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[1] We describe laboratory experiments of granular material flowing over an inclined plane
covered by an erodible bed, designed to mimic erosion processes of natural flows travelling
over deposits built up by earlier events. Two controlling parameters are the inclination
of the plane and the thickness of the erodible layer. We show that erosion processes can
increase the flowmobility (i.e., runout) over slopes with inclination close to the repose angle
of the grains �r by up to 40%, even for very thin erodible beds. Erosion efficiency is shown to
strongly depend on the slope of the topography. Entrainment begins to affect the flow at
inclination angles exceeding a critical angle �c ’ �r /2. Runout distance increases almost
linearly as a function of the thickness of the erodible bed, suggesting that erosion is mainly
supply‐dependent. Two regimes are observed during granular collapse: a first spreading
phase with high velocity followed by a slow thin flow, provided either the slope or the
thickness of the erodible bed is high enough. Surprisingly, erosion affects the flow mostly
during the deceleration phase and the slow regime. The avalanche excavates the erodible
layer immediately at the flow front. Waves are observed behind the front that help to remove
grains from the erodible bed. Steep frontal surges are seen at high inclination angles over
both rigid or erodible bed. Finally, simple scaling laws are proposed making it possible
to obtain a first estimate of the deposit and emplacement time of a granular collapse over
a rigid or erodible inclined bed.
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1. Introduction

[2] Avalanches and landslides play a significant role in
erosion processes at the surface of the Earth and other telluric
planets. On Earth, they represent a threat for population and
infrastructure in volcanic, mountainous, seismic, or coastal
areas. The research field dealing with dynamic analysis of
gravitational mass flows is rapidly expanding. One of its
ultimate goals is to produce tools for prediction of velocity
and runout extent of rapid landslides. Of special interest are
experimental, theoretical and modeling developments that
can help explain the occurrence of rapid motion over long
distances [e.g., Legros, 2002; Lucas and Mangeney, 2007].
Despite the great amount of work devoted to the study of
landslides and avalanches, there is no consensus to explain
the high mobility of avalanches or the occurrence of surges
(i.e., steep fronts) that can propagate along the slope without

decelerating. Some of the most dangerous and mobile land-
slide types on Earth exhibit surging behavior.
[3] Several mechanisms have been suggested to explain the

high mobility of gravitational flows, e.g., upward current of
air, hovercraft action at the base, melting of rock, fluidization
induced by the presence of fine dust, acoustic fluidization,
frictional heat, hydroplanning, or the potential presence of
water or air within the granular mass (see Legros [2002] and
Pudasaini and Hutter [2007] for a review). Recent studies
also point out the effects on granular flow mobility of the
initial fluidization of the material [Roche et al., 2002, 2004,
2008; Girolami et al., 2008], of the polydispersity and shape
of the particles [Goujon et al., 2007], and of the fragmentation
of grains [Davies et al., 1999].
[4] Our goal in this paper is to show that erosion of granular

material already present on the bed can significantly increase
the mobility of avalanches flowing on moderate slopes under
certain circumstances. Furthermore, when the slope lies
between the repose angle �r and avalanche angle �a of the
material, surging fronts can develop, propagating at almost
constant velocity.
[5] As rock avalanches, debris and pyroclastic flows hurtle

down mountain and valley slopes on Earth and on Mars, they
often entrain bed material along their way [e.g., Suwa and
Okuda, 1980; Hungr et al., 1984; Benda, 1990; Sparks
et al., 1997; Berti et al., 2000; Calder et al., 2000; Wang
et al., 2003; Papa et al., 2004; Stock et al., 2005; Stock and
Dietrich, 2006; Bonnard et al., 2009; Mangold et al.,
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2010]. Field studies even suggest that bedrock incision by
natural granular flows may be the primary process cutting
valleys in steep, unglaciated landscapes (see references in the
work of Hsu et al. [2008]). Erosion and entrainment of bed
material can play a significant role in the mobility of land-
slides and debris or snow avalanches and overall dynamics of
transportation [e.g., Sovilla and Bartelt, 2002; Hungr and
Evans, 2004; McDougall and Hungr, 2004; Sovilla et al.,
2006; Crosta et al., 2009a, 2009b]. Entrainment of the sub-
strate by a flowing mass could either accelerate or decelerate
the flow (i.e., increase or decrease its mobility) depending on
the nature of the erodible material as well as on the topog-
raphy and on the dynamics of the flow.
[6] Quantitative aspects of erosion processes have, how-

ever, so far been insufficiently studied in the field and in the
laboratory as well as in numerical models. As a first attempt to
address this issue, we devised laboratory experiments using
the simplest case of dry granular material flowing over an
inclined plane covered by a thin erodible bed made of the
same material. The goal is to mimic the geometry of natural
debris flows or avalanches flowing on deposits built up by
earlier events.
[7] Most experiments dealing with dry granular flows over

a planar substrate have been conducted on moderately steep
slopes at angles � 2 [�r, �a] [Groupement De Recherche
Milieux Divises (GDR MiDi), 2004; Pudasaini and Hutter,
2007] or on horizontal beds (� = 0) [e.g., Lube et al., 2004;
Lajeunesse et al., 2004; Siavoshi and Kudrolli, 2005;
Balmforth and Kerswell, 2005] (see also references in the
work of Bouchut et al. [2008] and Lacaze et al. [2008]). For a
granular collapse over a horizontal plane, the dynamics is
controlled by the balance between pressure gradient, inertia,
and friction. On the contrary, flows over moderately inclined
plane depend essentially on the balance between gravity and
friction. Surprisingly, only a few recent studies focus on the
influence of the inclination angle on the flow dynamics
[Hogg, 2008; Hungr, 2008].
[8] Several experimental studies have been done on gran-

ular flows over thin or thick layers of erodible material in the
so‐called metastable domain (� 2 [�r, �a]). In this range of
inclination Pouliquen and Forterre [2002] show that when a
three‐dimensional granular cap is released on an inclined bed
covered by a shallow erodible bed built up of the same
granular material, triangular shaped traveling waves are
created propagating at constant velocities down‐slope. Tri-
angular shaped quasi‐one‐dimensional waves have also been
observed and studied theoretically when a perturbation is
imposed at the top of a thin granular layer over an inclined
plane [Mallogi et al., 2006; Aranson et al., 2006] or when a
constant flux of material is imposed on top of the plane
[Börzsönyi et al., 2005, 2008]. Using the partial fluidiza-
tion model proposed by Aranson and Tsimring [2002] and
Aranson et al. [2008],Mangeney et al. [2007a] show that the
presence of even a very thin layer of granular material lying
on the solid bed strongly increases the mobility of granular
flows when the inclination of the erodible bed is near the
metastable domain. Furthermore, as the thickness of the
granular layer increases, the dynamics of the flowing mass
dramatically changes from a decelerating avalanche to a
traveling wave.
[9] Experimental and numerical results thus show that

erosion processes significantly increase the mobility of a

granular mass flowing over an erodible bed, in the inclination
range � 2 [�r, �a]. The question is whether similar effects
occur on gentler slopes, i.e., outside the metastable domain
� < �r. Significant difference in the effect of erosion processes
on avalanche flows is expected depending on the inclination
angle of the erodible bed, compared to the friction angles of
the involved material. To our knowledge, no studies have
been done to explore this issue. The questions we want to
address are as follows:
[10] 1. Does the presence of an erodible bed always

accelerate avalanche flow that travel over an inclined plane?
[11] 2. How does the mobility (i.e., the runout distance)

change when the thickness of the erodible bed increases?
[12] 3. How do these effects depend on the slope of the

topography?
[13] 4. Is there a critical slope and/or thickness of the

erodible bed, for a given granular material, separating dif-
ferent regimes of erosive avalanches (deceleration, accelera-
tion, surge formation…)?
[14] In section 2, we first show evidence of erosion pro-

cesses on Earth. After describing the experimental setup in
section 3 and providing basic theoretical concepts and scaling
laws in section 4, we present in section 5 experimental results
of granular collapse over a rough rigid plane with inclination
varying from horizontal to moderate slope. The influence of a
thin erodible layer covering the plane on the flow dynamics
and on the deposit is then investigated in section 6. In section
7, observations are provided on the internal motion within the
flowing and erodible layers and on waves that propagate
within the granular flow. In section 8, these results are
discussed to shed light into erosion effects on avalanche
behavior as an attempt to help further validate numerical
models of avalanches and associated erosion/depositon laws
and to improve assessment of avalanche mobility.

