
This paper is included in the Proceedings of the 

13th USENIX Symposium on Networked Systems  

Design and Implementation (NSDI ’16).

March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the 

13th USENIX Symposium on 

Networked Systems Design and 

Implementation (NSDI ’16) 

is sponsored by USENIX.

Ernest: Efficient Performance Prediction for  
Large-Scale Advanced Analytics

Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,  

and Ion Stoica, University of California, Berkeley

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman



USENIX Association  13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 363

Ernest: Efficient Performance Prediction for Large-Scale Advanced

Analytics

Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, Ion Stoica

University of California, Berkeley

Abstract

Recent workload trends indicate rapid growth in the

deployment of machine learning, genomics and scientific

workloads on cloud computing infrastructure. However,

efficiently running these applications on shared infras-

tructure is challenging and we find that choosing the right

hardware configuration can significantly improve perfor-

mance and cost. The key to address the above challenge

is having the ability to predict performance of applica-

tions under various resource configurations so that we

can automatically choose the optimal configuration.

Our insight is that a number of jobs have predictable

structure in terms of computation and communication.

Thus we can build performance models based on the be-

havior of the job on small samples of data and then pre-

dict its performance on larger datasets and cluster sizes.

To minimize the time and resources spent in building a

model, we use optimal experiment design, a statistical

technique that allows us to collect as few training points

as required. We have built Ernest, a performance pre-

diction framework for large scale analytics and our eval-

uation on Amazon EC2 using several workloads shows

that our prediction error is low while having a training

overhead of less than 5% for long-running jobs.

1 Introduction

In the past decade we have seen a rapid growth of large-

scale advanced analytics that implement complex algo-

rithms in areas like distributed natural language process-

ing [24, 74], deep learning for image recognition [34],

genome analysis [72, 61], astronomy [17] and parti-

cle accelerator data processing [19]. These applications

differ from traditional analytics workloads (e.g., SQL

queries) in that they are not only data-intensive but also

computation-intensive, and typically run for a long time

(and hence are expensive). Along with new workloads,

we have seen widespread adoption of cloud computing

with large data sets being hosted [7, 1], and the emer-

gence of sophisticated analytics services, such as ma-

chine learning, being offered by cloud providers [9, 6].

With cloud computing environments such as Ama-

zon EC2, users typically have a large number of choices

in terms of the instance types and number of instances

they can run their jobs on. Not surprisingly, the amount

of memory per core, storage media, and the number

of instances are crucial choices that determine the run-

ning time and thus indirectly the cost of running a given

job. Using common machine learning kernels we show

in §2.2 that choosing the right configuration can improve

performance by up to 1.9x at the same cost.

In this paper, we address the challenge of choosing

the configuration to run large advanced analytics ap-

plications in heterogeneous multi-tenant environments.

The choice of configuration depends on the user’s goals

which typically includes either minimizing the running

time given a budget or meeting a deadline while min-

imizing the cost. The key to address this challenge is

developing a performance prediction framework that can

accurately predict the running time on a specified hard-

ware configuration, given a job and its input.

One approach to address this challenge is to predict the

performance of a job based on monitoring the job’s pre-

vious runs [39, 44]. While simple, this approach assumes

the job runs repeatedly on the same or “similar” data sets.

However, this assumption does not always hold. First,

even when a job runs periodically it typically runs on

data sets that can be widely different in both size and

content. For example, a prediction algorithm may run on

data sets corresponding to different days or time granu-

larities. Second, workloads such as interactive machine

learning [9, 55] and parameter tuning generate unique

jobs for which we have little or no relevant history. An-

other approach to predict job performance is to build a

detailed parametric model for the job. Along these lines,

several techniques have been recently proposed in the

context of MapReduce-like frameworks [77, 52]. These

techniques have been aided by the inherent simplicity of

the two-stage MapReduce model. However, the recent

increase in the popularity of more complex parallel com-

putation engines such as Dryad [51] and Spark [83] make

these parametric techniques much more difficult to apply.

In this paper, we propose a new approach that can ac-

curately predict the performance of a given analytics job.

The main idea is to run a set of instances of the entire

job on samples of the input, and use the data from these

training runs to create a performance model. This ap-

proach has low overhead, as in general it takes much less

time and resources to run the training jobs than running

the job itself. Despite the fact that this is a black-box ap-

proach (i.e., requires no knowledge about the internals of
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Figure 1: Comparison of memory bandwidths across Ama-
zon EC2 m3/c3/r3 instance types. There are only three sizes
for m3. Smaller instances (large, xlarge) have better mem-
ory bandwidth per core.

the job), it works surprisingly well in practice.

The reason this approach works so well is because

many advanced analytics workloads have a simple struc-

ture and the dependence between their running times and

the input sizes or number of nodes is in general charac-

terized by a relatively small number of smooth functions.

This should come as no surprise as big data has naturally

lead researchers and practitioners to develop algorithms

that are linear [22] or quasi-linear in terms of the input

size, and which scale well with the number of nodes. As

a simple example, consider a mini-batch gradient descent

algorithm used for linear regression. For a dataset with

m data points and n features per partition, the time taken

by each task to compute the gradient is uniform (mn) and

similarly the size of output from every task is the same,

a vector of size n.

The cost and utility of training data points collected

is important for low-overhead prediction and we address

this problem using optimal experiment design [63] , a sta-

tistical technique that allows us to select the most useful

data points for training. We augment experiment design

with a cost model and this helps us find the training data

points to explore within a given budget. We have built

support for the above techniques in Ernest and we find

that a number of advanced analytics workloads can be ac-

curately modeled using simple features that reflect com-

monly found computation and communication patterns.

We include a cross-validation based verification scheme

in Ernest to detect when a workload does not match the

features being used and show how we can easily extend

our model in such cases.

