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STELLINGEN

1. In afwijking van de gangbare mening kan worden aangetoond dat bij uitschuring
van een zandbed door vloeistofstroming, zolang er geen bulkerosie optreedt,
de turbulente vloeistofschuifspanning aan het bedoppervlak een kritische waarde

niet zal overschrijden.
Dit proefschrift, hoofdstuk 6.

2. Grote vloeistofdrukgradiénten boven een korrelbed, die instantaan in een
sterk turbulente grenslaag kunnen ontstaan, zullen aanleiding geven tot bulk-
erosie, waarbij verschillende korrellagen van het bed tegelijkertijd kunnen

worden geérodeerd,

Dit proefschrift, hoofdstuk 8.

3. De veronderstelling van Williams en Kemp, dat bij het begin van zand-
transport door vloeistofstroming ribbels ontstaan zodra de stroming sterk
genoeg is om het bed uit te schuren, is niet algemeen juist.

P.B. Williams & P.H. Kemp (1971)
Proc. ASCE J. Hydr. Div., 97, No.HY4,
505.

4. Mits professioneel gehanteerd, biedt het filmmedium meer mogelijkheden
bij de studie van sediment-transport dan door onderzoekers op dit vakgebied

vaak wordt gerealiseerd.

5. Bagnold's voorwaarde voor het zichzelf voortdurend in stand houden van
suspensiestromen, namelijk dat het arbeidsvermogen van de suspensie
voldoende moet zijn om de deeltjes in suspensie te houden en de stromings-
weerstand te overwinnen, is op fysische gronden niet haalbaar.

R.A. Bagnold (1962)
Proc. Roy. Soc., 265 A, No.1322,315.

6. Ondiepe funderingen in de zeebodem kunnen geleidelijk wegzakken binnen een
plastische zone die door golven onstaat en tijdens de golfwerking in stand
wordt gehouden.

R. Fernindez Luque & R. van Beek
Soc. Pet. Eng.J., 14, No. 4, 330.
(1974)



10.

Instabiliteit van verplaatsbare boorplatforms, ten gevolge van erosie om

de poten, kan het meest doeltreffend worden bestreden door de poten als
een open vakwerk met dragende, in het midden opengewerkte, voet uit te
voeren, en ze bij het plaatsen van het platform op gekontroleerde wijze tot

een bepaalde diepte de zeebodem in te spuiten.

Het bezwijken van een holte, door afschuiving, in een belaste zandsteen-
formatie, wordt bepaald door een eindige limietwaarde voor de plastische

vervorming van de zandsteen om die holte.

Voor een praktische poriénvolume-analyse van laagporeuze materialen,
door middel van de lage-temperatuur-desorptie-methode, lijkt ethaan het

meest geschikte adsorbaat.

Het aantal idee&n dat gegenereerd wordt in een industrieel laboratorium,
en resulteert in de ontwikkeling van nieuwe produkten en/of technologieén,
neemt eerder toe dan af als een beperki en zorgvuldig omschreven

programma aan het werk ten grondslag wordt gelegd.

R. Ferndndez Luque,

"Erosion and transport of bed-load
sediment"’,

Delft, 11 december 1974



De wetenschap bestaat uit ideeén of
begrippen; de ideeén zijn echter slechts
middel, want het gaat er in de weten-
schap niet om feiten door wetten te
vervangen, doch om feiten door middel
van wetten te leren kennen. Feiten zijn
het einddoel van de wetenschap, daar is

ze op gericht,

De ideas consta la ciencia, si,
de conceptos; pero no son ellas,
las ideas, mds que medio, porque
no es ciencia conocer las leyes
por los hechos, sino los hechos
por las leyes; en el hecho termina

la ciencia, a el se dirige,

Miguel de Unamuno

(Ensayos)
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EROSION AND TRANSPORT OF BED-LOAD SEDIMENT

INTRODUCTION

Today the mechanism of bed-load transport is not yet completely understood.
The existing bed-load transport formulae are either purely empirical, such as
SHIELDS' formula (1936) or the well-known MEYER-PETER & MULLER
equation (1948), or have an underlying theory, for instance the theory of
KALINSKE (1947), EINSTEIN (1950), BAGNOLD (1956), or YALIN (1963).
These theories are, however, based on assumptions some of which are not
fully justified, The theoretical and experimental work reported in this thesis
is intended to clarify a number of fundamental aspects of the mechanism of
bed-load transport. A

