
IF for a concept A or a modijed concept modj (A), a 

new modified concept or a new instance were created for 
a concept, which is referred to as part, or concrete, or 
context-of by the concept A 

THEN create a new modijied concept modk (A) out of 
A or modj (A), respectively, as follows: 

l construct an empty modified concept of A 
l connect this modified concept to all instances re- 

ferred to by the premise and those which are already re- 
ferred to by modj(A) 

l activate the functions like in Rule 1. 
By building up modified concepts top down, one can 

use the inverse functions to constrain a concept due to 
expectations and due to knowledge gained during the 
analysis. This is done by Rule 5. 

Rule 5: 
IF for a concept A or for a modijed concept modj (A), 

a new modified concept or a new partial instance were 
created for a concept 2, which is referred to as part-of or 
concrete-of by the concept A 

THEN create a new modijied concept modk (A) out of 
A or modj (A), respectively, as follows: 

l activate the functions in the following sequence: 
inverse judgment of link description of 2, inverse com- 

putation of attributes of 2, inverse judgments of relations 
of 2, judgments of links of A, computation of attributes 
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mod,(TRUCK) 

PART: drivers-cab 

COAL-NODE inj(DRIVERS-CAB) 

ATTRIBUTE: height 

RESTRICTION 12.9 - 3.51 

VALUE --- 

AlTRIBUTE: length 

RESTRICTION c6.0 - 12.01 

VALUE --- 

STRUCTURAL-RELATION: height-smaller-length 

VALUE 1 .O (optimistic:) 

ANALYSIS-RELATION: wheels-down 

VALUE 1 .O (optimistic) 

JUDCEMENT: 0.97 (optimistic) 

Fig. 12. The modified-concept mod, (TRUCK). 

of A, judgment of attributes of A, judgment of relations 
of A, judgment of A. 

After the instantiation of DRIVERS-CAB, the premise 
of Rule 4 is satisfied for the concept TRUCK [see Fig. 
7(a)]. The restrictions made in the modified concept 
mod,, (TRUCK) are illustrated in Fig. 12. Notice that no 
value, but only a new restriction is calculated for the at- 
tribute ‘ ‘height. ’ ’ With mod,, (TRUCK), the premise for 
Rule 5 becomes true for the concept WHEEL and the con- 
cept CARGO-SPACE. The resulting modified concept 
mod, (WHEEL) of the link “front-wheel” is shown in 
Fig. 13(b). Since the concept WHEEL may be also a part 
of a concept CAR, the lower bound of the restriction of 
the attribute “radius” is 0.20. The minimum radius of a 
truck wheel, however, is 0.3. This restriction on the links 
“front wheel” and “rear-wheel” can be inverted by 
constr&ing the lower bound of the attribute “radius” to 
0.3. Furthermore, by the application of the inverse cal- 
culation of the attribute “height” in the concept TRUCK, 
the higher bound of the restriction of the attribute “ra- 
dius” in mod, (WHEEL) can be restricted additionally 
because a radius of more than 0.5 would exceed the max- 
imum value of the restriction of mod, (TRUCK). Analo- 
gously by the inverse judgment of the relation “wheels- 
-down,” the restriction of the attribute “center” can be 
restricted, as one knows the values of the angles of the 
instance inj ( DRIVERS-CAB ). 

In order to incorporate results of initial segmentation in 
a bottom-up manner, a sixth rule is introduced. It uses the 
attribute and concept lists introduced in Section IV below. 
Basically, an attribute list contains tuples [concept, role, 
type] computed from the knowledge base. If from initial 
segmentation a segmentation object having an attribute 
with a certain role and type is obtained, this may indicate 
the occurrence of the concept in the corresponding row of 
the attribute list. A concept list contains the names of all 
concepts having a set of tuples [role, type]. One or several 
attributes are not sufficient in general to compute an in- 
stance of the concept, but they may be used to compute a 
modified concept and its judgment. This is summarized 
in the following. 