2. Field Evidence of Erosion Processes

[15] Field evidence of bed material entrainment has been
observed in various environments on Earth, involving snow
and debris avalanches, debris flows, or pyroclastic flows.
Even though erosion processes are very different depending
on the nature and volume of the flowing and erodible material
involved as well as on the initial and boundary conditions,
examples of qualitative observations, focusing on dense
flows, are gathered here to highlight some characteristics of
natural erosion processes (penetration depth, nature, locali-
zation and volume of eroded material, topography …).
[16] Material entrainment under natural conditions occurs

more often on steep slopes, although entrainment on flatter
slopes may occur as well. The entrainment process is often
observed to be supply‐limited, so that the amount of material
involved is limited to the depth of a weak erodible layer
[Hungr et al., 2005; Sparks et al., 1997].
[17] Often, erodible material on slopes consists of deposits

of former events. Accumulations of such deposits form a
colluvial apron (Figures 1 and 2). Natural flows may form
deposits at very different angles depending on the flow
regime. As an example, pyroclastic flows may generate
deposits on slopes near to the repose angle of the material
involved [Felix and Thomas, 2004;Mangeney et al., 2007b].
On the other hand some highly energetic pyroclastic flows
and landslides form deposits on slopes much smaller than the
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friction angle characterizing the flowing material. This is due
to other driving forces than gravity (inertia, pressure gradient)
that make it possible for the material to flow even though the
gravity force along the slope is smaller than the frictional
dissipation [see, e.g., Mangeney‐Castelnau et al., 2003,
Figures 13 and 16].
[18] The volume of a flowing avalanche can be dramati-

cally increased through entrainment of bed material as shown
in Figure 2a representing a segment of fine‐grained colluvial
soil eroded by the passage of a rock avalanche. The rock
debris in this case had a volume of over 3 × 105m3, while the
erosion scar yielded nearly the same volume, as shown by a
ground survey. Entrainment zones have been observed on
slopes ranging from 25° to 35°. Similar evidence of entrain-
ment has been described in many case histories. A small
selection from cases reviewed by Hungr and Evans [2004]
and Hungr et al. [2005] is given in Table 1 for illustration.
[19] Wet debris flows are frequent in alpine and artic en-

vironments and can occur at slopes as low as 10°. As these
debris flows occur mainly on cohesionless fans and debris
aprons, entrainment of boulders by the flow is frequent, and
erosion takes place at the base of the channel. The example of
Figure 2b shows a debris flow near the Izoard pass (southern
French Alps). This flow formed in the summer 1995 from a
heavy rainfall that created several debris flows in this region
[Lahousse and Salvador, 1995]. The upper section of the
observed channel is purely erosional (no levees, >5 m inci-
sion over a 25°–30° steep slope) with a progressive transition
into a channelized flow (3 m high levees over a 15° steep
slope). At the location of levees, the flowwas still erosive: the
15 m wide channel is about 1 m deeper than the base of the
debris aprons, as shown from the difference in levees thick-
ness inside and outside the channel (Figure 2b). Note that, at
the surface of the planet Mars, gullies formed on steep slopes
indicate similar erosion inside debris aprons [Malin and
Edgett, 2001; Mangold et al., 2003; Mangold et al., 2010].
[20] On Lascar volcano, Chile, pyroclastic flows generated

by the 1993 eruption produced spectacular erosion features
where flows accelerated through topographic restrictions or
where they moved over steep slopes [Sparks et al., 1997;
Calder et al., 2000] (Figure 1). Erosion furrows 0.1–0.3 m
deep formed as a result of flows with maximum thickness of
a few meters. Short striae at different angles, impact marks,

Figure 2. (a) Erosion scar excavated in a colluvial apron by
a 3 × 105 m3 rock avalanche. The mean depth of the eroded
zone, as indicated by a schematic cross section, is approxi-
mately 8 m. The base of the scar is partly filled by rock debris.
The scar is approximately 100 m wide (Nomash River rock
slide debris avalanche, Vancouver Island, British Columbia,
Canada, 1999. After Hungr and Evans [2004]). (b) Debris
flows at Izoard Pass (French Alps), closeup on a leveed
channel. The external part of the channel is shallower than the
internal part showing a net erosion of about 1 m.

Figure 1. Deposit of pyroclastic flows occurring during the 2003 eruption on the slope of the Lascar vol-
cano, Chile. The deposits can be observed on slopes varying from 4° to 14°. A field survey described by
Jessop et al. (manuscript in preparation, 2010) shows that most of the pyroclastic flows were flowing on
deposits of former events. Picture Anne Mangeney, 2007.
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and mixing of bedrock‐derived lithic clasts throughout the
deposits indicate that internal mixing was allowed to occur
within the flow [Sparks et al., 1997].
[21] Entrainment increases runout in some situations

but decreases in others. As shown by field measurements,
snow avalanches may entrain significant amounts of snow
and increase their runout distance compared to non erosive
avalanches occurring on the same topography [Sovilla et al.,
2001, 2006]. On the other hand, during the 2007 avalanche
period in the Austrian Alps, many snow avalanches were
stopped because they had to entrain heavy, wet snow covers
in the runout zone. In that case, entrainment decreased dra-
matically the mobility of the flows. Depending on the nature
and volume of the snow, very different potential mechanisms
of entrainment have been reported in the literature [Gauer and
Issler, 2003; Ancey, 2004].
[22] Long runout distances are observed for debris flows

forming steep, bulbous flow fronts, hereafter called surges,
that are known to travel on relatively flat angles at nearly
constant velocities [e.g., Pierson, 1980; Takahashi, 1991;
Hungr et al., 2001]. Processes leading to the formation of
surges have been studied by many, both in the field and
theoretically [e.g., Takahashi, 1991; Savage and Iverson,
2003; Zanuttigh and Lamberti, 2007]. However, no well‐
established theoretical model exists at present. The observa-
tion made in this paper is that dry granular flows over rigid
and erodible beds can, in fact, develop surging fronts that can
travel at almost constant velocities, if they occur at inclina-
tions very close to the friction angle of the material.
[23] In the very simplified framework of our granular flow

experiments, we will investigate quantitatively the effect of

slope and of erodible material availability on erosion pro-
cesses, the penetration depth into the erodible bed, the mixing
of erodible and flowing grains, and the potential occurrence
of surges propagating along the slope.

3. Experimental Setup

[24] The experimental setup consists of a narrow channel
between Plexiglas walls, spaced by 10 cm. The planar
channel is 3 m long with possible inclinations varying from
horizontal up to 30° (Figure 3). A rectangular granular mass
of thickness h0 = 14 ± 0.5 cm (around 215 particle diameters)
and of down‐slope length r0 = 20 ± 0.5 cm (around 286
particles), i.e. an aspect ratio a = h0 /r0 = 0.7, is released from a
reservoir at time t = 0 s, as shown in Figures 4 and 3. The
granular material flows down an inclined channel covered by
an erodible bed of variable thickness at different inclination
angles.
[25] We used glass beads of diameter d 2 [600, 800] mm

that were subspherical, cohesionless, and highly rigid.
Though the characteristics of these particles may be similar to
those of some natural rock avalanches, they may differ sub-
stantially from those of most snow avalanches. In the latter
case, aggregation of the snow particles or, in contrast, attrition
generated by collisions, are likely to change the properties
of the particles during propagation. The repose angle �r =
23.5° ± 0.5° and the avalanche angle �a = 25.5° ± 0.5° of the
material have been measured by adding material on top of a
pile at a small rate andmeasuring the angle of the pile with the
horizontal after and before an avalanche, respectively. The

Table 1. Selected Examples of Rock and Debris Avalanches Involving Significant Entrainmenta

Case Initial Slide Volume (m3) Entrained Volume (m3) Slope Angle of the Entrainment Zone Entrained Material

Huascaran, Peru, 1970 13 × 106 39 × 106 20°–45° Glacial till and ice
rock and ice avalanche
Mt. Ontake, Japan, 1984 34 × 106 22 × 106 20°–45° Colluvium and alluvium
volcanic rock avalanche
Nomash River, Canada, 1999 3 × 105 3 × 105 25°–35° Till‐derived colluvium
rock slide‐debris avalanche
Tsing Shan, Hong Kong, 1990 400 19 600 23°–35° Colluvium, residual soil
debris flow

aBased on Hungr and Evans [2004] and Hungr et al. [2005].

Figure 3. Experimental setup: schematic representation of (a) the 2‐D channel and the reservoir inclined at
� 2 [�1, �2] with �1’ �r and �2’ �r + 8°, where the erodible bed (colored in dark gray) is built up by closing
the gate once steady uniform flows are created, (b) the flow (colored in light gray) on top of the erodible bed
over a sloping channel inclined at � ≤ �r created by opening the gate at the initial instant.
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density r = 2500 kg m−3 and porosity n = 0.62 of the beads
were estimated.
[26] Basal roughness was provided by gluing a single layer

of the same particles to the channel base. The uniform thin
layer of erodible bed was formed by steady uniform flows
travel down the inclined plane and suddenly cutting the
supply to allow the layer to deposit (see section 4 and
Figure 3a). Once the deposit of thickness hs is obtained, the
slope is slowly lowered to the angle required for the experi-
ments (Figure 3b). Alternatively, erodible beds could have
been built up by levelling their top with a plate within the
channel in the horizontal position, and then subsequently
inclined to run the experiments, but this might have led to
various degrees of compaction of the material along the
channel, which we wanted to avoid as much as possible.
[27] Experiments have been performed first on a rough

rigid bed at inclination angles � = 0°, � = 10°, � = 16°, � = 19°,
� = 22°, � = 23.7°, and � = 25.2° (section 5) and then on the
same plane but covered by a thin erodible layer of variable
thickness hi 2 [1,6] mm, i.e., hi /d 2 [1,8] (section 6). As a
result, the two control parameters of the system are the
inclination angle of the plane � and the thickness of the
erodible bed hi. The angles have been measured with a pre-
cision d� = 0.3° and the thickness of the erodible bed hi
with a precision varying from dhi = 0.1 mm to dhi = 1 mm
for hi varying from 1 to 6 mm due to slight variation of hi
along the slope. Table 2 summarizes the characteristics of
the experiments.
[28] The length of the deposit rf measured from the front

of the initial mass located at x = 0, i.e., the runout distance,
and the final thickness of the deposit at the upper wall hf
(Figure 4) have been systematically recorded as well as the
time at which the front stops tf. The profiles of the granular
mass as a function of time have been measured using a high‐
speed camera.
[29] The internal velocity in the body of the flow has been

measured along the transparent sidewall of the channel. We
used colored (black) particles of the same size and charac-
ter as that in the flow as tracers, and these were added to the

granular mass in proportions up to 10 vol % to allow visu-
alization of their motion from high‐speed videos at 150–
200 frames/s. Measurements were made from successive
frames during short time intervals of 0.01–0.04 s. It has been
checked that the presence of these particles does not change
the dynamics of the flow. Results showed that paths of
neighboring particles were almost linear and parallel to each
other and to the channel substrate. We acknowledge that the
velocity profiles thus determined might have been influenced
by sidewall effects. However, complementary measurements
made at the surface of the flows revealed that the velocity
profiles perpendicular to the channel walls were linear,
though slightly curved near the margins. This showed that the
resistance imposed by the walls was very small and that the
velocity profiles measured at the sides was representative of
those in the flow interior. Some experiments have been rep-
licated using colored black particles for the erodible layer in
order to visualize the potential mixing of flowing and initially
static material (experiments E′ in Table 2). Black particles had
a slightly higher repose angle than the regular beads, possibly
due to mild cohesion effects (�rb ∼ 28° > �r).