A basic understanding of the mass- and momentum-exchange processes
that occur in the zone of transition between the flow region and the bed during
bed-load transport is essential in order to derive generalised sediment-transport
equations, Spatial averages are necessary to obtain a measure of the 'macro'-
stresses induced by an erosive flow in that zone, VAN DEEMTER & VAN DER
LAAN (1961) formally obtained equations for the momentum and mechanical-
energy balance of a dispersed two-phase flow system, taking into account the
effect of differences in velocity between the fluid and the particles. HINZE
(1962) worked out these equations for a Newtonian fluid containing solid particles,
taking also the effect of turbulence into account by applying the well-known
Reynolds' procedure, In this thesis we shall consider the mass- and linear-
momentum-balance equation for a Newtonian fluid containing solid particles,
rigorously defining average quantities, such as the average fluid and solid
velocity or stress components, along 'smooth' statistical surface elements in
the mixture. HEINRICH & DESOYER (1956) pointed out that a statistical surface
intersects the fluid and the solid at random and therefore cannot be used to
calculate the fluid drag on particles in a porous medium. For this purpose he
defined 'wavy' surfaces intersecting the solid at intergranular contacts only.
We shall use such 'wavy' surfaces to express the balance of forces acting on
the particles of a fluid-solid mixture in turbulent bulk motion, introducing an
apparent viscosity for the fluid component, We shall also indicate the
limitations of this procedure. These equations will be applied to calculate the
attenuation of viscous-momentum transfer from the boundary towards the

interior of a granular bed subject to a surface flow, the average drag and lift
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forces exerted by a turbulent shear flow on particles of the bed surface, and
the balance of forces acting on a bed load under uniform-flow conditions,

Stability conditions will be formulated for a loose granular bed subject
to erosive flow, at SHIELDS' grain-movement condition (1936), and during
bed-load transport. This will lead us to the conclusion that the bed load must
reduce the maximum turbulent fluid shear at the bed surface, at sufficiently
high bed shear stress, to the critical threshold drag that would lead to the
initiation of non-ceasing scour.

In order to verify our conclusion that the bed load reduces the maximum
turbulent fluid shear at the bed surface to a critical value, and to study the
mechanism of bed-load transport in general, we carried out a series of
experiments in which we measured the mean bed shear stress at SHIELDS'
grain-movement condition and at the initiation of non-ceasing scour. We also
measured the rate of bed-load transport, the average particle velocity, the
rate of deposition and the average length of individual steps of saltating bed-load
particles, in water, as a function of the time-mean bed shear stress and the
slope of the bed surface, using different bed materials. These experiments will
prove that certain assumptions in the theories of KALINSKE, EII:ISTEIN, BAGNOLD
and YALIN are unjustified.

KALINSKE (1947) expressed the rate of bed-load transport as a product
of the number of particles participating in the motion, the average velocity
of the bed-load particles, and the particle volume. He assumed that the areal
bed-load concentration, defined as the total projected area of particles in
motion, has a constant value of 0.35, We found experimentally that this
assumption is incorrect. The areal bed-load concentration increases almost
linearly with the difference between the average bed-shear stress and the
critical bed-shear stress at the threshold of continuous sediment motion,

EINSTEIN (1950) expressed the rate of bed-load transport as the number
of particles eroded from the bed surface per unit area and time (equal to the
number of particles deposited on the bed surface per unit area and time,
under uniform-flow conditions), the particle volume and the average distance
covered by the bed-load particles from the moment they are eroded until the
moment they are deposited on the bed. EINSTEIN related this distance to the
probability of a saltating particle being deposited when striking the bed surface.
He assumed that this probability is equal to one minus the probability that a
particle of the bed surface is eroded at any time, and concluded that the total
average distance covered by the bed-load particles must increase with increasing

bed-shear stress. We found experimentally that the total average distance
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covered by the bed-load particles is independent of the time-mean bed shear
stress and that therefore these two probabilities are not related to each other.

BAGNOLD (1956) proposed a theory for bed-load transport based on the
work done by the fluid to transport the sediment., He considered the siress
equilibrium in steady flow, introducing the concept of a 'dispersive' grain
pressure on the bed surface, and assumed that at low bed-load concentrations
the fluid component of the turbulent bed-shear stress equals the critical bed-
shear stress at the threshold of sediment motion, while at high bed-load
concentrations the fluid component of the turbulent bed-shear stress may be
neglected. We found experimentally that at low bed-load concentrations the
fluid component of the turbulent bed-shear stress is practically equal to the
total bed-shear stress, and we concluded on a theoretical basis that at high
bed-load concentrations, during erosion with or without simultaneous deposition,
the fluid component of the turbulent bed-shear stress must be practically equal
to the critical bed-shear stress at the initiation of non-ceasing scour in the
absence of a bed load.