Rule 6: 
IF initial segmentation provides attributes with [role, 

type], AND there is a concept K in some row of the at- 

WHEEL 

CONCRETE: geometry 

GOAL-NODE: CIRCLE 

ANALYSIS-PARAMETER: radius 

TYPE-OF-VAL: REAL 

NUMB-OF-VAL: 1 

RESTRICTION: LO.25 - 0.751 

COMP-OF-VAL: compute-radius 

ARGUMENT: gcomstry.radius 

INV-FUNCT inv-compute-radius 

ANALYSIS-PARAMETER: centra 

-tfPE-OF-‘/AL: RECORD, point 

NUMB-OF-VAL: 1 

RESTRICTION: I (0.0) - (512.512) I 

COMP-OF-VAL: compute-centra 

ARGUMENT: gsometry.centrs 

INV-FUNCT inv-compute-centre 

JUDGEMENT: judge-wheel 

ARGUMENT: geometry. radius. csntre 

(a) 

modl(WHEEL) 

ANALYSIS-ATTRIBUTE: radius 

RESTRICTION rO.35 - 0.61 

VALUE --- 

ANALYSIS-ATTRIBUTE: centre 

RESTRICTION f (30,O) (100,100) I 

VALUE --- 

JUDGEMENT: 0.95 (optimistic) 

(b) 

Fig. 13. (a) The concept WHEEL. (b) The modified concept 
mod, (WHEEL). 

tribute list or concept list having the roles and types among 
its attributes, 

THEN create a modified concept mod (K ) of K as fol- 
lows: generate an empty modified concept, connect it to 
those referenced in the premise, activate functions in the 
order of Rule 1. 

The above six rules precisely define the computation of 
instances and modified concepts. As mentioned above, 
they are the basis for problem-independent control, but 
they are not sufficient to guarantee efficient analysis of 
image or speech signals. The reason is the ambiguity of 
these signals causing the computation of competing in- 
stances. An efficient control strategy should focus on the 
most promising instances and avoid the useless ones. Ap- 
proaches to such control strategies are treated in the next 
section. 

IV. PROBLEM-INDEPENDENT CONTROL 

In a first realization of the knowledge structure [41], 
the control strategy can be described as a strict top-down 
graph search algorithm within the semantic network. In 
that system, the user interactively selects a goal concept 
from the network. The system task then is to instantiate 
the chosen goal concept, that is, to verify the goal con- 
cept. In other words, the control algorithm is trying to 
build up an instance of the concept with respect to the 
input data. The instantiation of a goal concept can be di- 
vided into two steps; the first step is a top-down expansion 
of the network to find all concepts which are a necessary 
prerequisite for the instantiation of the goal concept; the 
second step is a bottom-up instantiation of expanded con- 
cepts. The rules for instantiation (Rule 1, Rule 2, and Rule 
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3) together with the A* algorithm form a first complete 
control strategy and build the base for extended strategies. 
Before describing some extensions, a sketch of the two 
main steps of the basic strategy will be given. For sim- 
plicity, it is assumed in the following that there are no 
dependencies on the context and no sets of modality, and 
that any attribute of a concept only depends on attributes 
of parts directly linked to it. 

Given a goal concept, the control starts with top-down 
,. expansion of the network. As mentioned in Section III-C, 
the instantiation rule Rule 1 is applicable to every concept 
of the network. It determines which concepts are a nec- 
essary prerequisite for the instantiation of that concept. 
Before instantiating the goal concept, first there must be 
instances of parts and concretes directly linked to that 
concept. In general, these concepts themselves have parts 
and concretes, and so on. So one has to expand the net- 
work top down along the “part” and the “concrete” 
links, starting with the goal concept. This expansion pro- 
cess stops at the level of minimal concepts. Minimal con- 
cepts are defined by having no parts and no concretes (see 
Section III-A). It is assumed that minimal concepts can 
be instantiated immediately on image (or speech) data, 
using results from image preprocessing and segmentation. 
After instantiation of such minimal concepts, successive 
concepts on higher levels can be instantiated, until the 
goal concept is reached. Network expansion is done in a 
depth-first manner. Because of ambiguities arising by the 
possibility of instantiating a concept in different ways on 
the same input data, there may be more than one instance 
for a concept. To handle this problem of competing in- 
stances, a search algorithm based on the A* algorithm is 
used. 

This simple presentation of expansion and instantiation 
should be enough to give an idea of what is meant. For 
further details, see [4 11. It should be noted that the pro- 
cess of expanding a goal concept is simplified by the re- 
strictions defined in Fig. 4. By these restrictions, cycles 
are avoided which otherwise would have to be tested for 
during expansion. 