4. Theoretical Framework

[30] Before presenting the experimental results, let us recall
observations and theoretical tools that make it possible to
describe the basic behavior of dry granular flows, that were
used here both to build up the erodible layers and to interpret
the results.

Figure 4. Morphometric and control parameters measured
in the experiments. The initial mass (light gray) with initial
thickness h0 = 14 cm and radius r0 = 20 cm (aspect ratio
a = 0.7) is released on a plan with inclination � covered by
an erodible bed of thickness hi (dark gray). It forms a deposit
(moderate gray) with a length rf from r0, hereafter called the
runout distance, and a final maximum thickness hf .

Table 2. Characteristics of the Different Experimentsa

Experiment Angle � (°) Thickness hi (mm) Runout (cm)

E0‐0 0 0 27.5 ± 1.5
E0‐1.4 0 1.4 25 ± 0.2
E0‐3.2 0 3.2 24.9 ± 0.6
E0‐6.5 0 6.5 25.1 ± 0.9
E10‐0 10 ± 0.2 0 43.5 ± 2.5
E10‐1.03 10 ± 0.2 1.03 41.25 ± 0.75
E10‐1.7 10 ± 0.2 1.7 43 ± 1
E10‐3.14 10 ± 0.2 3.14 42.5 ± 1.5
E10‐4.76 10 ± 0.2 4.76 42 ± 1
E16‐0 16 ± 0.1 0 62 ± 1.6
E16‐1.4 16 ± 0.1 1.4 63 ± 2.5
E16‐2.5 16 ± 0.1 2.5 67 ± 2
E16‐5 16 ± 0.1 5 68 ± 2.5
E19‐0 19 ± 0.1 0 87 ± 3
E19‐1.5 19 ± 0.1 1.5 89 ± 2
E19‐2.7 19 ± 0.1 2.7 96 ± 2.3
E19‐5.3 19 ± 0.1 5.3 102 ± 3.5
E22‐0 22 ± 0.1 0 108 ± 3.2
E22‐1.82 22 ± 0.1 1.82 119.25 ± 3.25
E′22‐3 22 ± 0.1 3.01 Not measured
E22‐3.38 22 ± 0.1 3.38 131.5 ± 3.5
E22‐4.6 22 ± 0.1 4.6 151 ± 3
E′22‐5 22 ± 0.1 5 Not measured
E24‐0 23.7 ± 0.1 0 179 ± 3.2
E24‐1.82 23.7 ± 0.1 1.4 out of plane
E25‐0 25.2 ± 0.2 0 out of plane
E25‐2 25.2 ± 0.2 2 out of plane
E25‐3.6 25.2 ± 0.2 3.6 out of plane
E′25‐3.9 25.2 ± 0.2 3.9 out of plane
E′25‐5 25.4 ± 0.2 5 out of plane

aExperiments E′ are designed for measurements of internal motion within
the flowing and erodible layer and consist of releasing regular glass beads
over a layer of erodible bed made of the same beads colored in black (see
section 7).
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[31] As stated in section 3, the granular erodible bed has
been created by the deposit of steady uniform flows in the
inclined channel. Indeed, thin, steady uniform granular flows
can be observed within a range of inclination angles [e.g.,
Savage, 1979; Pouliquen, 1999]. When the supply is cut,
these flows leave a uniform deposit along the plane with a
thickness hs(�). In our experiments, steady uniform flows
occurred for � 2 [24°, 32°]. The curve hs(�) obtained here is
shown in Figure 5. Here hs represents the minimum thickness
for flow at a given angle � [Pouliquen, 1999]. A good fit of
the experiments is found using the expression proposed by
Börzsönyi et al. [2008]

hs �ð Þ ¼ �d

tan �� tan �1
ð1Þ

with a = 0.26 and d1 = 23.4°. Note that the value of the fitted
parameter a is the same as that found by Börzsönyi et al.
[2008] for glass beads and that the angle d1 is very close to
the repose angle of the material (also in agreement with
Börzsönyi et al. [2008]). The formula proposed by Pouliquen
and Forterre [2002] for hs(�) gives a poorer fit to the results.
This method makes it possible to build up erodible beds with
thicknesses hi 2 [1,6] mm (see Figure 5). Note that this
method only applies for � 2 [24°, 32°]. For � < 24°, the flow
stops very rapidly near the supply and for � > 32°, the flow
does not leave any deposit on the rigid bed.
[32] Analytical solution as well as experimental results

show that the deviation of the inclination angle of the plane �
from the friction angle of the material involved d (close to the
repose and avalanche angles)

tan �� tan �; ð2Þ

is a key parameter in the description of granular flows,
in agreement with equation (1) [Mangeney et al., 2000;
Mangeney‐Castelnau et al., 2005; Kerswell, 2005; Hogg,
2008; Börzsönyi et al., 2008; Fischer et al., 2008]. Even
though the analytical solution of Mangeney et al. [2000] has
been derived for the release of a dam with infinite dimension
in the upslope direction, simple scaling laws can be deduced
from this solution that can help define empirical relations for
describing the granular flows investigated here. Note that
analytical solutions for the release of a finite initial mass with
various geometries have been recently developed [Kerswell,
2005; Fernandez‐Feria, 2006; Ancey et al., 2008]. From

the analytical solution of Mangeney et al. [2000] the front
position can be calculated as

xf ¼ 2c0t þ
1

2
mt2: ð3Þ

where c0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kgh0 cos �
p

and m = g cos � (tan � − tan d) is the
constant x‐acceleration resulting from the sum of the forces
due to gravity and friction. The coefficient k is equal to 1
when isotropy of normal stress is imposed or k = k(d, �) when
using the Mohr‐Coulomb theory introduced by Savage and
Hutter [1989], d and � being the basal and internal friction
angles, respectively. The selection of the actual value for k is
discussed in section 5. The front stops when vf = 2c0 +mtf = 0,
so that the stopping time is

tf

�c
¼ 2

ffiffiffi

k
p

tan � � tan �
: ð4Þ

where tc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0= g cos �ð Þ
p

. Interestingly enough, this relation
shows that the time duration of an avalanche is inversely
correlated with the deviation of the inclination angle of the
bed from the friction angle of the material, being smaller for
large deviation. Finally, the runout distance (i.e., final posi-
tion of the front) rf = xf (tf) is

rf

h0
¼ 2k

tan � � tan �
: ð5Þ

Note that even though the analytical solution developed by
Mangeney et al. [2000] was derived for � > d and for an
infinite volume of material in the upslope direction, it leads to
the same relations (4) and (5) as the analytical solution pro-
posed by Kerswell [2005] for � < d and for a finite released
mass. This is related to the fact that whatever the initial
conditions for the released mass or the friction and inclination
angles, the perturbation due to the upslope boundary condi-
tion never catches up with the front of the flow as demon-
strated byKerswell [2005] andHogg [2008]. On the contrary,
the final thickness at the upslope wall hf is obviously affected
by the upslope boundary conditions and the expression
derived for an infinitely long reservoir (dam) does not cor-
respond to the solution obtained by Kerswell [2005]. To
further fit the maximum thickness hf measured experimen-
tally, we use here the semianalytical solution developed by
Kerswell [2005] and the asymptotic analysis performed by
Hogg [2008]

hf

h0
¼ �

tan � � tan �

ak

� �2

3

; ð6Þ

where b will be considered here as an empirical parameter.
Note that the simple scaling laws (4) and (5) make it possible
to recover the relations obtained by Fischer et al. [2008] for
granular avalanches in a rotating drum.
[33] As shown by Mangeney‐Castelnau et al. [2005],

Kerswell [2005] and Hogg [2008], the fit of experimental
results using analytical or numerical models based on the thin
layer approximation such as equations (4) and (5) requires
the use of empirical friction coefficients higher than those
measured experimentally. The potential reasons for this are
discussed in Mangeney‐Castelnau et al. [2005], Mangeney
et al. [2006], and Hogg [2008]. Here, equations (4), (5),

Figure 5. Thickness hs left on a plane of inclination angle �
after steady uniform flows once the supply is cut. The full line
is the best fit to the formula (1) hs =ad/(tan� − tand1) witha =
0.26 and d1 = 23.4°.
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and (6) are simply taken as empirical relations with three
empirical parameters d, k, and b that will be fitted to the
experimental results. Note that for flows over inclined plane,
the downslope acceleration significantly extends the runout
relative to flows over horizontal surfaces and much of the flow
occurs in thin layers. Therefore thin layer analytical solutions
are more likely to represent the dynamics accurately.
[34] Finally, a new analytical solution is developed in

Appendix A to interpret the results of granular flows over a
thin erodible bed. The analytical solution of Stoker [1957] for
the horizontal dam break problem of an inviscid (frictionless)
fluid on a “wet” bed is extended to the dam break of a fric-
tional material over inclined plane covered by a thin layer
made of the same frictional material.

5. Collapse Over Inclined Rigid Bed

[35] Let us first look at the effect of slope inclination on the
dynamics and deposit of the granular mass over a rigid bed.