YALIN (1963) derived an expression for the rate of bed-load transport
based on dimensional analysis and the dynamics of the average saltating motion
of the grain. He assumed that the saltation of a grain is analogous to the
ballistics of a missile, in the sense that the grain gains its maximum level
during a saltation owing to its initial velocity when it is lifted from the bed
surface, and not to the continuous action of a driving force. We found
experimentally that this assumption is not valid for saltation in water. Close
examination of the motion of saltating particles in water showed that these
particles were transported nearly in suspension for the greater part of their
trajectory. Both the vertical and horizontal accelerations of the particles were
then very low in comparison with the acceleration that they would experience
owing to a drag force equal to their submerged weight, This implies that the
saltating particles experience a lift force by the shear flow for the greater
part of their trajectory, which is approximately equal to their submerged weight,
and a drag force that is much smaller.

In a recent paper BAGNOLD (1973) discussed the nature of saltation
and bed-load transport in water and concluded that the fluid thrust necessary
to maintain the motion of bed-load particles in water is exerted by virtue of
a 'slip' velocity between the fluid and the particles, We measured the average
transport velocity of suspended bed-load particles in water and found that it
was equal to the average fluid velocity calculated for a turbulent flow without

a bed load, at about three particle diameters above the bed surface, minus a
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constant. The constant was proportional to the critical shear velocity at
SHIELDS' grain-movement condition. Since those particles were practically not
accelerated, on an average, we did not interpret this velocity defect as an
average 'slip' velocity between the fluid and the suspended bed-load particles,
but concluded that the average fluid velocity at the particle level (about three
diameters above the bed surface) was reduced by a constant value owing to

the presence of the bed load. This constant value can be explained by considering
that the turbulent shear flow must exert a lift force on the suspended particles
that is practically equal to their submerged weight. Our conclusion seems to
be confirmed by FRANCIS' experiments (1973). FRANCIS studied experimentally
the mechanism of saltation and describes in his paper an experiment where

one marked grain was observed while moving in the company of many other
grains of a bed load. Its velocity was reduced to below the level it would have
as a solitary grain in the same water stream, thus indicating, according to
FRANCIS, how the friction of the grain load reacts to the stream to give

lower speeds close to the bed.

We can conclude that a loose granular bed must be severely eroded
instantaneously where the momentum of the surface flow changes radically and
the bed load cannot reduce the maximum turbulent fluid shear at the bed surface
to the critical threshold drag that leads to the initiation of non-ceasing scour,
i.e. where the bed load cannot protect the bed surface against scour.

Severe scour generally occurs in areas of highly turbulent flow where the
fluid instantaneously induces large pressure gradients in a transition zone
between the bed and the bed load. We shall present a method that permits
determination of the extent of the zone of 'instantaneous instability' or 'bulk
erosion’' under a two-dimensional jet of rapidly increasing energy, and we

shall compare the results of our calculation with those of a simple experiment,
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2, MASS AND LINEAR-MOMENTUM BALANCE EQUATIONS FOR A FLUID
CONTAINING SOLID PARTICLES

2.1, Balance of mass and momentum in integral form

Consider a volume V of an incompressible Newtonian fluid containing
solid particles, bounded by a closed surface S intersecting the fluid and the
particles at random (Fig. 1 shows an element AS_of such a 'smooth' surface),
The integral mass and linear-momentum balance equations for the fluid and
the solid components of the mixture inside that volume read (according to the

summation convention for repeated indices):

§ pfvifnidsf+—aa—tﬂj pdef=0 (1a)
Sf Vf

HS' psvisnidss+%iﬁ p dVS =0 (1b)
SS

VS

Vf Sf (2a)

9 f s 8 Jcﬁ s s s _
at ” Pgv; 4V + [Q o vy vy nd8
VS s®

(2b)
- 8 s _ f b ' s
—ﬁcijnjds i(cij nJ.dS +ﬂjpsgidv
8 Sb VS
where
£ ¢ BV;f vt
0 -
i p5ij+u(rxj'+?xil) (3)

is the fluid stress tensor.