This control algorithm has the advantage of being con- 
ceptually simple and sufficient for moderately complex 
problems. But it also has two weak points. First, the se- 
lection and instantiation of a goal concept results in a 
strictly top-down analysis. The processing is model- 
driven, and there are no possibilities for the control to act 
flexibly with respect to the input data. Second, the inter- 
active selection of a goal concept by the user may be a 
critical point. If the network contains a lot of concepts 
and the user always selects the most general concept, the 
control algorithm always expands and instantiates a great 
part of the network. In order to avoid this, the user may 
select a goal concept at a lower level of the network. This 
reduces the number of concepts to be expanded and in- 
stantiated, but it leaves the problem of goal selection to 
the user. 

Because of this, another more flexible control strategy 
has been designed, allowing a mixed top-down and bot- 

tom-up analysis without interaction of the user. A crucial 
point of this bidirectional control algorithm is the use of 
attributes leading to additional knowledge sources that can 
be used to direct analysis and limit the search space. There 
are several possibilities for making use of attributes. One 
version of a bidirectional control algorithm only uses at- 
tributes whose set of values is a finite set. Examples are 
a finite set of colors, shapes, or locations. Details of this 
approach are given in [37]. A more general approach is 
described in this paper. 

The idea of the bidirectional control algorithm pre- 
sented here is to determine an attribute list by the rule 

IF (a concept has an attribute with a certain role and 
type), 

THEN (insert the triple [concept, role, type] into an 
attribute list). 

Examples of tuples (attribute.role, attribute.type) are 
(length, real), (color, set of colors), or (speed, real). From 
initial segmentation, one obtains segmentation objects like 
lines, regions, or vertices having certain attributes. Using 
the attributes of segmentation objects and the attribute list, 
a set A of concepts possibly corresponding to these attri- 
butes is determined. The selection of concepts can be con- 
strained more tightly by a concept table. This contains the 
names of all concepts having a certain set of tuples [role, 
type], not just one. 

So far, the value of an attribute has not been used. The 
first step of the control algorithm is to compute a modified 
concept for every concept in the set A using Rule 6. The 
function to compute a judgment is invoked for every mod- 
ified concept; the judgment was outlined in Section III- 
B3). From this discussion, it is evident that the judgment 
of an attribute influences the judgment of a modified con- 
cept. For example, assume a line L from initial segmen- 
tation to have (attribute.role = length, attribute. type = 
real, attribute.value = 10 m), and two concepts X and Y 
to have ( attribute.role = length, attribute. type = real, 
attribute.restriction = (10 m, 20 m) and (attribute.role 
= length, attribute.type = real, attribute.restriction = 
(40 m, 100 m), respectively. Let us assume that the judg- 
ment functions of the two attributes of X and Y are com- 
puting the degree of membership by using fuzzy mem- 
bership functions. Irrespective of the precise fuzzy 
membership functions, the degree of membership of the 
attribute of L when given X will be high, and that of L 
when given Y will be low. By this approach, a judgment 
of every modified concept is computed. The modified 
concepts are viewed as nodes in a search space. Fig. 14 
gives an overview of the complete algorithm. Its idea is 
to apply the A* algorithm to the search space initialized 
by the modified concepts. In every step of the algorithm, 
the best node in the search space is selected, and it is tried 
to compute additional instances. 

The modified concepts obtained from segmentation re- 
sults will be on a fairly low level of abstraction, As 
pointed out in Section III-B2), different levels of abstrac- 
tion or different conceptional systems are represented by 
the hierarchy of concrete links in the network. A node in 
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from segmentation results and concept tables compute a set A of 
concepts corresponding to segmentation results 

generate one successor node V of the root R in the search space S 

apply RULE6 to Kto compute a modified concept mod(K) 
the judgement ofV is equal to the judgement of mod(K) 

WHILE specified degrees of concretes and parts have not yet been 

I I THEN: choose the first concept C on P(N) 
instantiate C by using RULE1 and RULE2 I 

generate one successor node 0 ofN 
compute judgement of 0 by rules of algorithm A* 
generate list P(0) for the node 0 

determine a set B of superior concepts of Z(N) 

F~hconceptKinsetBLTO: 1 

generate one successor node V ofN in space S 
apply RULE4 to K to compute a modified concept mod(K) 
the judgement of V is equal to the judgementofmod(K) 
generate list P(V) forK and V, Z(V) =K 

initialize the search space S by the root node R 

Fig. 14. An outline of a bidirectional control algorithm. RULE, refers to 
the corresponding rule described in Section III-C. The generation of list 
P is described in Fig. 15. 