Using Amazon EC2 as our execution environment, we

evaluate the accuracy of our system using a number of

workloads including (a) several machine learning algo-

rithms that are part of Spark MLlib [56], (b) queries from

GenBase [73] and I/O intensive transformations using

ADAM [61] on a full genome, and (c) a speech recog-

nition pipeline that achieves state-of-the-art results [50].

Our evaluation shows that our average prediction error is

under 20% and that this is sufficient for choosing the ap-

propriate number or type of instances. Our training over-

head for long-running jobs is less than 5% and we also
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Figure 2: Comparison of network bandwidths with prices
across different EC2 r3 instance sizes normalized to
r3.large. r3.8xlarge has the highest bandwidth per core.

find that using experiment design improves prediction er-

ror for some algorithms by 30− 50% over a cost-based

scheme. Finally, using our predictions we show that for a

long-running speech recognition pipeline, finding the ap-

propriate number of instances can reduce cost by around

4x compared to a greedy allocation scheme. In summary,

the main contributions of this paper are:

• We propose Ernest, a performance prediction

framework that works with unmodified jobs and

achieves low overhead using optimal experiment

design.

• We show how Ernest can detect when a model isn’t

appropriate and how small extensions can be used

to model complex workloads.

• Using experiments on EC2, we show that Ernest is

accurate for a variety of algorithms, input sizes, and

cluster sizes.

2 Background

In this section we first present an overview of different

approaches to performance prediction. We then discuss

recent hardware and workload trends for large scale data

analysis. We also present an example of an end-to-end

machine learning pipeline and discuss some of the com-

putation and communication patterns that we see using

this example.

2.1 Performance Prediction

Performance modeling and prediction have been used in

many different contexts in various systems [59, 16, 39].

At a high level performance modeling and prediction

proceeds as follows: select an output or response variable

that needs to be predicted and the features to be used for

prediction. Next, choose a relationship or a model that

can provide a prediction for the output variable given the

input features. This model could be rule based [27, 21]

or use machine learning techniques [60, 80] that build an

estimator using some training data. We focus on machine

learning based techniques in this paper and we next dis-

cuss two major approaches in modeling that influences

the training data and machine learning algorithms used.

Performance counters: Performance counter based ap-

proaches typically use a large number of low level coun-
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ters to try and predict application performance character-

istics. Such an approach has been used with CPU counter

for profiling [14], performance diagnosis [81, 25] and

virtual machine allocation [60]. A similar approach has

also been used for analytics jobs where the MapRe-

duce counters have been used for performance predic-

tion [77] and straggler mitigation [80]. Performance-

counter based approaches typically use advanced learn-

ing algorithms like random forests, SVMs. However as

they use a large number of features, they require large

amounts of training data and are well suited for scenar-

ios where historical data is available.

System modeling: In the system modeling approach, a

performance model is developed based on the properties

of the system being studied. This method has been used

in scientific computing [16] for compilers [11], program-

ming models [21, 27]; and by databases [29, 57] for es-

timating the progress made by SQL queries. System de-

sign based models are usually simple and interpretable

but may not capture all the execution scenarios. How-

ever one advantage of this approach is that only a small

amount of training data is required to make predictions.

In this paper, we look at how to perform efficient per-

formance prediction for large scale advanced analytics.

We use a system modeling approach where we build a

high-level end-to-end model for advanced analytics jobs.

As collecting training data can be expensive, we further

focus on how to minimize the amount of training data

required in this setting. We next survey recent hardware

and workload trends that motivate this problem.

2.2 Hardware Trends

The widespread adoption of cloud computing has led to

a large number of data analysis jobs being run on cloud

computing platforms like Amazon EC2, Microsoft Azure

and Google Compute Engine. In fact, a recent survey by

Typesafe of around 500 enterprises [4] shows that 53% of

Apache Spark users deploy their code on Amazon EC2.

However using cloud computing instances comes with

its own set of challenges. As cloud computing providers

use virtual machines for isolation between users, there

are a number of fixed-size virtual machine options that

users can choose from. Instance types vary not only in

capacity (i.e. memory size, number of cores etc.) but

also in performance. For example, we measured mem-

ory bandwidth and network bandwidth across a number

of instance types on Amazon EC2. From Figure 1 we can

see that the smaller instances i.e. large or xlarge have

the highest memory bandwidth available per core while

Figure 2 shows that 8xlarge instances have the high-

est network bandwidth available per core. Based on our

experiences with Amazon EC2, we believe these perfor-

mance variations are not necessarily due to poor isolation

between tenants but are instead related to how various in-
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Figure 3: Performance comparison of a Least Squares
Solver (LSS) job and Matrix Multiply (MM) across similar
capacity configurations.

stance types are mapped to shared physical hardware.

The non-linear relationship between price vs. perfor-

mance is not only reflected in micro-benchmarks but can

also have a significant effect on end-to-end performance.

For example, we use two machine learning kernels: (a) A

least squares solver used in convex optimization [37] and

(b) a matrix multiply operation [75], and measure their

performance for similar capacity configurations across a

number of instance types. The results (Figure 3(a)) show

that picking the right instance type can improve perfor-

mance by up to 1.9x at the same cost for the least squares

solver. Earlier studies [47, 79] have also reported such

performance variations for other applications like SQL

queries, key-value stores. These performance variations

motivate the need for a performance prediction frame-

work that can automate the choice of hardware for a

given computation.

Finally, performance prediction is important not just

in cloud computing but it is also useful in other shared

computing scenarios like private clusters. Cluster sched-

ulers [15] typically try to maximize utilization by pack-

ing many jobs on a single machine and predicting the

amount of memory or number of CPU cores required for

a computation can improve utilization [36]. Next, we

look at workload trends in large scale data analysis and

how we can exploit workload characteristics for perfor-

mance prediction.