Deposits on the plane are obtained only for inclination angles
� ≤ 23.7° ’ �r. For higher inclination angles, the front leaves
the experimental flume. Figure 6 shows the thickness profile
as a function of the downslope position at different times
during the collapse for inclination angles varying from � = 0°
to � = 22°. Obviously, as the angle increases, the deposit
extends further down the plane and becomes flatter. The
normalized runout distance rf /h0, final thickness hf /h0 and
the time when the front stops tf /tc all show a strong variation
when the slope approaches the repose angle of the material �r
(Figure 7).
[36] The runout distance rf and the timewhen the flow stops

tf could be successfully fitted using the formula (5) and (4),
respectively (Figure 7). Let us first simply use equations (4)
and (5) with k = 0.4 and d = 32° corresponding to the coef-
ficients used by Mangeney‐Castelnau et al. [2005] to fit
granular collapse of glass beads over horizontal plane (dash‐
dotted lines in Figures 7a and 7c). The runout distance and the
stopping time are well reproduced when using these coeffi-

Figure 6. Thickness profile of the granular mass as a function of the downslope position along the plane
for the flow over a rigid bed with inclination angle (a) � = 0° at time t = 0 s, 0.06 s, 0.12 s, 0.18 s, 0.24 s,
0.36 s, 0.5 s, 1.06 s; (b) � = 10° at time t = 0 s, 0.06 s, 0.12 s, 0.18 s, 0.24 s, 0.3 s, 0.42 s, 0.54 s, 0.68 s, 1.32 s;
(c) � = 16° at time t = 0 s, 0.12 s, 0.24 s, 0.36 s, 0.48 s, 0.6 s, 0.72 s, 0.84 s, 0.96 s, 1.12 s, 1.36 s, 1.62 s; and
(d) � = 22° at time t = 0 s, 0.16 s, 0.32 s, 0.48 s, 0.64 s, 0.8 s, 0.96 s, 1.12 s, 1.44 s, 1.76 s, 2.3 s. These
experiments are referred to as Ei‐0, i = 0, 10, 16, 22 in Table 2.
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cients for collapse at inclination angles � ≤ 15°. However,
when � gets closer to the friction angle of the material, the
experimental runout and stopping time increase more rapidly
than the empirical functions. In order to better fit the data, we
have calculated the value of the empirical friction angle d and
of the coefficient k that best fit the data. The best fit, obtained
with k = 0.5 and d = 27.5°, makes it possible to describe very
accurately the change of the runout as a function of the slope
inclination and improve the fit of the stopping time for � ≤

22°. By keeping the value of k and d, the best fit of the
experimental final thickness hf using equation (6) is obtained
for b = 0.76. However, using these coefficients, the observed
change of tf and hf when approaching inclination angles � =
23.7° is still stronger than that predicted by the empirical
relations. This sharp change can only be reproduced by using
a friction angle d ’ 25.5° which is indeed closer to the repose
and avalanche angles of the material involved (dashed lines
in Figure 7).
[37] The mean slope of the deposit with respect to the plane

inclination calculated by

�f ¼ arctan
hf

rf

� �

ð7Þ

is decreasing almost linearly as a function of the inclination
angle (Figure 8). The mean angle of the slope deposit with

respect to the horizontal is almost constant and roughly equal
to the repose angle of the material �f + � ’ 24°.
[38] The position of the front as a function of time xf (t) is

similar to the experimental results ofHungr [2008] (Figure 9a).
After a transient acceleration at the beginning, the front is
observed to move at a nearly constant velocity followed by a
transient deceleration before the front stops. The duration of
the deceleration phase increases when � increases (Figure 9a).
For � = 23.7° a second phase of almost constant velocity

Figure 7. Normalized (a) runout distance rf /h0, (b) final
thickness at the upper wall hf /h0, and (c) time at which the
front stops tf /tc where t c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0= g cos �ð Þ
p

, as a function
of the inclination of the bed � (h0 = 0.14 m and t c 2
[0.119 s, 0.124 s] depending on �). The dash‐dotted line cor-
responds to the analytical fit obtained for granular collapse
over horizontal bed (k = 0.4 and d = 32°) by Mangeney‐
Castelnau et al. [2005]; the full line and dashed line are the
best fit of the analytical formula (5), (6), and (4) with k = 0.5
and friction angles d = 27.5° and d = 25.5°, respectively.

Figure 8. Mean angle of the deposit calculated using
equation (7) with respect to the inclined plane (diamond)
and with respect to the horizontal direction (squares) as a
function of the plane inclination �.

Figure 9. Normalized (a) location of the front xf (t)/h0 and
(b) velocity of the front vf (t)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gh0 cos �
p

, with h0 = 0.14 m
as a function of time t /tc, where tc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0= g cos �ð Þ
p

for incli-
nation angle � = 0° (diamond), � = 10° (cross), � = 16°
(square), � = 19° (star), � = 22° (times symbol), and � =
23.7° (triangle). The analytical solution (Figure 9a) for the
front position (3) at inclination angle � = 0° (dash‐dotted
lines) and � = 23.7° (dotted lines) and for the front velocity
(Figure 9b) (vf (t) = 2c0 + mtf ) at inclination angle � = 23.7°
(dotted) and � = 22° (dash‐dotted lines) are added. In
Figure 9b, the upper arrows represent, from top to bottom,
the duration of the spreading regime for � = 23.7°, � = 22°,
and � = 0°, respectively.
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appears, with a smaller values of the velocity (about 5–15%
of the maximum velocity) as shown in Figures 9a and 9b. A
similar trend is observed for � = 22° and � = 19°.
[39] Two regimes can be defined from Figure 9b: (1) a

so‐called spreading regime qualitatively similar to the
acceleration/deceleration phases observed for granular col-
lapse over horizontal plane [e.g., Siavoshi and Kudrolli,
2005; Mangeney et al., 2006], and (2) a slower quasi‐
uniform thin flow at velocities of only 5 to 15% of the
maximum velocity of the spreading phase. Only the first
spreading regime is observed for granular collapse at incli-
nation � ≤ 16°. For higher inclination angles, the second
regime is at least initiated, with values of the flow thickness
and velocities of the order of those observed for thin steady
uniform flows over inclined planes [Mangeney et al., 2007b].
The maximum velocity is reached during the spreading phase
and increases with increasing inclination angles (Figure 9b).
The duration of the spreading regime also increases with
increasing inclination angles.
[40] The analytical equation (3) for xf (t) differs signifi-

cantly from the experiments especially in the spreading
regime (Figure 9a). The front is moving too fast at the
beginning even though the final runout is similar for experi-
mental and analytical results as was observed for granular
collapse over horizontal bed by Mangeney‐Castelnau et al.
[2005]. As the slope increases, the analytical solution
comes closer to the observations (Figure 9a). However, the
two phases of spreading and slow flow cannot be reproduced
by the analytical solution that predicts a linear decrease
of front velocity with time (vf = 2c0 + mt) (see dotted and
dash‐dotted lines in Figure 9b). In the experiments, at the
beginning, the front position changes as xf ∼ ta with a =
1.8, 1.5, 1, 1.2, 1.1, 1.3 for � = 0°, 10°, 16°, 19°, 22°, 23.7°,
respectively. After a given time, which depends on �, the flow
decelerates more rapidly and xf ∼ ta with a = 0.003, 0.006,
0.42, 0.12, 0.06, 0.4 for � = 0°, 10°, 16°, 19°, 22°, 23.7°,
respectively. Note that in the analytical solution (3), for high
inclination angle (i.e., m ’ 0) the flow is roughly described
by xf ∼ t.

6. Collapse Over Inclined Erodible Bed

[41] In our experiments, the inclination � = 22° (’�r − 2°)
is the highest inclination where a deposit is obtained on the
plane with an erodible bed. For � = 23.7°, the front already
clears the end of the flume for an erodible bed of thickness
hi = 1.4 mm.

6.1. Flow at Moderate Slope q = 22°

[42] The presence of an erodible bed significantly affects
the dynamics and deposit of granular flows at � = 22°. Even
the presence of a very thin layer of erodible material on the
inclined plane increases the runout distance (Figure 10). The
maximum distance reached by the avalanche front over a
granular layer of thickness hi = 4.6 mm (around six to seven
particles) is 40% larger than that obtained on a rigid bed (xf =
151 cm compared to xf = 108 cm). For hi = 1.82 mm (around
two to three particles) the runout distance (xf = 119 cm) is still
10% larger than that obtained on a rigid bed.
[43] At the beginning of the experiments (t < 2tc), the

thickness profile of the flow front seems to be more rounded
as the thickness of the erodible bed increases (Figure 10). For

t ≤ 5tc , i.e., until the front reaches the position xf = 5.2h0 =
73 cm, the position of the front is the same whatever hi
(Figure 11a). After, themass slowly stretches until a deposit is
left on the plane. For hi = 4.6 mm, the final thickness of the
deposit is 27% smaller than the thickness obtained for smaller
values of hi for which the final thickness is almost the same
(Figure 11b).
[44] Figure 11 shows a first transient acceleration of the

mass lasting less than 2tc, followed by a nearly constant front
velocity for about 2tc. For t ≥ 3 – 4tc, the front velocity
decreases gradually for hi < 4.6 mm until the front stops.
For hi = 4.6 mm, two different behaviors are observed:
(1) an almost linear decrease of the velocity until about t ’
10tc followed by (2) a slower decrease of the velocity until
t ’ 20tc . During this second phase, the velocity is about
0.25 m.s−1 ’ 0.17vmax and h ’ 7 mm in the front zone. It
looks like the same change of behavior occurred at t ’ 10tc
for hi = 3.38 mm but lasted only for 2tc, then coming back to
the first regime. Indeed, the presence of an inflexion point
around t ≥ 10tc reflects the initiation of a slow flow regime
after the spreading regime as discussed in the previous sec-
tion. Interestingly enough, the qualitative behavior of the
granular collapse for � = 22° and hi = 4.6mm is very similar to
the granular collapse at � = 23.7° over a rigid bed involving
a first spreading regime followed by a slow flow at almost
constant velocity (compare Figures 11c and 9b).
[45] The maximum velocity reached by the front is almost

the same whatever the thickness of the erodible bed and
is about equal to vmax = 1.28c0 (22°), where c0 (22°) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gh0 cos �
p