the search space may represent an uninstantiated concept 
(in which case the premise list P in Fig. 14 is not empty; 
this list follows from Rules 1 and 2) or an instantiated 
concept (in which case P is empty). Since initially con- 
cepts are on a low level of abstraction, one will not want 
to stop on this level. Therefore, a set B of superior con- 
cepts is determined where “superior” may be defined in 
different ways. An approach is to determine less concrete 
and less general concepts, that is, higher in degrees d 1 
and d2. Rule 4 is used to generate modified concepts for 
the concepts in B. A node in the search space is generated 
for every modified concept and a judgment is computed. 

The algorithm ends if a specified level of abstraction 
(or a specified degree of the concrete and part links of an 
instantiated concept) has been reached. It initializes mod- 
ified concepts in a bottom-up phase. It alternates between 
top-down instantiation of a node in the search space and 
bottom-up determination of superior concepts. The activ- 
ity is directed only by judgments of nodes in the search 
space according to the strategy of the A* algorithm. It is 
more general than the previous algorithm in [37] since it 
makes use of all attributes, and it is more uniform since 
it uses only one uniform search space, whereas the former 
algorithm used several search spaces, the so-called local 
search spaces. 

Although the above algorithm is more complex and 
more powerful than the strict top-down algorithm outlined 
in the beginning, it still does not make full use of the 
potentials of the network. In fact, it only uses Rules 1, 2, 

4, and 6 in Section III-C. So it is possible to design other 
control algorithms. However, we think the most impor- 
tant point is that all those algorithms will be special ver- 
sions of graph search algorithms. The combination of se- 
mantic networks and graph search thus provides a 
framework to treat the control problem and to design dif- 
ferent classes of control algorithms which can be used in 
various task domains. 

V. NETWORK ENVIRONMENT 

In order to provide a comfortable environment for 
working with semantic networks, it is necessary to have 
tools which support the generation, the modification, and 
the consistency test of a semantic network, and an easy 
utilization of the stored knowledge. Those tools which are 
written in C are implemented in the network environment 
of ERNEST, including an editor for easy manipulation of 
networks. Furthermore, access routines to the network 
structures and routines for developing control algorithms 
are available. 

Besides the tools for creating and manipulating a se- 
mantic network, there are programs which allow a simple 
utilization of the coded knowledge for an analysis pro- 
cess. The following tools are feasible if a network for a 
special application was successfully tested for its consis- 
tency. To make knowledge utilization more efficient, the 
network can be prepared for an analysis process. This 
means that all information necessary for a control algo- 
rithm is computed in advance whenever possible. For all 
concepts, the substructures are calculated which are in- 
herited from concepts referred to “specialization of” 
links. Pointers to these are inserted in the considered con- 
cept. The gain in efficiency is obvious because for the 
access of a substructure, no search along the links “spe- 
cialization of” is necessary. Since for the calculation of 
attributes and analysis parameters values of attributes and 
analysis parameters of the same concepts also can be used, 
it is necessary that these self-references are consistent. In 
addition, a certain order for the calculation has to be fol- 
lowed, and therefore, the so-called concepr jiowcharr is 
created. On the one hand, it indicates the order of calcu- 
lation, and on the other hand, it represents the self-refer- 
ences between the arguments. 

A further tool in the preparing of a network for the anal- 
ysis is the calculation of the initial search graph for every 
concept. It represents all possible paths for the instantia- 
tion of this concept which result from the first two rules 
for instantiation; this corresponds to the list P in Fig. 15. 
This information also increases the efficiency of an anal- 
ysis because the search tree for an analysis process is 
closely connected to the initial search graph. 

In a network prepared in this way, one can use tools for 
building up instances and modified concepts. According 
to the pragmatics of the network (see Section III-C), there 
are routines which create partial instances, which com- 
plete partial instances, and which extend instances by op- 
tional links. Furthermore, one can create modified con- 
cepts and modify modified concepts top down and bottom 



compute_list-(K,P) 

FOR all concepts A [(which are a context independent part ofK 
OR which are a concrete of K) AND (where an instance of A is 
not yet on node V(K)] DO: 

compute list(A,P) 

(K has context dependent parts), 

attach Kto the end of P 

Fig. 15. Algorithm for the computation of list P for concept K and search 

space node V( K ) corresponding to K. 

up. These complex routines are powerful tools for the 
analysis because they execute the main steps of analysis 
independently of a concrete control algorithm, namely, 
local adaptation of the knowledge base and instantiation 
of concepts and modified concepts. 