2.3 Workload trends

The last few years have seen the growth of advanced an-

alytics workloads like machine learning, graph process-

ing and scientific analyses on large datasets. Advanced

analytics workloads are commonly implemented on top

of data processing frameworks like Hadoop [35], Na-

iad [58] or Spark [83] and a number of high level libraries

for machine learning [56, 2] have been developed on top

of these frameworks. A survey [4] of Apache Spark users

shows that around 59% of them use the machine learn-

ing library in Spark and recently launched services like

Azure ML [9] provide high level APIs which implement

commonly used machine learning algorithms.

Advanced analytics workloads differ from other work-

loads like SQL queries or stream processing in a num-

ber of ways. These workloads are typically numerically
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Figure 5: Scaling behaviors of commonly found communi-
cation patterns as we increase the number of machines.

intensive, i.e. performing floating point operations like

matrix-vector multiplication or convolutions [32], and

thus are sensitive to the number of cores and memory

bandwidth available. Further, such workloads are also

often iterative and repeatedly perform parallel operations

on data cached in memory across a cluster. Advanced

analytics jobs can also be long-running: for example, to

obtain the state-of-the-art accuracy on tasks like image

recognition [34] and speech recognition [50], jobs are

run for many hours or days.

Example: Speech Recognition Pipeline. As an exam-

ple of an advanced analytics job, we consider a speech

recognition pipeline [50] that achieves state-of-the-art

accuracy on the TIMIT [26] dataset. The pipeline trains

a model using kernel SVMs and the execution DAG is

shown in Figure 4. From the figure we can see that

such pipelines consist of a number of stages, each of

which may be repeated for some iterations. This TIMIT

pipeline contains three main stages. The first stage of the

DAG reads input data, and featurizes the data by apply-

ing a random cosine transformation [64] to each record.

Assuming dense input data and equal-sized partitions,

we can also see that each task in the first stage will take a

similar amount of time to compute. Further, we observe

that, unlike SQL queries with selectivity clauses, the

transformation here results in the same amount of output

data per input record across all tasks. The second stage

in the pipeline normalizes data, which requires comput-

ing the mean and variance of the features by aggregating

values across all the partitions. In the last stage, the nor-

malized features are fed into a convex solver [23] to build

a model. The model is then refined by generating more

features and these steps are repeated for 100 iterations to

achieve state-of-the-art accuracy.

Workload Properties: Since advanced analytics jobs

run on large datasets are expensive, we observe that de-

velopers have focused on algorithms that are scalable

across machines and are of low complexity (e.g., lin-

ear or quasi-linear) [22]. Otherwise, using these algo-

rithms to process huge amounts of data might be infea-

sible. The natural outcome of these efforts is that these

workloads admit relatively simple performance models.

Specifically, we find that the computation required per

data item remains the same as we scale the computation.

Further, we observe that only a few communication

patterns repeatedly occur in such jobs. These patterns

(Figure 5) include (a) the all-to-one or collect pattern,

where data from all the partitions is sent to one machine,

(b) tree-aggregation pattern where data is aggregated us-

ing a tree-like structure, and (c) a shuffle pattern where

data goes from many source machines to many destina-

tions. These patterns are not specific to advanced analyt-

ics jobs and have been studied before [30, 20]. Having a

handful of such patterns means that we can try to auto-

matically infer how the communication costs change as

we increase the scale of computation. For example, as-

suming that data grows as we add more machines (i.e.,

the data per machine is constant), the time taken for the

collect increases as O(machines) as a single machine

needs to receive all the data. Similarly the time taken for

a binary aggregation tree grows as O(log(machines)).

Finally we observe that many algorithms are iterative

in nature and that we can also sample the computation by

running just a few iterations of the algorithm. Next we

will look at the design of the performance model.

3 Modeling Advanced Analytics Jobs

In this section we outline a model for predicting execu-

tion time of advanced analytics jobs. This scheme only

uses end-to-end running times collected from executing

the job on smaller samples of the input and we discuss

techniques for model building and data collection.

At a high level we consider a scenario where a user

provides as input a parallel job (written using any exist-

ing data processing framework) and a pointer to the input

data for the job. We do not assume the presence of any

historical logs about the job and our goal here is to build

a model that will predict the execution time for any input

size, number of machines for this given job. The main

steps in building a predictive model are (a) determining

what training data points to collect (b) determining what

features should be derived from the training data and (c)

performing feature selection to pick the simplest model

that best fits the data. We discuss all three aspects below.

3.1 Features for Prediction

One of the consequences of modeling end-to-end un-

modified jobs is that there are only a few parameters that
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we can change to observe changes in performance. As-

suming that the job, the dataset and the machine types

are fixed, the two main features that we have are (a) the

number of rows or fraction of data used (scale) and (b)

the number of machines used for execution. Our goal

in the modeling process is to derive as few features as

required for the amount of training data required grows

linearly with the number of features.

To build our model we add terms related to the com-

putation and communication patterns discussed in §2.3.

The terms we add to our linear model are (a) a fixed cost

term which represents the amount of time spent in serial

computation (b) the interaction between the scale and the

inverse of the number of machines; this is to capture the

parallel computation time for algorithms whose compu-

tation scales linearly with data, i.e., if we double the size

of the data with the same number of machines, the com-

putation time will grow linearly (c) a log(machines) term

to model communication patterns like aggregation trees

(d) a linear term O(machines) which captures the all-

to-one communication pattern and fixed overheads like

scheduling / serializing tasks (i.e. overheads that scale as

we add more machines to the system). Note that as we

use a linear combination of non-linear features, we can

model non-linear behavior as well.