-8 -

The index f on these equations indicates that the integration is restricted
to the fluid part Sf of the boundary surface S or to the fluid part Vf of the
volume V, whilst the index s refers to the solid part of S of V. The index b
indicates that the integration is carried out over the total fluid solid boundary
surface Sb inside the volume V., The expression n ‘represents the projection
along the i-axis of a fixed cartesian frame, of the unit vector n along the
outward normal of (a) an element de or dS® of the closed surface S around
the volume V, (b) an element dSb of the fluid/solid boundary surface of the
fluid volume Vf (see F1g la), The other symbols have their usual meaning
o is the density and V the velocity of the fluid (f) or solid (s) phase Oisj the
solid-stress tensor, pf the fluid pressure, | the fluid viscosity and g the

acceleration due to gramty].

2.2. Averaging procedure

To derive bulk differential expressions for the mass and linear-momentum
balance equations (1) and (2), we have to define average quantities for the
fluid and solid components of the mixture, for small but finite dimensions.
Consider a plane statistical surface element AS around a given point in
the mixture (see Fig. 1 ). We define for any relevant quantity £ surface

averages Ef and §S along the fluid and the solid parts of AS, respectively:

oL [ easf (42)
ast T
)
55 1 s
g% = — £ds (4b)
vl
A8

The average definitions are, of course, only meaningful if the surface
elements AS are chosen large enough in comparison with the dimensions of the
grains and of the intergranular spaces to ensure smoothing out of all fluctuations
of the micro-quantities and, on the other hand, small enough with respect to
the gross dimensions of the flow region considered to avoid measurable
smoothing out of the macro-field itself. The latter implies that the size of
AS can be chosen such that, within a certain range, a change in size of AS
does not affect the average value,

When, in addition, the surface averages, averaged over the fluid and
solid parts of a statistical surface element AS, vary 'slowly', e.g. linearly,

over a statistical length element ALn in the direction X perpendicular to AS,
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they may be interpreted as volumetric mean values, obtained by averaging over
a statistical volume element AV chosen symmetrically around AS with lateral
surface area AS and thickness ALn; they are thus independent of the orientation

of AS in the mixture,

foph [ e [f cav
n ALn AV Avf

P | s [ s
n AV

For special purposes, e.g. to describe the shearing filter flow along the
surface of a porous medium, volume averages can also be defined by averaging
any relevant quantity £ over the fluid or solid part of a flat volume element

8V of very small (but finite) thickness 6Ln, provided the projected area ASn

of the volume element is sufficiently large.For a statistically disordered medium,
the local average concentration of the solid component, represented by the
symbol C, is by definition the same for a statistical cut AS and a statistical

volume element AV,

S S
c-48 Ay

S AV (6)

We define surface averages along the fluid/solid boundary surface inside

a statistical volume element AV of the mixture, as follows:

Pt [ gad 5

ASb

where ASb is the total surface area of the solid component inside the statistical
volume element AV, We define the specific surface area of the solid inside

AV, as:

a5 (®)

Using the surface averages defined by equations (4), we can define tensor
components (aifj’ Eisj) for the average stresses (ff, f ?) transmitted to the fluid
and solid parts of AS, by considering mutually perpendicular macro-surface

elements:



Here nj is t_})le projection along the j-axis of a fixed Cartesian frame of the
unit vector n along the outward-drawn normal of AS. We can thus express the
total average stress Cf\; acting along AS as follows:

f.=@-0 0 n +c3n (9)

1 1)) 1 ]

In soil mechanics and in the mechanics of sediment transport one is
interesteq in the stresses acting at intergranular contacts rather than in the
stresses that act across an arbitrary cross-section of the particles, Evidently,
intergranular stresses cannot be averaged with respect to smooth statistical
surfaces, but rather with respect to 'wavy' nbn—statistical surfaces, as
proposed by HEINRICH & DESOYER (1956) and more extensively by MANDL
(1964). Such a surface fluctuates around a corresponding smooth surface S
and thereby intersects the solid component of the mixture at intergranular
contacts only. Hence, we allow the fluid part of g to partly coincide with the
total fluid/fluid contact area of § (Sf), and to partly follow (as closely as
possible to S) the smallest solid fluid contact area around S (§b). The solid
part of ’S“(fs"s) will then automatically coincide with the total intergranular
contact area along the shortest path around S through the fluid component of
the mixture (see Fig. 1).