= 1.128 m s−1 (vmax ’ 1.44 m s−1). At the
beginning (t ≤ 2tc), the front velocity slightly decreases as hi
increases whereas in the main part of the flow, the front
velocity increases as hi increases as was found numerically by
Mangeney et al. [2007a] in a similar configuration. Similar
inversion of the sensitivity to hi as time changes is observed
for the maximum flow thickness (Figure 11b).
[46] The runout distance increases almost linearly with the

thickness of the erodible bed hi (Figure 12a). A stronger
variation of the maximum thickness of the deposit hf and
of the time at which the front stops tf is observed for hi ≥ 1.5%
h0 (Figures 12b and 12c). The stopping time tf increases as a
function of hi whereas the final thickness hf decreases
(Figures 12b and 12c). Surprisingly, the functions rf (hi),
hf (hi) and tf (hi) look qualitatively similar to the functions
rf (�), hf (�) and tf (�) (compare Figures 12 and 7). The mean
angle of the deposit on the slope calculated using equation (7)
decreases from �f = 2.3° for hi = 0 mm to �f = 1.2° for hi =
4.6 mm. As a result, the mean angle of the deposit with
respect to the horizontal decreases by only 1° from hi = 0 mm
to hi = 4.6 mm down to 23.1°.
[47] The stopping phase of the flow is quite different for

hi = 4.6 mm compared to the other cases. Indeed, for granular
collapse over a rigid bed the front stops before the mass
behind it as was observed by Mangeney‐Castelnau et al.
[2005]. Similar behavior seems to occur for hi = 1.82 mm
and hi = 3.38 mm. On the contrary, for hi = 4.6 mm, the upper
part of the mass stops at t = 2.08 s while the front continues to
move, until it eventually stops at t = 2.56 s.

6.2. Slope Effects on Erosion Efficiency

[48] Experimental results show strong effect of the slope
inclination on erosion efficiency (Figures 10, 13, and 14). As
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the slope decreases, the flow and the runout distance become
less and less affected by the presence of the erodible bed
(Figure 15). Eventually, for slope inclination � = 10° and � =
0°, the presence of the erodible bed does not change the
runout distance. Experimental results show that the runout
distance increases with the thickness of the erodible bed only
for inclination angles higher than a critical angle �c ’ 12° ’
�r /2 which is almost equal here to half of the repose angle of
the material.
[49] Interestingly, whatever the inclination angle, the

runout distance varies almost linearly with the thickness
of the erodible bed (Figure 15). Using equation (5) with the
fitted coefficients k = 0.5 and d = 27.5° leads to the simple
relation

rf

h0
¼ 1

tan � � tan �
þ � �ð Þ hi

h0
ð8Þ

with g(�) varying from g(� = 0°) = −0.18 to g(� = 22°) = 0.84
(insert in Figure 16). The function g(�) can be fitted using the
empirical relation

� �ð Þ ¼ 0:02

tan 23� � tan �
: ð9Þ

For � = 0, the runout distance slightly decreases as a function
of hi (g = −0.18) which is consistent with the numerical
results of Crosta et al. [2009b] that investigated the effect of
the presence of an erodible layer on the collapse of granular
column over horizontal bed. Significant decrease of the
runout is observed by Crosta et al. [2009b] possibly due to
the much thicker erodible layer in their case.
[50] Until t ’ 2tc, the front position is quite similar what-

ever the angle � ≥ 16° and whatever the thickness of the
erodible bed hi (Figure 16). The influence of the erodible
bed can be observed at time t ’ 3tc for � = 16°, t ’ 4tc for

Figure 10. Thickness profile h(x, t) of the granular mass flowing over a plane inclined at � = 22° as a func-
tion of the down‐slope position x over (a) a rigid bed hi = 0 mm, and an erodible bed of thickness (b) hi =
1.82 mm, (c) hi = 3.38 mm, and (d) hi = 4.6 mm. The profiles are represented from time t = 0 s to t = 1.76 s
withDt = 0.16 s (Figures 10a and 10b), from time t = 0 s to t = 1.76 s withDt = 0.16 s and at time t = 1.96 s
(Figure 10c), and from time t = 0 s to t = 1.92 s withDt = 0.16 s and at time t = 2.56 s (Figure 10d). These
experiments are referred to as E22‐j, j = 0, 1.82, 3.38, 4.6 in Table 2.
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� = 19°, t ’ 5tc for � = 22°, and t ’ 8.5tc for � = 25.2°.
Our results suggest that erosion processes are not efficient
during the acceleration phase of the spreading regime dis-
cussed in previous sections and start to affect the flow
mainly during the following deceleration and slower flow
that occurs at sufficient high slopes and/or sufficient
thickness of the erodible bed.
[51] Note that a peak is observed for several experiments at

the front at the very beginning of the slump (Figure 6c,
Figure 10d, Figure 13, and Figure 14) as was also the case for
other granular collapse experiments [see, e.g., Lube et al.,
2007], due to the initial upward motion of the gate. How-
ever, this initial condition seems to weakly affect the flow and
the resulting deposit as shown by the very good agreement
between this kind of experiments and those carried out by
Siavoshi and Kudrolli [2005] where the granular mass made
of steel beadswas released by switching off themagnetic field
that initially held the mass.

7. Internal Motion and Wave Propagation

[52] The accuracy of the present experiments did not allow
us to make reliable measurements of the flow when the static

layer is metastable, i.e., when the layer of the erodible bed is
such that hi2 [hs, ha], where ha is the maximum thickness that
can stay on a plane of inclination �. In this domain, triangular
erosion waves propagating at constant velocity downslope
have been observed by Pouliquen and Forterre [2002], when
releasing a 3‐D granular cap on an erodible bed. When using
here the same granular beads for the released mass and for the
erodible bed, the whole bed layer starts flowing at the time the
gate unlocks for hi ≥ hs(�). At � = 25.2°, and with hi = 3.6 mm
(hi < hs (25.2°)), the presence of the erodible bed significantly
accelerates the flow, but the front does not reach a constant
velocity down the plane (Figure 16). Nevertheless, we could
build up an erodible bed layer by using black colored particles
because these particles had a slightly higher repose angle than
the flowing (non colored) regular beads (see section 3). As for
the experiments involving regular beads, a substratum of a
given constant thickness of black particles was first obtained
with a channel slope larger than their repose angle, and then
the slope was lowered to run the experiments. For consis-
tency, these experiments were carried out at the same slope
angle than those involving a substrate of regular beads (see
Table 2), so that the bed of black particles was not strictly
metastable owing to the different repose angles of both types
of particles.
[53] In the following, we will show some observations of

the velocity and general motion within the flowing and the
erodible granular layer for � = 22° and near the metastable
regime for � ’ 25° when regular beads are released on an
erodible bed made of black beads.

7.1. Internal Velocity and Flowing/Static Interface

[54] The velocity within the flowing mass is measured at
the sidewall at inclination angles � = 22° and � = 25.4°
for flows over an erodible bed of thickness hi = 5 mm (see
section 3 for more details on the velocity measurements). For

Figure 11. Normalized (a) location of the front xf /h0, (b)
maximum thickness of the flow (i.e., thickness at the upper
wall) hm /h0, and (c) velocity of the front vf (t)/c0 (22°) (c0
(22°) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gh0 cos �
p

, = 1.128 m.s−1), with h0 = 0.14 m, as a
function of time t/t c, where t c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0= g cos �ð Þ
p

, = 0.124 s
for inclination angle � = 22° over a rigid bed hi = 0 (diamond),
and erodible bed of thickness hi = 1.82 mm (cross), hi = 3.38
mm (square), and hi = 4.6 mm (star).

Figure 12. Normalized (a) runout distance rf /h0, (b) final
thickness at the upper wall hf /h0, and (c) time at which
the front stops tf /tc where tc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0= g cos �ð Þ
p

= 0.124 s, as
a function of the normalized thickness of the erodible bed
hi /h0 for inclination angle � = 22°.
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Figure 13. Thickness profile h(x, t) of the granular mass flowing over a plane inclined at � = 19° as a func-
tion of the down‐slope position x over (a) a rigid bed hi = 0 mm at time t = 0 s, 0.16 s, 0.32 s, 0.48 s, 0.64 s,
0.8 s, 1.12 s, 1.44 s and an erodible bed of thickness (b) hi = 2.7 mm at time t = 0 s, 0.16 s, 0.32 s, 0.48 s,
0.64 s, 0.8 s, 1.12 s, 1.44 s, 1.74 s and (c) hi = 5.3mm at time t = 0 s, 0.16 s, 0.32 s, 0.48 s, 0.64 s, 0.8 s, 1.12 s,
1.44 s, 1.78 s. These experiments are referred to as E19‐j, j = 0, 2.7, 5.3 in Table 2.