Thus the overall model we are fitting tries to learn val-

ues for θ0,θ1, θ2, and θ3 in the formula

time = θ0 +θ1 × (scale×
1

machines
)+

θ2 × log(machines)+

θ3 ×machines (1)

Given these features, we then use a non-negative least

squares (NNLS) solver to find the model that best fits

the training data. NNLS fits our use case very well as

it ensures that each term contributes some non-negative

amount to the overall time taken. This avoids over-fitting

and also avoids corner cases where say the running time

could become negative as we increase the number of ma-

chines. NNLS is also useful for feature selection as it

sets coefficients which are not relevant to a particular job

to zero. For example, we trained a NNLS model using 7

data points on all of the machine learning algorithms that

are a part of MLlib in Apache Spark 1.2. The final model

parameters are shown in Table 1. From the table we can

see two main characteristics: (a) that not all features are

used by every algorithm and (b) that the contribution of

each term differs for each algorithm. These results also

show why we cannot reuse models across jobs.

Additional Features: While the features used above

capture most of the patterns that we see in jobs, there

could other patterns which are not covered. For exam-

ple in linear algebra operators like QR decomposition the

computation time will grow as scale2/machines if we scale

Benchmark intercept scale/ mc mc log(mc)
spearman 0.00 4887.10 0.00 4.14

classification 0.80 211.18 0.01 0.90

pca 6.86 208.44 0.02 0.00

naive.bayes 0.00 307.48 0.00 1.00

summary stats 0.42 39.02 0.00 0.07

regression 0.64 630.93 0.09 1.50

als 28.62 3361.89 0.00 0.00

kmeans 0.00 149.58 0.05 0.54

Table 1: Models built by Non-Negative Least Squares for
MLlib algorithms using r3.xlarge instances. Not all fea-
tures are used by every algorithm.

the number of columns. We discuss techniques to detect

when the model needs such additional terms in §3.4.

3.2 Data collection

The next step is to collect training data points for build-

ing a predictive model. For this we use the input data

provided by the user and run the complete job on small

samples of the data and collect the time taken for the job

to execute. For iterative jobs we allow Ernest to be con-

figured to run a certain number of iterations (§4). As we

are not concerned with the accuracy of the computation

we just use the first few rows of the input data to get ap-

propriately sized inputs.

How much training data do we need?: One of the

main challenges in predictive modeling is minimizing

the time spent on collecting training data while achieving

good enough accuracy. As with most machine learning

tasks, collecting more data points will help us build a bet-

ter model but there is time and a cost associated with col-

lecting training data. As an example, consider the model

shown in Table 1 for kmeans. To train this model we

used 7 data points and we look at the importance of col-

lecting additional data by comparing two schemes: in the

first scheme we collect data in an increasing order of ma-

chines and in the second scheme we use a mixed strategy

as shown in Figure 6. From the figure we make two im-

portant observations: (a) in this case, the mixed strategy

gets to a lower error quickly; after three data points we

get to less than 15% error. (b) We see a trend of dimin-

ishing returns where adding more data points does not

improve accuracy by much. We next look at techniques

that will help us find how much training data is required

and what those data points should be.

3.3 Optimal Experiment Design

To improve the time taken for training without sacrific-

ing the prediction accuracy, we outline a scheme based

on optimal experiment design, a statistical technique that

can be used to minimize the number of experiment runs

required. In statistics, experiment design [63] refers to

the study of how to collect data required for any exper-

iment given the modeling task at hand. Optimal exper-
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iment design specifically looks at how to choose exper-

iments that are optimal with respect to some statistical

criterion. At a high-level the goal of experiment design

is to determine data points that can give us most infor-

mation to build an accurate model.

More formally, consider a problem where we are try-

ing to fit a linear model X given measurements y1, . . . ,ym

and features a1, . . . ,am for each measurement. Each fea-

ture vector could in turn consist of a number of dimen-

sions (say n dimensions). In the case of a linear model

we typically estimate X using linear regression. We de-

note this estimate as X̂ and X̂ −X is the estimation error

or a measure of how far our model is from the true model.

To measure estimation error we can compute the Mean

Squared Error (MSE) which takes into account both the

bias and the variance of the estimator. In the case of the

linear model above if we have m data points each having

n features, then the variance of the estimator is repre-

sented by the n× n covariance matrix (
m

∑
i=1

aia
T
i )

−1. The

key point to note here is that the covariance matrix only

depends on the feature vectors that were used for this ex-

periment and not on the model that we are estimating.

In optimal experiment design we choose feature vec-

tors (i.e. ai) that minimize the estimation error. Thus

we can frame this as an optimization problem where we

minimize the estimation error subject to constraints on

the number of experiments. More formally we can set λi

as the fraction of times an experiment is chosen and min-

imize the trace of the inverse of the covariance matrix:

Minimize tr((
m

∑
i=1

λiaia
T
i )

−1)

subject to λi ≥ 0,λi ≤ 1

Using Experiment Design: The predictive model de-

scribed in the previous section can be formulated as an

experiment design problem. Given bounds for the scale

and number of machines we want to explore, we can

come up with all the features that can be used. For exam-

ple if the scale bounds range from say 1% to 10% of the

data and the number of machine we can use ranges from

1 to 5, we can enumerate 50 different feature vectors

from all the scale and machine values possible. We can

then feed these feature vectors into the experiment de-

sign setup described above and only choose to run those

experiments whose λ values are non-zero.

Accounting for Cost: One additional factor we need to

consider in using experiment design is that each experi-

ment we run costs a different amount. This cost could be

in terms of time (i.e. it is more expensive to train with

larger fraction of the input) or in terms of machines (i.e.

there is a fixed cost to say launching a machine). To ac-

count for the cost of an experiment we can augment the

optimization problem we setup above with an additional
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Figure 6: Comparison of different strategies used to collect
training data points for KMeans. The labels next to the data
points show the (number of machines, scale factor) used.