Next, we define surface averages along the total fluid/fluid + fluid/solid
contact area Agf = ASf + Agz and along the solid/solid contact area Ags of

the finite surface element AS:

gf:'ﬁﬁ gde (10a)
ast

~ 1 £ ~

gs=-5§ﬂ £dss (10b)
1SS

Here AS is the total fluid + solid area of the corresponding smooth, flat

surface element,
Let us now apply this averaging procedure to the stresses

f. = 0..n, (11

transmitted to AS, We can define tensor components for the average stresses
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transmitted to the f and s parts of AS by considering mutually perpendicular

'wavy' elements:

jf U.f.n.; £5 =05 g
1 13 1 1)
Here nj is the projection along the j-axis of a fixed cartesian frame of the
unit vector n along the outward-drawn normal of the corresponding smooth
surface element AS, We can thus express the total average stress acting on

Ag as follows:

1 ﬁ s j S -5 of
AS[ £ asS + jfids ] hEREE AR
As® ast ‘

It can easily be shown that the total average stresses acting on AS
equal the total average stresses acting on the corresponding AS if inertial

forces associated with the rotation of the individual particles may be neglected:

£, =05n + O.f.n. =¢85, + (1-C) 3.? n, (12)
1 1 ] 1] 1] ] i ]
o8 .5t~ ¢35 + - &L (12a)
1) 1 i} 1}

The 'macro'-stresses %Vif= Gifj nj and fis = Uisj n, are defined as the bulk

average stresses acting along the fluid part and the intergranular contacts
(as a sum of intergranular contact forces), respectively, of a 'wavy'
macroscopic surface element with unit (outward) normal vector r—;, per unit
bulk (fluid + solid) area of the corresponding smooth macroscopic surface
element. We can define as follows the average pressure acting across the
fluid and solid parts, respectively of a closed 'wavy' surface on a 'macro'-

volume element of a fluid containing solid particles:

p=p +p° (13)
~f 15t
P=-3 (132)

~s _ _15s
P =737y (130)
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2.3. Balance of mass and momentum in differential form

Applying the averaging procedure described in the preceding Section (2.2),
we may write the mass and linear-momentum balance equations for the fluid
and the solid components of a statistical volume element of the mixture,
bounded by a smooth surface, in terms of bulk-surface and bulk-volume

integrals:

Mass balance

t 3 iy _ .
jsﬁpf (1-C)v,n dS+ 5 Jj P (1-C)AV =0 fluid (14a)
S v

-5 5 _ .
gpszinidS+5{jﬁPstV—0 solid (14b)

Momentum balance

sa{m pf(l—C)x'zfdv +ﬁipf(1—C) v_ix}'jfnjds
v S
; &
- 1
(1 C) [—p 51j+p(-§;§—+—?i—)] nde+

m&c:g

+ m [pf (1-C)g + Ri] dv fluid (152)
A%

%j‘gpscgde*- )PSCV{GJ,S njas:

+ ) Ce,cg-rIav solid (15%)

Here R is defined as the average reaction force per unit bulk volume exerted
by the sohd upon the fluid inside a statistical volume element AV [averaged

according to equation ml:
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| ai ot
Ri=zl\—, jj [ (T}zj—-f-g—]—-]nds (16)
asP '

It should be noted that these 'macro'-equations pertain to the instantaneous
balance of mass and linear momentum in the fluid-solid mixture.

If the condition of 'slow' spatial variation of the surface means is
satisfied, the surface averages 5vi/axj in equation (15a) will be equal to the

corresponding volume averages, and we may apply Gauss' theorem to these

averages:

gglf oV, 1 avi v f £

Ox +3x. T jﬁ (ax. * Bx.)dv

j i av P j i
AV
= H Vn +Vn)de+-—1—f- ﬂ (an.”*V.fn.)dSb
¥ gvio e Bl (17)
AS

The first integral on the right-hand side of this equation extends over the

fluid part Sf of the boundary surface S around the statistical volume element

AV and is equal to:

‘ ~f ~f
gf (v n +v n)dS é@(l—C) (Vinj+vjni)ds (18)

or, applying Gauss' theorem in the inverse sense:

f f ) - ol -
ﬁ;f (Vi nj + vj ni) d Sf= {S}; [a-¢ vif]+&;— (-0 v§ 1}av (18a)
S

In order to evaluate the second integral on the right~-hand side of
equation (17) we apply Gauss' theorem to the volume-averaged strain-rate
tensor in the solid part of the same statistical volume element; this of

course is equal to zero if the particles are undeformable:



é—vls .5 1 8vls 3y, 8 s
X +ax‘]= S.U (ax +ax)dv
AV s i
AV
=1 ﬂs (V.sn. + V.Sn.) as® - . H (V.sn. + V.Sn.) d Sb
s i joi s 175 joi
AV S AV b
AS
=90 (19)
Since v.f = viS on the boundary surface inside AV:
i
M (v.fn. + v.fn.) d Sb = H (v.sn. + V.Sn.) d Sb
i} joi i 3
£8P asP
= (V.Sn. + V.Sn.) as®
g b joi
S
_ 1 -s -8
= § C (v n; Y n) ds (20)
S

or, applying Gauss' theorem again in the inverse sense:

: £ £ b_ 98 .=, ., 9 . -8
ﬂ (vin; +v,'n) s “{axj ECVi]+aXi [C V] 1} av (202)

asP

£
The average stresses y (avi/axj f, avj/axi’) in equation (15a) can thus be
written [see equations (3), (6), (17), (18a) and (20a)]:

—f —f
v v
—f =t . i, im0 e =S
gy TP “(axj ") T I {axj [@-0yvy +Cvi] +
d ~f -5
+ axi [3-0) Vj + C Vj 11 (21)

If the condition of 'slow' spatial variation of the surface means is
satisfied, we can apply Gauss' theorem to the surface integrals in equations
(14) and (15) and transform them into volume integrals, Since the region of
integration is arbitrarily chosen and time-independent, the balances of mass

and linear momentum are then obtained in differential form.
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The mass-balance equations are:

0 =f ) .

5o [P (A-C) vy 1+ 5[ (1-0) ] = 0 fluid (22a)
i

Ep cv; ]+ Tl Cl=0 solid (22b)

Summation of equations (22a) and (22b) gives:

) -f -8 . 3¢ .
S Py (1-C) vy + o Cvy 1= - (o - pp 5% mixture (232)
= [1-0) ¥ +CF 1= 0 mixture (23b)

The linear-momentum balance equations in differential form reads as follows

[using the average expression (21) and equation (23b)]:

t[pf(lc)v]+ J[pf(lc)VV]"

-—3—[1—0 "f]+ ——92——[1-0 d e +p41-0) g +R
3, -ACr et B3, (1-C) v; i 1 tey g + R
fluid (24a)
3 -
o, Cvl+ [p cvy°1=
:j—[céslm Cg -R solid (24b)
X, ij s i i A

Summation of equations (24a) and (24b) gives:

L

d £ -5 d — —
5 Le-C) vy +p Cvy T+ axj fos(1-C) Vivy P C VY

2
3 -5 d -f d ~f -8
g;)j [c Gij] -g [A-C)yp'] +u %3, [a-Cyv, +Cv, 1+

[pp 1-C) +04C1 g mixture (25)
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3. BALANCE OF FORCES ACTING ON THE PARTICLES OF A FLUID-SOLID
MIXTURE IN TURBULENT BULK MOTION

Using the areal averages described in the preceding Section (2.3) we
cannot calculate the balance of forces acting on the particles of a fluid-solid
mixture, because the smooth surface S enclosing an arbitrary bulk volume of
the mixture intersects the particles at random, We therefore now consider the
forces acting across a finite element AS of a 'wavy' surface §, as defined
in Section 2,2, Substitution of equations (12) and (13) in equation (25) gives
the followiﬁng differential equation for the fluid-solid mixture, using expression

(21) for Uij :

3 ~f - 3 — f — 8 d  ~f ~sg
5 (P @-C) v +p  C Vis] * 55 [P0 vy oy C vy, l=-5 (B +B)+
] 1
a ~g ~g a Nf Nf
+ axj @ +p 51;') + o, (O +p 8y * [Py A-C) +o Cl g (26)

Let AV be a finite volume element bounded by a closed 'wavy' surface,
and fJ‘l the average force per unit bulk volume exerted by the fluid upon the
particles enclosed by NG f; is related to the average reaction force Ri
exerted by the solid upon the fluid inside a statistical volume element V bounded

by the corresponding smooth surface, by

~ 1 £ N'f ’-f
F =-R, +-= [ fids—gfids] (27)

Using the averaging formulae (4a) and (10a) and the expressions (6), (11) and
(12), we find:

~d 1 Nf "'f
:\ - — — —
¥ R, + 5% [Oij (1-C) oij] n ds
S
_ O [t ~f
= - R, + 3 ["ij - (1-C) Gij:l (272)

i
The drag force exerted by the fluid upon the solid enclosed by oYV is thus not
the same as the drag force of the fluid upon the solid enclosed by AV, due
to a difference in solid /fluid contact area at the boundary,
Substitution of (12a) and (27a) in equations (24) gives the following
differential equations for the linear-momentum balance in the fluid and solid

components of the mixture, using expressions (13) amd (21):
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oS £1 .9 =11 .
at [pf(l © Vl] e [pf(l © v ] -
Bl £, ~f

T +gx—j (O + P 8y *pp(1-C) g - K fluid (28a)
2 1,2 —s7 _

3t [pscvi] "o, [pscvivj ] -

E d_ 8 ~8 ~ .