Figure 14. Thickness profile h(x, t) of the granular mass flowing over a plane inclined at � = 16° as a func-
tion of the down‐slope position x over (a) a rigid bed hi = 0 mm at time t = 0 s, 0.12 s, 0.24 s, 0.36 s, 0.48 s,
0.6 s, 0.84 s, 1.12 s, 1.62 s and an erodible bed of thickness (b) hi = 2.5 mm at time t = 0 s, 0.12 s, 0.24 s,
0.36 s, 0.48 s, 0.6 s, 0.84 s, 1.12 s, 1.6 s and (c) hi = 5 mm at time t = 0 s, 0.12 s, 0.24 s, 0.36 s, 0.48 s, 0.6 s,
0.84 s, 1.12 s, 1.52 s. These experiments are referred to as E16‐j, j = 0, 2.5, 5 in Table 2.
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� = 22°, the measurements are performed at x = 35 cm, a few
tenths of seconds after the front reached this position (i.e.,
after t ’ 0.3 s). For � = 25.4°, the measurements are done
at x = 90 cm and 0.308 s after the front reached this position
(i.e., after ts = 0.6 s so that the measurements are done at t =
0.908 s). For both � = 22° and � = 25.4°, the velocity profile
exhibits a concave shape (Figure 17) similar to that described
by Savage [1979] and Ancey [2002]. For � = 22°, the method

is not precise enough tomeasure the very small velocitywithin
the erodible bed. For � = 22° and z ≥ 14 mm, the velocity
profile is almost linear with mean shear strain rate _� = 35s−1 =
0.3

ffiffiffiffiffiffiffiffi

g=d
p

whereas for � = 25.4°, the upper almost linear
variation of the velocity for z ≥ 4 mm leads to a shear strain
rate _� = 95s−1 = 0.8

ffiffiffiffiffiffiffiffi

g=d
p

. An exponential creeping tail is
observed below (z ≤ hs (25.4°) = 3.4 mm) in agreement with
the numerical simulation of Mangeney et al. [2007a]. This
kind of profile is typical for thin flows over inclined planes or
for surface flows on a pile [GDR MiDi, 2004; Forterre and
Pouliquen, 2008; Siavoshi and Kudrolli, 2005; Lube et al.,
2007].
[55] The measurements at � = 25.4° clearly show that the

grains within the initially static erodible bed z ≤ 5 mm are put
into motion by the mass flowing over it. A permanent static

Figure 15. Normalized runout distance rf /h0 with h0 =
0.14 m as a function of the normalized thickness of the erod-
ible bed hi /h0 for granular flows over a plane inclined at � = 0°
(diamond), � = 10° (cross), � = 16° (square), � = 19° (star),
and � = 22° (times symbol). The size of the symbols reflects
the error bar. The full lines correspond to the best linear fit to
the data with a slope g (�) well fitted by equation (9) (see
insert in Figure 16).

Figure 16. Normalized location of the front xf /h0 with h0 =
0.14 m as a function of time t/tc, where tc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0= g cos �ð Þ
p

for inclination angle � = 16° (blue dotted lines with diamond
for hi = 0 mm, cross for hi = 2.5 mm, and square for hi =
5 mm), for inclination angle � = 19° (green dashed lines with
diamond for hi = 0 mm, cross for hi = 2.7 mm, and square
for hi = 5.3 mm), for inclination angle � = 22° (magenta
dash‐dotted lines with diamond for hi = 0 mm, cross for
hi = 1.82 mm, and square for hi = 4.6 mm), for inclination
angle � = 25.2° (black full lines with diamond for hi =
0 mm, cross for hi = 2 mm, and square for hi = 3.6 mm).

Figure 17. Velocity profile v(z) in cm s−1 as a function of z
defined as the elevation above the rigid bed for hi = 5 mm and
(a) � = 22° and (b) � = 25.4° (experiments E′22‐5 and E′25‐5
of Table 2). The velocity is measured at x = 35 cm at time t’
0.4 s (Figure 17a) and at x = 90 cm at time t − ts = 0.308 s
(Figure 17b), where ts = 0.6 s corresponds to the time when
the front reaches the position x = 90 cm. The measurements in
Figure 17b are made when the flowing/static interface has
reached a maximum depth within the erodible layer (see
Figure 18). The position of the top of the erodible bed z =
5 mm is shown by dashed lines. The minimum thickness
for flow hs(25.4°) = 3.4 mm is added in dotted lines in
Figure 17b.

Figure 18. Vertical position of the flowing/static interface
within the erodible bed hfsmeasured at x = 90 cm as a function
of time t − ts, where ts = 0.6 s corresponds to the time when the
front reaches the position x = 90 cm for the flow at � = 25.4°
and hi = 5 mm (experiment E′25‐5).
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layer is still observed for z ≤ 1.5 mm as shown in Figure 18,
where the position of the flowing/static interface hfs is
recorded at the same position x = 90 cm as the velocity,
starting from time ts = 0.6 s at which the front reaches this
position. As the front passes the measurement position, the
avalanche very rapidly digs into the erodible bed until a
maximum penetration depth of 3.5 mm (around 5 grain dia-
meters) is reached after 0.308 s (2.4tc). During this period,
the penetration depth of the flowing/static interface into the
erodible bed increases linearly with time at a vertical velocity
vfs = 1.3 cm.s−1. Then, the interface stays roughly at this
position for about 0.5 s (4tc). Eventually, the interface pro-
pagates upward during a consolidation phase following an
exponential relaxation with a characteristic time t = 2.1 s.
After about 4 s, the flow abandons the flume, leaving a
deposit of 4 mm thick on the bed, made mostly of black
particles, leading to a total erosion of the bed of about 1 mm

all along the slope. The deposit thickness corresponds
approximately to hs(25.2°).

7.2. Wave‐Like Motion

[56] A wave‐like motion of the flowing/static interface as
well as of the free surface of the flow is observed for � = 25.2°
and hi = 3.9 mm (Figure 19), for � = 25.4° and hi = 5 mm
(Figure 20) and to a lesser extent for � = 22° and hi = 3 mm.
For � = 25.4° and hi = 5 mm, Figure 20c shows that the flow
(and then the deposit) is however quite homogeneous and the
thickness of the black layer is about 1 mm smaller than that of
the initial erodible bed. On the contrary for � = 25.2° and hi =
3.9mm, the final thickness of the black layer is approximately
the same as that of the initial erodible bed, even though sig-
nificant waves propagated during the flow. As a result, the
thickness of the black layer once the flow has stabilized
almost corresponds to the thickness of the deposit left on the
plane ∼hs(�), whatever the value of hi.
[57] Figure 19 shows a saltating front of white particles

including some black particles. Behind the saltating front,

Figure 19. Snapshots at different instants from ts = 0.6 s of
the granular mass made of white particles flowing over an
erodible bed of thickness hi = 3.9 mmmade of black particles
at an inclination angle � = 25.2°. The thick vertical black lines
on the rigid substrate measure the position on the plane start-
ing from x = 80 cm (first line on the left) indicated every
10 cm. The shape of the front has been roughly outlined in
dotted lines in Figures 19b and 19c. White and black arrows
are added to the picture to track the position of the crest of a
wave observed on the free surface and on the interface
between black and white particles, respectively.

Figure 20. Snapshots of the granular mass made of white
particles flowing over an erodible bed of thickness hi =
5 mm made of black particles at inclination angle � = 25.4°
at (a) ts = 0.6 s, (b) t = 0.8 s, and (c) t = 3.8 s. The initial posi-
tion of the erodible bed is outlined using two dashed parallel
white lines in Figures 20a and 20c. The thick vertical black
line indicates the position along the plane (x = 90 cm). White
and black arrows are added to the picture to track the position
of the crest of a wave observed on the free surface and on the
interface between black and white particles, respectively. In
Figure 20c, inclined arrows point out some black particles
carried away by the flow.
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undulations of the free surface and of the black layer of
initially static particles can be observed with comparable
wavelength, but a phase shift (Figures 19c–19f ). These
waves seem to make the black particles rise toward the free
surface, causing some mixing of white and black particles.
Some white particles can be found within the bottom black
layer as well as black particles within the flow and deposit
(Figures 19 and 20c). This mixing layer is seen 2 mm above
and under the initial elevation of the erodible layer for � =
25.4° and hi = 5 mm. Qualitatively similar behavior is
observed for � = 22° and hi = 3 mm. In that case, the mixing
occurs within a layer about 1 mm thick near the upper ele-
vation of the erodible bed.
[58] The waves seem to be located behind the front. Indeed,

at the position x = 90 cm, the wave motion lasts about 0.3 s
after the front passes (Figure 19). Interestingly, this time
corresponds to the time of maximum penetration of the
flowing/static interface within the erodible bed. At time t ’
0.5 s, the flow stabilizes in the whole domain captured by the
camera (80 cm ≤ x ≤ 110 cm), while the free surface still
exhibits smooth oscillation with a larger wavelength. Our
results suggest that these waves play a key role in the erosion
efficiency in the zone near the front. Similarly, for � = 22°, the
wavy motion ceases after the elapsed timeDt’ 0.2 s counted
from the moment the front passes this position. Note that
waves are also observed behind the front for flow over a rigid
bed at inclination angles � ’ 25° (Figure 21). These waves
could result from the irregularities of the rigid bed or from
flow instability.
[59] By following the maximum amplitude of the oscilla-

tions, a wave propagation speed can be estimated. The wave
speed is about 0.75 m.s−1 ’ 0.7c0 (25.2°) for � = 25.2° and
hi = 3.9 mm and 0.45 m.s−1’ 0.4c0 (22°) for � = 22° and hi =
3 mm. For � = 22°, the wave speed is calculated in between
times t = 0.398 s (3tc) and t = 0.457 s (3.7tc) which corre-
sponds to the “steady” maximum velocity of the front vf ’
1.2c0 = 1.35 m.s−1 (see Figure 11c). As a result, the wave
speed is about 3 times smaller than the front velocity at this
instant. Note that for � = 25.2° and hi = 3.9 mm the wave
speed calculated from snapshots taken between times 0.747 s

and 0.895 s (Dt’ 1.2tc) is almost constant during this period
(Figures 19b–19f).