VI. APPLICATIONS 

At our Institute, three pattern analysis applications use 
the ERNEST system. The problems attacked by these ap- 
plications are quite different. Common to all is that sensor 
data input is used. The differences between the tasks and 
the underlying data indicate the epistemological adequacy 
of the network approach and also the problem-indepen- 
dent structure of the total ERNEST system. 

A. Scintigraphic Image Analysis 

The task of this system is to automatically give a de- 
scription in diagnostic terms of image sequences of the 
heart. The input data are Tc-99m gated blood pool studies 
with a spatial resolution of 64 x 64 pixels and 12-32 
images per sequence. A sequence represents the motility 
behavior of the heart between two R waves of the ECG. 
An example of such an image sequence filtered by a 7 x 

7 median is shown in Fig. 16. The knowledge base of the 
system consists of about 180 concepts. A condensed view 
of the network is shown in Fig. 17. Each block in this 
figure stands for a collection of concepts having identical 
degree with respect to the specialization and concrete 
links. Inside a block, concepts are connected via part 
links. The network consists of eight conceptional systems 
from the interface system at the bottom to the complete 
interpretation system at the top. In between the medical 
objects, the frame-to-frame motility, motility paths, seg- 
mentation of the left ventricle volume curve, diagnostic 
interpretations for the motility of the different objects, and 
the interpretations of the form and proportions of the heart 
are represented. In the total network, a few hundred links, 
attributes, and relations are defined. An analysis process 
is monitored by the A* algorithm. For the judgments of 
instances [in the sense of Section III-B3)] and search graph 
nodes, fuzzy logic is used as certainty measurement. 

A detailed description of this system and the results are 
reported in [3 l] and [41]. Therefore, we only mention 
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Fig. 16. An image sequence of the motility behavior of the heart. 

that in a test of 21 image sequences, 18 were interpreted 
correctly and three were rejected. 

B. Analysis of Industrial Scenes 

The purpose of analysis of industrial scenes may be the 
detection of objects, fault detection, or working area con- 
trol. Therefore, the description as the result of analysis 
differs depending on the purpose. In any case, the analysis 
starts with processing one image or one stereo-image pair. 
Image processing results are edges and regions with as- 
sociated features. These features may be 2-D, 2.5-D, or 
3-D features. 

The purpose of the image analysis system that we are 
presently implementing is workpiece recognition and de- 
tection for flexible automatic manufacturing. The algo- 
rithms used for feature extraction include stereo and 
shape-from-shading algorithms. Using a model repre- 
sented by a semantic network, a combination of the above- 
described control algorithms monitors the analysis. 

To make the image analysis system flexible enough as 
is necessary for modern manufacturing, we have inte- 
grated a knowledge acquisition component in ERNEST. 
This component itself can be easily adopted to a special 
task domain. A description of it is omitted here due to 
space limitations. Details can be found in [43]. The input 
of the knowledge acquisition consists of images of the 
object that has to be learned and of the corresponding 
CAD data. 

A preliminary version of the image analysis system has 
been completed. It uses a contour-based segmentation and 
models of the views of stable positions of the workpieces. 
The assembly of electric motors is an experimental task 
where this system has been used for object identification 
and location determination. Different tests of the image 
analysis system have shown that it reliably recognizes and 
localizes parts under variable viewing conditions. The au- 
tomatically generated models consist of 5-100 concepts, 
depending on the complexity of the object. The analysis 
time on a VAX Station 3200 took from 2 CPU s up to 5 
CPU min. By not using all features of an object but only 
the most robust ones, the time can be reduced to less than 
10 CPU s for all objects. The location defect was about 
two pixels. The results have shown that the requirements 
of an industrial environment can be met by an image anal- 
ysis system that has been developed under ERNEST. 