"3k Tax, Oyt R by re Cg T solid_ (28b)

i ]

EINSTEIN (1906, 1911) has shown theoretically that the viscous 'macro'-

stresses transmitted through a dilute suspension (C < 0.1) of naturally buoyant
spherical particles (x_zsi = x?if = Vi) under steady 'slow' flow conditions can be

expressed as follows:

~f o >V | 3
= ok
Oy TP by T (axj e, (29)
where
Gt = +%C) (30a)

is the apparent viscosity of the suspension.
EILERS (1941) carried out careful experiments on suspensions of almost
rigid bitumen particles (DS = 1,6 - 9.7 um) in water, He suggested the

following empirical expression for the apparent viscosity of concentrated

suspensions:
0,975 2
* = .
o= (1 +_7—(Co C)—l) (30b)

where Co = 0.78 is a limit value for the solid concentration, BAGNOLD (1954)
measured the total shear stress T and normal dispersive grain pressure f)vs
(defined as the normal force per unit bulk area due to intergranular contact
forces) in sheared suspensions of spherical particles (dS = 1,32 mm) in

water, He suggested the following empirical expressions for T and SS within

the C-limits 0.1 <C < 0,6, in the viscous regime:
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3
T S B SR
T = Xy+0xy_2‘25>‘ U Iy (31a)
~S ~S ~
= - g =1.830 31b
P ¥y Xy ( )
Here

@]

is defined as the 'linear grain concentration' and Co = 0.74.

The viscous regime is defined according to BAGNOLD by N < 40, where
1

2 2
_ A °Pq i

u dy (33)

is a measure of the ratio between inertial and viscous stresses in the suspension,

VAN DER POEL (1958) calculated the apparent viscosity of concentrated
suspensions by extending a method developed by FROHLICH & SACK (19486) for
dilute suspensions., The results of his calculations are in fair agreement with
EILERS' experiments up to a concentration of C = 0,6, as shown in the table
below, although his theory does not take intergranular contact forces into
account,

BAGNOLD's eguation (3la) predicts a much higher apparent viscosity than
Eilers! equation (30b), as it is shown in the table below, This is due primarily
to the faet that BAGNOLD performed his %xperiments at much higher shear
rates (g—; >1o4s'1, N> 6) than EILERS (-gly‘ < 100 s"l, N< 10’6). CLARKE (1967)
found a marked increase in the apparent viscosity of dense settling suspensions
of glass spheres (DS = 53 -176 ulm) in water with the shear rate at shear rates
ranging between 100 and 300 s = (N =1-3), caused by intergranular contact
forces., At very low shear rates, these interactions may be neglected and
VAN DER POEL's theory is valid for C < 0.6. At shear rates N> 1 and
concentrations C > 0,1 intergranular contact forces contribute substantially to the
apparent viscosity, but still the contribution of viscous shear g}fy should be at
least equal to the value predicted by VAN DER POEL's theory for C < 0.86.



Volume u

concentration Eilers' Van der Poel's Bagnold's
C experiments theory (u* =u*") equation (31a)
0.10 1.25 1,29 2,44
0.20 1.84 1.73 5. 57
0.30 2.55 2.50 10.8
0. 40 4,0 4,08 20.7
0.50 7.6 8.10 43.1
0.60 18,0 21,4 115

From the above it follows that the viscous 'macro'-stresses (S'ifj + Sf éij)
acting along 'wavy' surfaces in a concentrated suspension are proportional,
within a limited range of shear rates, to the viscous 'macro'-stresses
(1—C)(<§ifj + f)f 5ij) acting along the corresponding smooth surfaces:

f

~f ~f * ~f —f

o, + " = a-g@., + . 34
p 513 ( ) ij p 513) (34)