7.3. Steep Fronts

[60] It is difficult to define the profile of the front due to
strong saltation effects (Figures 19a–19c and 21). Individual
beads can reach altitudes up to 10 cm above the rigid bed.
Nevertheless, at inclination angle � ’ 25°, it looks like the
front has a steep, blunt shape whatever the value of hi
(Figures 19 and 21). No steep fronts are observed at � = 22°.
[61] For a granular collapse over an erodible bed at � =

25.2°, the blunt nose extends over about 20 cm along the
plane as shown in Figure 19c. The maximum flow thickness
above the rigid bed near the front is about 15 mm (h/hs ≡ 4,
i.e., about 22 particles). For flow over a rigid bed, the steep
front has about the same dimensions (Figure 21d). As a result,
the steep, wave‐like fronts obtained here are not specifically
related to erosion processes, contrary to the triangular front
observed by Pouliquen and Forterre [2002] for granular
flows of similar glass beads at � = 23°. Furthermore, the
dimensions of our front zone are quite different from the
dimensions of theirs, which extended 40 cm down the plane
with a maximum thickness of h/hs ≡ 0.7 above the erodible
bed. Note that 3‐D triangular fronts were also obtained by
Börzsönyi et al. [2008] for avalanches made of glass beads
similar to our beads, flowing over an erodible bed at incli-
nation � = 24.3°. In their experiments, the avalanches were
generated by a constant supply on top of the plane. In that
case, the observed front has a typical length of 22 cm down
the slope and maximum thickness of h/hs ’ 1.5 which is
closer to our observations.
[62] One explanation of these observations may be that

steep fronts are generated during the slow flow that follows
the spreading regime. The steep front will then appear when
the slow regime starts to be important: either for flows over a
rigid substrate when increasing the inclination angle or at a
given inclination angle when increasing the thickness of the
erodible bed (see Figures 9b and 11c).

8. Discussion

[63] Part of our results can be easily understood by referring
to the properties of granular flows. When a granular ava-
lanche flows over an erodible bed, the initially static material
can be put into motion by the flowing mass. This process is
associated with energy exchange between the flowing and
static masses. The kinetic energy of the flowing mass is
consumed to put into motion static material, while the kinetic
energy of the flowingmass is increased in turn by the addition
of flowing grains. In other words, the potential energy of the
static grains is converted into kinetic energy [Mangeney et al.,
2007a]. The more stable the static grains are, the more energy
is required to put them into motion. Obviously, a given layer
of granular material is more stable at a small inclination angle
than on steep slopes. More specifically, a granular layer lying
on an horizontal bed is always stable whatever its thickness.
On the contrary, in a range of inclination angles around the
repose and avalanche angles of the material (� 2 [�r, �a]), a
granular layer could either be stable or unstable depending on
its thickness [Pouliquen, 1999; Daerr and Douady, 1999].
Furthermore, in this range of inclinations, an initially static
layer can be destabilized by a small perturbation. It is there-

Figure 21. Snapshots of the front zone from time t1 when
the front crosses the position x = 77 cm taken every 0.031 ±
0.001 s in the region x 2 [70, 100] cm from the gate for gran-
ular collapse over a rigid bed (hi = 0 mm) at � = 25.2°. The
front has a steep shape when saltating grains are not taken into
account.
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fore very natural to observe higher efficiency of erosion
processes when the slope increases.
[64] In contrast, the origin of the critical value of the angle

above which erosion starts to affect the flow (which in our
specific experiments corresponds to �c ’ �r /2) is more dif-
ficult to understand. The use of material with different friction
angles may challenge the link of the critical angle to the
repose angle of the material. Furthermore, as our experiments
are performed using a single geometry of the initial released
mass, it is possible that this critical value of the inclination
angle depends on the initial conditions.
[65] The angle �c seems to separate two types of behavior of

the flow: for � ≤ �c, only a spreading regime is observed that is
qualitatively similar to granular collapse over a horizontal
bed, with an acceleration phase followed by a deceleration.
On the other hand, for � > �c, the decelerating phase after the
initial acceleration departs from the quasi‐symmetric bell‐
shape of the front velocity observed during the spreading
regime over horizontal bed (Figure 9b). A slow thin flow
tends to develop. Erosion only affects the flow in the decel-
erating phase and in the slow flow. One can suspect that
during the accelerating phase (t < 4tc) the longitudinal
pressure gradients play a key role by pushing the mass down
the slope. Whatever the thickness of the erodible bed, the
front is essentially driven over it by a pressure gradient that
does not change significantly when adding a few particles on
the plane. On the contrary during the decelerating phase, the
granular mass is much flatter. Thus, in the slow regime, the
front chooses its own dynamics depending on gravity, friction
and availability of mass.
[66] Although the velocity is much smaller during the slow

flow following spreading, experimental results suggest that
erosion strongly changes the front velocity during this
regime. One possible explanation is that during the spreading
regime, the grains from the erodible bed that are put into
motion rapidly decelerate, so that the flow does not make
the most of the energy lost in extracting them from the
bed. Actually, a time delay is expected to occur before
the extracted grains are accelerated up to the flow speed. On
the contrary during the slow regime, while the velocity is
small, it decreases less rapidly with time making it possible
to increase the kinetic energy over a longer period.
[67] Our results suggest that the front zone (about 50 cm

behind the front) plays a key role in the erosion processes.
The rapid penetration of the flowing/static interface in the
erodible layer behind the front and its further stabilization at a
given elevation, slightly smaller than hs(�), are in very good
agreement with the numerical prediction of Mangeney et al.
[2007a, Figure 2] using the partial fluidization model devel-
oped by Aranson and Tsimring [2002] and Aranson et al.
[2008]. This continuum model is based on an explicit
description of the flowing/static transition in granular flow
borrowed from the Ginzburg‐Landau theory of phase tran-
sition. As numerical simulations reproduce qualitatively
much of the experimental observations but do not show any
waves propagating at the free surface nor at the flowing/static
interface, it could be possible that these waves are not a
necessary ingredient to explain the main physical processes
acting in our experiments. However, the waves may help to
extract the grains from their place in the geometrical
arrangement of the layer and from the friction force exerted

by the neighboring grains. Actually, these waves induce a
vertical motion pushing the grains toward the surface and
making them join the flow.
[68] Steep bulbous front waves propagating at almost

constant velocity are observed at high inclination (� = 25.2°),
i.e., in the metastable regime, for flows over both a rigid and
an erodible bed (Figures 19a, 19b, 19c, and 21). Similar
waves with a more triangular shape have been previously
observed and simulated for granular flows on erodible beds.
Erosion processes have been thought to be at the origin of
wave generation. Although the dimensions of the wave
observed here are slightly different from those found in the
former studies, our results suggest that generation of steep
front waves could also be obtained for flows over a rigid bed
with increasing inclination angle. Our experimental results
suggest that increase of slope and increase of the thickness of
the erodible layer act in a similar way on the flow dynamics
and on the potential of surge generation as if the energy
gained by the additional flowing grains were to add to the
gravitational energy compensating the energy lost by friction.
[69] It is tempting to try understanding the steep front

waves observed for granular flows over erodible beds by
using simple thin layer models of granular flows over a thin
layer made of the same material. An analytical solution of
sloping dam‐break of frictional material over an erodible bed
has been therefore developed here (see Appendix A). In that
case, a shock develops at the front of the flow. The analytical
solution shows that the velocity of the front decreases as hi
increases which is the opposite of what is observed here
(Figure A2 in Appendix A). Simple thin layer granular
models are thus expected to fail in reproducing the increase of
mobility for increasing thickness of the erodible layer, sug-
gesting that an explicit description of the flowing/static
transition in granular flows has to be taken into account.
[70] Despite the oversimplification of erosion processes in

our experiments with respect to natural situations, the results
can be compared to some field observations. In our experi-
ments for �2 [22°, 25°] the flowing/static interface penetrates
at 0.1–0.35 cm within the erodible bed for typical flow
thickness near the front of about 0.7–1 cm leading to pene-
tration depth of 0.1–0.5 times the thickness of the flowing
lobe. On Lascar volcano, Sparks et al. [1997] report typical
thickness of pyroclastic deposit lobes near the front ranging
from 0.2 to 1 m as well as erosional furrows 0.1–0.3 m deep
observed on slopes of the order of 20°. Thus the erosion depth
is 0.3–0.5 times the thickness of the flowing lobe. This is also
comparable with observation of debris flows in the French
Alps where the flow thickness approximated by the thickness
of the levees is about 3 m and the erosion depth about 1 m
(Figure 2). Our simple experiments are in agreement with
the observations of Sparks et al. [1997] showing that the
topography and availability of loose surface material are
among the most important controls on erosion in the Lascar
pyroclastic flows. Our experimental results show a vertical
motion of beads generated by the internal waves propagating
within the flow that could be compared to the evidence of
particle mixing in these pyroclastic flows. Finally, Sovilla and
Bartelt [2002] observed that the maximum flow heights of
snow avalanches are generally located considerably behind
the front. However, when the avalanche runs on a steep track
(35°–40° in their case), the maximum heights move forward,
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closer to the avalanche front. These results support our
observation that avalanches tend to develop steep fronts at
high inclination angles.
[71] The significant impact of erosion on the mobility of

granular material makes it necessary to include these pro-
cesses in natural flow modeling especially for improving
hazard prediction [e.g., Hungr and Evans, 2004; Mangeney
et al., 2007b; Pirulli and Mangeney, 2008; Pirulli et al.,
2007; Bouchut et al., 2008; Fernandez‐Nieto et al., 2008;
Heinrich et al., 1999; Pudasaini and Hutter, 2007; Crosta
et al., 2009a, 2009b; Kuo et al., 2009; Mangold et al.,
2010; M. Pastor et al., A SPH depth integrated model with
pore pressure coupling for fast landslides and related phe-
nomena, paper presented at 2007 International Forum on
Landslide Disaster Management, Hong Kong Geotech.
Soc., Hong Kong, 10–12 December 2007]. Discrete element
models are expected to successfully describe erosion pro-
cesses in simple configurations such as the experiments
performed here [e.g., Deboeuf et al., 2005], but their present
computational cost is too high for application to geological
flows because of the shape and size distribution of natural
material. Indeed, properties of avalanches and especially
erosion waves depend dramatically on the shape (spherical or
irregular) of the grains [Börzsönyi et al., 2008]. Avalanches
formed of sand particles are larger than avalanches formed of
glass beads. It is thus expected that the complex shapes of
natural granular material may lead to greater waves compared
to the erosion waves obtained with regular particles as those
used here. On the other hand, the explicit description of
erosion processes in continuum models is still a challenge
because of the lack of theoretical understanding of the flowing/
static transition in granular material [e.g., Chen et al., 2006;
Jop et al., 2006; Mangeney et al., 2007a; Doyle et al., 2007;
Pudasaini and Hutter, 2007; Bouchut et al., 2008; Tai and
Kuo, 2008; Crosta et al., 2009a].