Residual Sum Percentage Err

of Squares Median Max

without
√

n 1409.11 12.2% 64.9%

with
√

n 463.32 5.7% 26.5%

Table 2: Cross validation metrics comparing different
models for Sparse GLM run on the splice-site dataset.

constraint that the total cost should be lesser than some

budget. That is if we have a cost function which gives us

a cost ci for an experiment with scale si and mi machines,

we add a constraint to our solver that
m

∑
i=1

ciλi ≤ B where

B is the total budget. For the rest of this paper we use the

time taken to collect training data as the cost and ignore

any machine setup costs as we usually amortize that over

all the data we need to collect. However we can plug-in

in any user-defined cost function in our framework.

3.4 Model extensions

The model outlined in the previous section accounts for

the most common patterns we see in advanced analytics

applications. However there are some complex applica-

tions like randomized linear algebra [43] which might

not fit this model. For such scenarios we discuss two

steps: the first is adding support in Ernest to detect when

the model is not adequate and the second is to easily al-

low users to extend the model being used.

Cross-Validation: The most common technique for test-

ing if a model is valid is to use hypothesis testing and

compute test statistics (e.g., using the t-test or the chi-

squared test) and confirm the null hypothesis that data

belongs to the distribution that the model describes.

However as we use non-negative least squares (NNLS)

the residual errors are not normally distributed and sim-

ple techniques for computing confidence limits, p-values

are not applicable. Thus we use cross-validation, where

subsets of the training data can be used to check if the

model will generalize well. There are a number of meth-

ods to do cross-validation and as our training data size is

small, we use a leave-one-out-cross-validation scheme in

Ernest. Specifically if we have collected m training data

points, we perform m cross-validation runs where each

run uses m−1 points as training data and tests the model

on the left out data point.
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Model extension example: As an example, we consider

the GLM classification implementation in Spark MLLib

for sparse datasets. In this workload the computation is

linear but the aggregation uses two stages (instead of an

aggregation tree) where the first aggregation stage has√
n tasks for n partitions of data and the second aggre-

gation stage combines the output of
√

n tasks using one

task. This communication pattern is not captured in our

model from earlier and the results from cross validation

using our original model are shown in Table 2. As we can

see in the table both the residual sum of squares and the

percentage error in prediction are high for the original

model. Extending the model in Ernest with additional

terms is simple and in this case we can see that adding

the
√

n term makes the model fit much better. In practice

we use a configurable threshold on the percentage error

to determine if the model fit is poor. We investigate the

end-to-end effects of using a better model in §6.6.

4 Implementation

Ernest is implemented using Python as multiple mod-

ules. The modules include a job submission tool that

submits training jobs, a training data selection pro-

cess which implements experiment design using a CVX

solver [42, 41] and finally a model builder that uses

NNLS from SciPy [53]. Even for a large range of scale

and machine values we find that building a model takes

only a few seconds and does not add any overhead. In the

rest of this section we discuss the job submission tool and

how we handle sparse datasets, stragglers.

4.1 Job Submission Tool

Ernest extends existing job submission API [5] that is

present in Apache Spark 1.2. This job submission API

is similar to Hadoop’s Job API [10] and similar job sub-

mission APIs exist for dedicated clusters [65, 78] as well.

The job submission API already takes in the binary that

needs to run (a JAR file in the case of Spark) and the

input specification required for collecting training data.

We add a number of optional parameters which can be

used to configure Ernest. Users can configure the min-

imum and maximum dataset size that will be used for

training. Similarly the maximum number of machines to

be used for training can also be configured. Our proto-

type implementation of Ernest uses Amazon EC2 and we

amortize cluster launch overheads across multiple train-

ing runs i.e., if we want to train using 1, 2, 4 and 8 ma-

chines, we launch a 8 machine cluster and then run all of

these training jobs in parallel.

The model built using Ernest can be used in a number

of ways. In this paper we focus on a cloud computing use

case where we can choose the number and type of EC2

instances to use for a given application. To do this we

build one model per instance type and explore different

sized instances (i.e. r3.large,...r3.8xlarge). After training

the models we can answer higher level questions like se-

lecting the cheapest configuration given a time bound or

picking the fastest configuration given a budget. One of

the challenges in translating the performance prediction

into a higher-level decision is that the predictions could

have some error associated with them. To help with this,

we provide the cross validation results ( §3.4) along with

the prediction and these can be used to compute the range

of errors observed on training data. Additionally we plan

to provide support for visualizing the scaling behavior

and Figure 20 in §6.6 shows an example.

4.2 Handling Sparse Datasets

One of the challenges in Ernest is to deal with algorithms

that process sparse datasets. Because of the difference in

sparsity across data items, each record could take dif-

ferent time to process. We observe that operations on

sparse datasets depend on the number of non-zero en-

tries and thus if we can sample the data such that we use

a representative sparse subset during training, we should

be able to apply modeling techniques described before.

However in practice, we don’t see this problem as even

if there is a huge skew in sparsity across rows, the skew

across partitions is typically smaller.

To illustrate, we chose three of the largest sparse

datasets that are part of the LibSVM repository [70, 82]

and we measured the maximum number of non-zero en-

tries present in every partition after loading the data into

HDFS. We normalize these values across partitions and

a CDF of partition densities is shown in Figure 7. We

observe the the difference in sparsity between the most

loaded partition and the least loaded one is less than 35%

for all datasets and thus picking a random sample of par-

titions [76] is sufficient to model computation costs.

4.3 Straggler mitigation by over-allocation

The problem of dealing with stragglers, or tasks which

take much longer than other tasks is one of the main

challenges in large scale data analytics [80, 13, 33]. Us-

ing cloud computing instances could further aggravate

the problem due to differences in performance across in-

stances. One technique that we use in Ernest to over-

come variation among instances is to launch a small per-

centage of extra instances and then discard the worst

performing among them before running the user’s job.

We use memory bandwidth and network bandwidth mea-

surements (§2) to determine the slowest instances.