C. Speech Understanding 

The aim of the project EVAR [30], [36] is the auto- 
matic understanding of continuous German speech. 
Therefore, a homogeneous hierarchical knowledge base 
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Fig. 17. Overview of the network for diagnostic description of scintigraphic image sequences 

[34] was created based on existing work. It represents the 
syntax and semantics of the German language and the pro- 
totypical task domain “intercity-train-information.” Fig. 
18 gives a detail of the knowledge base. 

In the lowest level, there are concepts (i.e., H- 
WORD-HYPOTHESIS) which build the main interface 
between word recognition and linguistic analysis. The in- 
stances of those concepts are computed from the actual 
set of word hypotheses. Besides that, on other locations 
in the network, communication takes place between these 
two parts of analysis. So one can create hypotheses based 
on modified concepts or instances which also use linguis- 
tic knowledge for the judgment, or one may verify a word 
chain. 

The basis for the syntactic judgment of an interpretation 
is the concept SYNTAX and its specialization. The syn- 
tactic classes (i.e., SY-NOUN, SY-PRON) are modeled 
here, which are the connection to the lowest level. Based 
on those, greater syntactical units, i.e., noun phrase 
(SY-NP), are described by the links part. 

The next level contains concepts which represent the 
semantics based on the case grammar 191. The concepts 
for deep cases opened by noun frames, verb frames, and 
adjective frames are connected to the concepts represent- 
ing these frames. 

The highest level reflects the pragmatics given by the 
task domain ‘ ‘intercity-train-information. ” Three kinds 
of concepts are distinguished, namely, goal concepts 
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Fig. 18. Detail of a network for speech understanding covering the abstraction levels of words, syntax, 
matics. 

( i . e . , P-TRAIN-CONNECTION ) , frames of meaning 
(i.e., P-V-FAHREN), and pragmatical intentions (i.e., 
P-DESTINATION). The last two kinds of concepts are 
analogous to the frames and deep cases in the semantics. 

The first tests were done with a knowledge base of about 
120 concepts and with a lexicon of 1600 items. For the 
analysis, the 100 best scored word hypotheses were used 
and augmented by the deficient correct word hypothesis 
without changing the score. In an initial phase, the ten 
best scored word hypotheses with a relevant pragmatical 
class were used to estimate possible goal concepts which 
the control algorithm, described in Section IV, tried to 
instantiate. For two sentences, the analysis could be fin- 
ished successfully. This means that the correct pragmati- 
cal instance (P-TIME-TABLE-INFO) with the correct 
pragmatical intentions was built up. For four other sen- 
tences, the analysis did not come to an end due to storage 
limitation (more than 1500 search tree nodes). The reason 
was a very bad rank (less than 2000) of some correct word 
hypotheses on the boundaries of the speech signal because 
these regions were insufficiently digitized. For the two 
recognized sentences, 640/760 search tree nodes were 
expanded, 600 / 7 15 instances, and 703 / 824 modified 
concepts were created. On a VAX Station 2000, the anal- 
ysis consumed about 12 CPU min and about 8 Mbyte stor- 
age. As one can see, the number of instances and modi- 
fied concepts increases approximately linearly with the 
number of search tree nodes. 

VII. CONCLUSIONS AND OUTLOOK 

A system environment based on a special definition of 
a semantic network has been described which is specially 

semantics, and Pw 

designed for knowledge-based image and speech under- 
standing. It allows one to represent high-level task-spe- 
cific knowledge on different levels of abstraction. Low- 
level (or task-independent) process is incorporated into 
the system via minimal concepts and their direct instan- 
tiation. The use of the knowledge base is defined by six 
task-independent rules for the instantiation and modifi- 
cation of concepts. The rules allow one to design different 
control algorithms for the analysis of an image or an ut- 
terance. Appropriate tools for the design, test, and mod- 
ification of knowledge bases are available, and the syntax 
of the network is checked automatically. The approach is 
being used successfully in three different application 
areas, two in image understanding, and one in speech un- 
derstanding . 

We are presently extending the approach in the direc- 
tion of providing a separate explanation facility which is 
designed to work on the network structure, but which 
should be task-independent to a large extent. Another plan 
for the future is to explore. and design facilities for a truth- 
maintenance system. 

It has been demonstrated in [44] that computations in a 
particular type of semantic network can be done in a time 
order depending on the depth of the network-in our ter- 
minology, depending on the order of the concretization 
hierarchy. Another direction for future research thus may 
be to explore parallel instantiation of concepts in our more 
elaborate network structure. 
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