9. Conclusion

[72] Experiments of granular collapse over rigid and erodible
inclined beds have been performed in order to better understand
and quantify erosion processes observed in natural flows. We
focus here on the effects of the slope and of the thickness of
the erodible layer on flow dynamics and morphology of the
deposits. The main results of our study are as follows:
[73] 1. Granular collapse deposits over inclined rigid bed

are well described by simple functions of the parameter D =
tan� − tand, where � is the inclination angle of the plane and
d the friction angle of the material involved.
[74] 2. Erosion processes strongly affect the dynamics and

runout (i.e., mobility) of granular flows over sloping beds.
Increase of 40% of the runout distance is observed on mod-
erate slopes, i.e., close to the repose angle of the grains, even
for very small thickness of the erodible layer.
[75] 3. Erosion efficiency strongly increases as the slope

increases. There is a critical slope �c, here about half the
repose angle of the granular material, over which erosion
starts to affect the flow. For gentler slopes, the flow and
deposit are insensitive to the presence of an erodible layer.
Whatever the slope � ≥ �c, the runout distance increases
almost linearly with the thickness of the erodible bed, sug-
gesting that erosion efficiency is mainly supply‐dependent.

[76] 4. Two flow regimes are observed for granular col-
lapse: a first spreading phase with high maximum velocity,
followed by a slow flowing phase. The slow thin flow is
observed only if the slope is high enough (� ≥ �c) and its
duration significantly increases with increase of the slope or
of the thickness of the erodible layer. Erosion affects the flow
mainly during the decelerating phase and the second slow
regime, possibly explaining the critical slope for which ero-
sion starts to play a role.
[77] 5. Measurements of velocity profile within the flow

show that grains from the erodible bed are put into motion by
the upper flow. The penetration depth of the flowing/static
interface into the erodible layer rapidly increases behind the
front of the granular mass, stabilizing at a constant value and
then rising following an exponential function toward the ele-
vation z ’ hs(�) above the rigid bed (here hs is the minimum
thickness of the granular layer that can flow on the plane).
[78] 6. Waves are observed both on the free surface and on

the flowing/static interface. These waves seem to play a key
role in erosion efficiency by inducing a vertical motion that
removes grains from the erodible bed toward the surface,
allowing them to be caught up by the flow. These waves
mainly propagate within a zone extending about 50 cm
behind the front, underlining the major role of frontal erosion.
[79] 7. Steep fronts are observed at high inclination angles,

regardless of the presence of an erodible bed. These result
from yet unknown physical processes (bed irregularities, flow
instability, …).
[80] 8. Simple scaling laws have been deduced from the

experimental results, making it possible to give a first quan-
titative estimation of the deposit morphology (runout distance,
maximum thickness) and of the emplacement time for a given
inclination angle and a given thickness of erodible material.
The friction angle of the material appears to be equal to the
mean angle of the deposit that can be measured on the field.
[81] These results are consistent with some field observa-

tions and provide a first systematic study of erosion processes
as a function of the slope and of the supply of the erodible
material, at least for the very simple situation investigated
here. Much more work has to be performed to investigate the
effect on erosion efficiency of the initial shape and volume of
the released mass or of the nature of the substrate (shape and
frictional properties of the grains, cohesive material, presence
of a fluid phase, etc…). Rapid variation of the topography
may also play a significant role, while favoring flow insta-
bility and possibly reinforcing wave generation within the
flow that appears to increase erosion efficiency.
[82] Erosion processes are shown to be an essential ingre-

dient of granular flow dynamics that have to be taken into
account in natural flow modeling. As the description of
erosion processes related to the flowing/static transition
in granular material is still a challenge for the community,
these results provide quantitative measurements that can help
constrain theoretical and numerical models.

Appendix A: Analytical Solution for Inclined
Frictional Dam Break Over a Granular Bed

[83] We present here the analytical solution of a dam break
problem that describes the flow of a frictional material over a
sloping plane covered by a thin layer made of the same
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material. We consider the simple case of an uniform slope
inclined at an angle �, higher than the friction angle d.
[84] The coordinate system is linked to the topography, i.e.,

x and z axes are parallel and perpendicular to the uniform
slope, respectively. A simple representation of the material
flow is described by the mass and momentum conservation
equations that can be written as

@thþ @x huð Þ ¼ 0;
@t huð Þ þ @x hu2 þ gzh=2ð Þ ¼ mh;

�

where h ≡ h(x, t) ≥ 0 is the material thickness, u ≡ u(x, t) is
the depth‐averaged horizontal velocity, gz = −gcos� < 0 is
the z component of the acceleration due to gravity, and m =
gx + F ≥ 0 is the constant x acceleration resulting from the
sum of the acceleration due to gravity gx = gsin� and the
well‐known Coulomb‐type frictional law F = −gz tand (see
section 4 and Mangeney et al. [2000, 2003, 2007b] for more
details on the model). The material is released from rest at the
initial instant and the initial conditions are those of a dam of
constant depth and infinite length in the upslope x direction
(see Figure A1a):

h x; t ¼ 0ð Þ ¼ h0 if x < 0;
hi if x > 0;

�

u x; t ¼ 0ð Þ ¼ 0 for all x 2 R;

with h0 > hi > 0 (see Figure A1a).
[85] The analytic hydrodynamic solution of this problem is

composed of three flat zones: the two original inactive zones
(0) and (i) at the two ends and an intermediate zone (2)
connected on the left flat zone by a rarefaction wave (1) and
on the right flat zone by a shockwave (see Figure A1b). Using
ci ≡

ffiffiffiffiffiffiffiffi

gzhi
p

and cj ≡
ffiffiffiffiffiffiffiffi

gzhj
p

for j = 0, 1, 2, we can parameterize

Figure A1. Dam break problem: free surface at (a) t = 0, and
(b) t > 0.

Figure A2. Normalized speed of the shock _	/c0 located at the front of the flow as a function of the nor-
malized thickness of the erodible layer hi /h0, for h0 = 0.14 m, � = 22°, and D = 21.5°, at different times.
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the evolution of the free surface h(x, t) and the velocity u(x, t)
by the ratio k ≡

ffiffiffiffiffiffiffiffiffiffiffi

h0=hi
p

= c0 /ci > 1 as follows:

h x; tð Þ ¼

h0 if x � x‘ tð Þ;
h1 x; tð Þ ¼ 1

9gz
2c0 þ

mt

2
� x

t

� �2

if x‘ tð Þ � x � xc tð Þ;
h2 x; tð Þ if xc tð Þ � x < xr tð Þ;
hi if x > xr tð Þ;

8

>

>

>

<

>

>

>

:

u x; tð Þ ¼

u0 tð Þ ¼ mt if x � x‘ tð Þ;
u1 x; tð Þ ¼ 2

3
c0 þ mt þ x

t

� �

if x‘ tð Þ � x � xc tð Þ;
u2 x; tð Þ if xc tð Þ � x < xr tð Þ;
ui tð Þ ¼ mt if x > xr tð Þ;

8

>

>

>

<

>

>

>

:

with x‘ (t) = −c0t + mt2/2, xc(t) = (2c0–3c2)t + mt2/2 and
xr(t) = _	t, where _	 is the shock speed. The states u2 and c2
(then also h2) are connected to _	 by the following relations:

c2 ¼ ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
2
p

r

;

u2 ¼ 
 � 1

4

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
2
p

� �

� 	

ci þ ui;

while h = ( _	 − ui)/ci is a function of k. We underline that
(u2 − ui)/ci and c2 /ci (then also h2 /hi) depend only on h. The
complete solution h(x, t) and u(x, t) is obtained by computing
h as a function of the ratio k by solving the following non-
linear equation:


 � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
2
p

4

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
2
p

2

s

¼ 2k:

We note that if hi = 0 we get the solution described by
Mangeney et al. [2000], if � = d = 0 (then m = 0) we get the
solution developed by Stoker [1957], and if hi= � = d = 0 (then
m = 0) we get the solution of Ritter [1892].
[86] Wewere not able to find any explicit expression for h =

h(k). However, a simple mathematical study shows that h
is a single‐valued function of k with a monotone decrease as
hi /h0 increases.
[87] Solving numerically this equation for a discrete set of

k values for k > 1 shows that _	/c0(t) always decreases as
hi /h0 increases at a given time (see Figure A2) contrary to
what is observed in the experiments presented here. Indeed,
Figure 11c shows that at a given time t ≥ 4tc , the front
velocity vf increases as hi increases while for smaller values
of t the front velocity is almost constant whatever hi .

Notation

� Inclination angle of the plane
�r, �a Repose and avalanche angles of the glass

beads
d, r, n Diameter of the beads, and density and

porosity of the granular material
x, z Coordinates in the downslope direction

and in the direction perpendicular to the
slope

h0, r0, a Initial thickness, downslope extension,
and aspect ratio of the released mass

hi Initial thickness of the erodible bed
hf, rf, �f Final thickness, runout distance, and

mean angle of the deposit
tf Time at which the front stops

xf (t), vf (t) Front position and front velocity
hm(t) Maximum thickness of the flow
v(z) Vertical profile of the horizontal velocity

at a given position along the plane
hs(�) Minimum thickness of flow at a given

angle �
a, d1, d, k, g, b Empirical parameters in the scaling laws

g gravity
c0, m Wave velocity in thin layer granular flows,

variable of the analytical solution
tc Characteristic time
�c Critical angle for the efficiency of erosion

effects
hfs(t) Position of the interface between flowing

and static grains
ts Time at which the front reaches a given

position along the slope
_� Strain rate
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