In our experiences with Amazon EC2 we find that

even having a few extra instances can be more than suffi-

cient in eliminating the slowest machines. To demon-

strate this, we set the target cluster size as N = 50

r3.2xlarge instances and have Ernest automatically al-

locate a small percentage of extra nodes. We then run
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STREAM [54] at 30 second intervals and collect mem-

ory bandwidth measurements on all instances. Based

on the memory bandwidths observed, we eliminate the

slowest nodes from the cluster. Figure 8 shows for each

allocation strategy, the CDF of the memory bandwidth

obtained when picking the best N instances from all the

instances allocated. We see that Ernest only needs to al-

locate as few as 2 (or 4%) extra instances to eliminate the

slowest stragglers and improve the target cluster’s aver-

age memory bandwidth from 24.7 GB/s to 26 GB/s.

5 Discussion

In this section we look at when a model should be re-

trained and also discuss the trade-offs associated with in-

cluding more fine-grained information in Ernest.

5.1 Model reuse

The model we build using Ernest predicts the perfor-

mance for a given job for a specific dataset and a tar-

get cluster. One of the questions while using Ernest is

to determine when we need to retrain the model. We

consider three different circumstances here: changes in

code, changes in cluster behavior and changes in data.

Code changes: If different jobs use the same dataset, the

cluster and dataset remain the same, but the computation

being run changes. As Ernest treats the job being run as

a black-box, we will need to retrain the model for any

changes to the code. This can be detected by computing

hashes of the binary files.

Variation in Machine Performance: One of the con-

cerns with using cloud computing based solutions like

EC2 is that there could be performance variations over

time even when a job is using the same instance types

and number of instances. We investigated if this was

an issue by running two machine learning jobs GLM re-

gression and NaiveBayes repeatedly on a cluster of 64

r3.xlarge instances. The time taken per run of each

algorithm over a 24 hour period is shown in Figure 9.

We see that the variation over time is very small for both

workloads and the standard deviation is less than 2% of

the mean. Thus we believe that Ernest models should

remain relevant across relatively long time periods.

Changes in datasets: As Ernest uses small samples of

the data for training, the model is directly applicable as

the dataset grows. When dealing with newly collected

data, there are some aspects of the dataset like the num-

ber of data items per block and the number of features

per data item that should remain the same for the perfor-

mance properties to be similar. As some of these prop-

erties might be hard to measure, our goal is to make the

model building overhead small so that Ernest can be re-

run for newly collected datasets.

5.2 Using Per-Task Timings

In the model described in the previous sections, we only

measure the end-to-end running time of the whole job.

Existing data processing frameworks already measure

fine grained metrics [8, 3] and we considered integrat-

ing task-level metrics in Ernest. One major challenge we

faced here is that in the BSP model a stage only com-

pletes when its last task completes. Thus rather than pre-

dicting the average task duration, we need to estimate the

maximum task duration and this requires more complex

non-parametric methods like Bootstrap [38]. Further, to

handle cases where the number of tasks in a stage are

greater than the number of cores available, we need adapt

our estimate based on the number of waves [12] of tasks.

We found that there were limited gains from incorporat-

ing task-level information given the additional complex-

ity. While we continue to study ways to incorporate new

features, we found that simple features used in predicting

end-to-end completion time are more robust.

6 Evaluation

We evaluate how well Ernest works by using two met-

rics: the prediction accuracy and the overhead of training

for long-running machine learning jobs. In experiments

where we measure accuracy, or how close a prediction is

to the actual job completion time, we use the ratio of the

predicted job completion time to the actual job comple-

tion time Predicted Time/Actual Time as our metric.

The main results from our evaluation are:

• Ernest’s predictive model achieves less than 20%

error on most of the workloads with less than 5%

overhead for long running jobs.(§6.2)

• Using the predictions from Ernest we can get up to

4x improvement in price by choosing the optimal

number of instances for the speech pipeline. (§6.3)
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Figure 10: Prediction accuracy using Ernest for 9 machine learning algorithms in Spark MLlib.
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Figure 12: Prediction accuracy for four transformations
run using ADAM.

• Given a training budget, experiment design im-

proves accuracy by 30%−50% for some workloads

when compared to a cost-based approach. (§6.5)

• By extending the default model we are also able to

accurately predict running times for sparse and ran-

domized linear algebra operations. (§6.6)

6.1 Workloads and Experiment Setup

We use five workloads to evaluate Ernest. Our first work-

load consists of 9 machine learning algorithms that are

part of MLlib [56]. For algorithms designed for dense

inputs, the performance characteristics are independent

of the data and we use synthetically generated data with

5 million examples. We use 10K features per data point

for regression, classification, clustering and 1K features

for the linear algebra and statistical benchmarks.

To evaluate Ernest on sparse data, we use

splice-site and kdda, two of the largest sparse

classification datasets that are part of LibSVM [28].

The splice-site dataset contains 10M data points

with around 11M features and the kdda dataset contains

around 6.7M data points with around 20M features. To

see how well Ernest performs on end-to-end pipelines,

we use GenBase, ADAM and a speech recognition

pipeline (§2). We run regression and SVD queries

from GenBase on the Large dataset [40] (30K genes

4.1%

3.4%

84.3%

86.9%

0 2000 4000 6000 8000 10000 12000

64

45

Time (seconds)

M
ac

hin
es

TIMIT

Actual
Predicted
Training

Figure 13: Training times vs. accuracy for TIMIT pipeline
running 50 iterations. Percentages with respect to actual
running times are shown.
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Figure 14: Training times vs. accuracy for MLlib Regres-
sion running 500 iterations. Percentages with respect to ac-
tual running times are shown.

for 40K patients). For ADAM we use the high cov-

erage NA12878 full genome from the 1000 Genomes

project [1] and run four transformations: sorting, mark-

ing duplicate reads, base quality score recalibration and

quality validation. The speech recognition pipeline is

run on the TIMIT [50] dataset using an implementation

from KeystoneML [71]. All datasets other than the

one for ADAM are cached in memory before the

experiments begin and we do warmup runs to trigger

the JVM’s just-in-time compilation. We use r3.xlarge

machines from Amazon EC2 (each with 4 vCPUs

and 30.5GB memory) unless otherwise specified. Our

experiments were run with Apache Spark 1.2. Finally

all our predictions were compared against at least three

actual runs and the values in our graphs show the average

with error bars indicating the standard deviation.

6.2 Accuracy and Overheads

Prediction Accuracy: We first measure the prediction

accuracy of Ernest using the nine algorithms from ML-

lib. In this experiment we configure Ernest to use be-

tween 1 and 16 machines for training and sample be-

tween 0.1% to 10% of the dataset. We then predict the
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performance for cases where the algorithms use the en-

tire dataset on 45 and 64 machines. The prediction accu-

racies shown in Figure 10 indicate that Ernest’s predic-

tions are within 12% of the actual running time for most

jobs. The two exceptions where the error is higher are the

summary statistics and glm-classification job.

In the case of glm-classification, we find that the

training data and the actual runs have high variance (error

bars in Figure 10 come from this) and that Ernest’s pre-

diction is within the variance of the collected data. In the

case of summary statistics we have a short job where the

absolute error is low: the actual running time is around 6

seconds while Ernest’s prediction is around 8 seconds.

Next, we measure the prediction accuracy on GenBase

and the TIMIT pipeline; the results are shown in Fig-

ure 11. Since the GenBase dataset is relatively small

(less than 3GB in text files), we partition it into 40 splits,

and restrict Ernest to use up to 6 nodes for training and

predict the actual running times on 16 and 20 machines.

As in the case of MLlib, we find the prediction errors to

be below 20% for these workloads. Finally, the predic-

tion accuracy for four transformations on ADAM show a

similar trend and are shown in Figure 12. We note that

the ADAM queries read input and write output to the dis-

tributed filesystem (HDFS) in these experiments and that

these queries are also shuffle heavy. We find that Ernest

is able to capture the I/O overheads and the reason for

this is that the time to read / write a partition of data re-

mains similar as we scale the computation.

Our goal in building Ernest is not to enforce strict

SLOs but to enable low-overhead predictions that can

be used to make coarse-grained decisions. We discuss

how Ernest’s prediction accuracy is sufficient for deci-

sions like how many machines (§6.3) and what type of

machines (§6.4) to use in the following sections.

Training Overheads: One of the main goals of Ernest

is to provide performance prediction with low overhead.

To measure the overhead in training we consider two

long-running machine learning jobs: the TIMIT pipeline

run for 50 iterations, and MLlib Regression with a mini-

batch SGD solver run for 500 iterations. We configure

Ernest to run 5% of the overall number of iterations dur-

ing training and then linearly scale its prediction by the

target number of iterations. Figures 13 and 14 show the

times taken to train Ernest and the actual running times

when run with 45 or 64 machines on the cluster. From

the figures, we observe that for the regression problem

the training time is below 4% of the actual running time

and that Ernest’s predictions are within 14%. For the

TIMIT pipeline, the training overhead is less than 4.1%

of the total running time. The low training overhead with

these applications shows that Ernest efficiently handles

long-running, iterative analytics jobs.
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6.3 Choosing optimal number of instances

When users have a fixed-time or fixed-cost budget it is

often tricky to figure out how many instances should be

used for a job as the communication vs. computation

trade-off is hard to determine for a given workload. In

this section, we use Ernest’s predictions to determine the

optimum number of instances. We consider two work-

loads from the previous section: the TIMIT pipeline and

GLM regression, but here we use subsets of the full data

to focus on how the job completion time varies as we in-

crease the number of machines to 641. Using the same

models trained in the previous section, we predict the

time taken per iteration across a wide range of number

of machines (Figures 15 and 16). We also show the ac-

tual running time to validate the predictions.

Consider a case where a user has a fixed-time budget

of 1 hour (3600s) to say run 40 iterations of the TIMIT

pipeline and an EC2 instance limit of 64 machines. Us-

ing Figure 15 and taking our error margin into account,

Ernest is able to infer that launching 16 instances is suf-

ficient to meet the deadline. Given that the cost of an

r3.xlarge instance is $0.35/hour, a greedy strategy of

using all the 64 machines would cost $22.4, while using

the 16 machines as predicted by Ernest would only cost

$5.6, a 4x difference. We also found that the 15% pre-

diction error doesn’t impact the decision as actual runs

show that 15 machines is the optimum. Similarly, if the

user has a budget of $15 then we can infer that using 40

machines would be faster than using 64 machines.

6.4 Choosing across instance types

We also apply Ernest to choose the optimal instance type

for a particular workload; similar to the scenario above,

1We see similar scaling properties in the entire data, but we use a

smaller dataset to highlight how Ernest can handle scenarios where the

algorithm does not scale well.
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Figure 18: Time taken for Sort and MarkDup workloads
on ADAM across different instance types.

we can optimize for cost given a deadline or optimize for

performance given a budget. As an example of the ben-

efits of choosing the right instance type, we re-run the

TIMIT workload on three instance types (r3.xlarge,

r3.2xlarge and r3.4xlarge) and we build a model

for each instance type. With these three models, Ernest

predicts the expected performance on same-cost config-

urations, and then picks the cheapest one. Our results

(Figure 17) show that choosing the smaller r3.xlarge

instances would actually be 1.2x faster than using the

r3.4xlarge instances, while incurring the same cost.

Similar to the previous section, the prediction error does

not affect our decision here and Ernest’s predictions

choose the appropriate instance type.

We next look at how choosing the right instance type

affects the performance of ADAM workloads that read

and write data from disk. We compare m3.2xlarge in-

stances that have two SSDs but cost $0.532 per hour

and r3.xlarge instances that have one SSD and cost

$0.35 an hour2. Results from using Ernest on 45 and

64 machines with these instance types is shown in Fig-

ure 18. From the we can see that using m3.2xlarge in-

stances leads to better performance and that similar to the

memory bandwidth analysis ( §2.2) there are non-linear

price-performance trade-offs. For example, we see that

for the mark duplicates query, using 64 m3.2xlarge in-

stances provides a 45% performance improvement over

45 r3.xlarge instances while only costing 20% more.

6.5 Experiment Design vs. Cost-based

We next evaluate the benefits of using optimal experi-

ment design in Ernest. We compare experiment design

to a greedy scheme where all the candidate training data

2Prices as of September 2015
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Figure 19: Prediction accuracy when using Ernest vs. a
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points are sorted in increasing order of cost and we pick

training points to match the cost of the points chosen in

experiment design. We then train models using both con-

figurations. A comparison of the prediction accuracy on

MLlib and TIMIT workloads is shown in Figure 19.

From the figure, we note that for some workloads (e.g.

KMeans) experiment design and the cost-based approach

achieve similar prediction errors. However, for the Re-

gression and TIMIT workloads, Ernest’s experiment de-

sign models perform 30% − 50% better than the cost-

based approach. The cost-based approach fails because

when using just the cheapest training points, the training

process is unable to observe how different stages of the

job behave as scale and number of machines change. For

example, in the case of TIMIT pipeline, the cost-based

approach explores points along a weak scaling curve

where both data size and number of machines increase,

thus it is unable to model how the Solver stage scales

when the amount of data is kept constant. Ernest’s op-

timal experiment design mechanism successfully avoids

this and chooses the most useful training points.

6.6 Model Extensions

We also measure the effectiveness of the model exten-

sions proposed in §3.4 on two workloads: GLM classi-

fication run on sparse datasets (§4.2) and a randomized

linear algebra workload that has non-linear computation

time [43]. Figure 21 shows the prediction error for the

default model and the error after the model is extended:

with a
√

n term for the Sparse GLM and a nlog2n
mc

term

which is the computation cost of the random projection.

As we can see from the figure, using the appropriate

model makes a significant difference in prediction error.

To get a better understanding of how different mod-

els can affect prediction error we use the KDDA dataset
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Figure 21: Prediction accuracy improvements when using model extensions in Ernest. Workloads used include sparse
GLM classification using KDDA, splice-site datasets and a random projection linear algebra job.

and plot the predictions from both models as we scale

from 2 to 200 machines (Figure 20). From the figure

we can see that the extending the model with
√

n en-

sures that the scaling behavior is captured accurately and

that the default model can severely over-predict (at 2

machines and 200 machines) or under-predict (32 ma-

chines). Thus, while the default model in Ernest can cap-

ture a large number of workloads we can see that making

simple model extensions can also help us accurately pre-

dict more complex workloads.

7 Related work

Performance Prediction: There have been a number of

recent efforts at modeling job performance in datacen-

ters to support SLOs or deadlines. Techniques proposed

in Jockey [39] and ARIA [77] use historical traces and

dynamically adjust resource allocations in order to meet

deadlines. In Ernest we build a model with no historic

information and try to minimize the amount of train-

ing data required. Bazaar [52] proposed techniques to

model the network utilization of MapReduce jobs by us-

ing small subsets of data. In Ernest we capture compu-

tation and communication characteristics and use high

level features that are framework independent. Projects

like MRTuner [68] and Starfish [48] model MapReduce

jobs at very fine granularity and set optimal values for

options like memory buffer sizes etc. In Ernest we use

few simple features and focus on collecting training data

will help us maximize their utility. Finally scheduling

frameworks like Quasar [36] try to estimate the scale out

and scale up factor for jobs using the progress rate of the

first few tasks. Ernest on the other hand runs the entire

job on small datasets and is able to capture how different

stages of a job interact in a long pipeline.

Query Optimization: Database query progress predic-

tors [29, 57] solve a performance prediction problem

similar to Ernest. Database systems typically use sum-

mary statistics [67] of the data like cardinality counts to

guide this process. Further, these techniques are typi-

cally applied to a known set of relational operators. Sim-

ilar ideas have also been applied to linear algebra opera-

tors [49]. In Ernest we use advanced analytics jobs where

we know little about the data or the computation being

run. Recent work has also looked at providing SLAs for

OLTP [62] and OLAP workloads [46] in the cloud and

some of our observations about variation across instance

types in EC2 are also known to affect database queries.

Tuning, Benchmarking: Ideas related to experiment de-

sign, where we explore a space of possible inputs and

choose the best inputs, have been used in other applica-

tions like server benchmarking [69]. Related techniques

like Latin Hypercube Sampling have been used to ef-

ficiently explore file system design space [45]. Auto-

tuning BLAS libraries [18] like ATLAS [31] also solve a

similar problem of exploring a state space efficiently.

8 Future Work and Conclusion

In the future, we plan to study how statistical proper-

ties change in conjunction with the hardware. For ex-

ample, in algorithms like HOGWILD! [66], the network

latency between machines could affect the convergence

rate. Further, based on our benchmarking experiments

(§2) we see that there are a few key metrics which dictate

the performance characteristics of a cluster. In the future

we plan to study how we can integrate these metrics with

the algorithm specific features used in Ernest.

In conclusion, the rapid adoption of advanced analyt-

ics workloads makes it important to consider how these

applications can be deployed in a cost and resource-

efficient fashion. In this paper, we studied the problem

of performance prediction and show how simple models

can capture computation and communication patterns.

Using these models we have built Ernest, a performance

prediction framework that intelligently chooses training

points to provide accurate predictions with low overhead.
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