Here u*f is the apparent viscosity of the fluid component of the mixture,
At high shear rates, we must also take turbulent momentum transfer by

the fluid and by the solid into account. The terms p f(l—C) Vi—\_f'jf and pSC ivjs
in equations (24) represent an instantaneous momentum flux through the boundary
surface S. The average products of the velocity components may be written as
the sum of the products of the individual averages and the average products of

the local deviations vi' of the velocity components from their average value:

v.v.f = \—g x_/f. + V.'v.'Jf (35a)
1] 1] 1]

——8 _ S=8 T8

ViVJ. vy vj + Vi Vj (35b)

The terms p(1-C) ?;J?'f and p C ?/;Tx;;'s can be interpreted as stresses, in
addition to the fluid pressure, the viscous fluid stresses and the solid stresses.
The linear-momentum balance equations (28) reduce by substitution of
expressions (21) and (34) for the viscous 'macro'-stresses and expressions (35)
for the turbulent fluid and solid velocity components, for a fluid-solid mixture

in turbulent motion,to:
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> £1 .03 £
3t [pfa—c) Vi:l * B, [pf<1'c) Y Vj] =

2mo
~f 37 3 N
= _3p L xf o2 oy vt - -
ax, M SR [pf(l O vi'vi" | +041-C) g = F; (362)

9 =S ) =
St [pSC Vijl " 3%, [pSC Vi Vj] -

_ 3%, 3 ~s s, 3 [ oS ~
Bxi + an (Oij +p 51]’ BXJ. [pSC Vi vj ] + 0g o] g +Fi (361)
where
~ _f -8
Vi - (1"'C) Vi + C Vi ‘ (37)

The apparent viscosity u*f‘, defined by equation (34), is a function of the solid
concentration and may only be considered constant within a limited range of
shear rates. It may be useful to stress that in the above equations terms with
an overscore represent surface averages and not time averages. The above
equations thus describe the instantaneous situation in the turbulent condition.
If, in addition, we want to consider the time-mean situation, also fluctuations

in time of the solid concentration have to be taken into account.

4, HYDRODYNAMIC FORCES ON A GRANULAR BED

4,1, Attenuation of viscous-momentum transfer to the interior of the bed

Let us consider the hydrodynamic forces acting under the surface of a
granular bed subject to a surface flow, Under the bed surface we may generally
neglect inertial forces in the fluid flow. Under these conditions the fluid

velocity Vif and the fluid pressure pf have to satisfy the continuity equation

avf
o (38)

and the equation of motion:

ap 2 g
T3 T u B 2%, v, T o8 =0 (39)
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These micro-equations and the microscopic boundary conditions have to
be averaged correctly if a macroscopic flow equation and macroscopic boundary
conditions are to be obtained.

At first sight, this problem looks very similar to the spatial 'smoothing'
of a homogeneous turbulent flow. Many authors have been misled by this
analogy and have assumed that the commutability of averaging and differentiation
procedures holds not only in the theory of homogeneous turbulence, but also in
the case of porous media, Proper averaging of the terms of equation (39)
according to the method described in Section 2.2 over the fluid part eSVf of a
finite volume element bounded by a smooth statistical surface in a porous

medium with a constant solid concentration shows, however, that this is not

the case:
3p d =f . 1 ff f b
i e L (402)
i i 8V b
AS
—f
2 — f —_—1
d v, A ~ oV,
i 74,1 j i b
Sxox, 3%, 3x. | I J ax. ds (40h)
i3 I
AS
— f
v
i .3 -f
axj - axj Yi (40c)

Properly averaging the terms of equation (39), SAFFMAN (1971) derived
the following expression for the reaction force per unit bulk volume exerted by
the solid on the pore fluid in a porous medium, apart from the hydrostatic

buoyancy force
2~f
R! = -=2 (1-C) (B - p,y + ° 4 (41)
i 3%, P =Py T H 3% 3%;

where f)f is the areal mean pore pressure, '\\rJlf = (1-C) x—rif the superficial fluid

velocity, and
Py = Pho * Pr By ¥y (42)

is the hydrostatic pressure.
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According to MANDL (1963), DARCY's law (1856) for filter flow through a
statistically homogeneous porous medium follows from these equations using
similarity arguments [see also FERNANDEZ LUQUE & MANDL (197.)]. This
means that if [(pf pH), v, ] is a solutmn of (38) and (39) and \A = 0 on solid
walls, the fields [\ (p pH), A V] (A = constant) are also soluuons that satisfy
the boundary condition )\vif* 0 on solid walls. Consequently, the transition to
a similar solution of the micro-equations does not influence the ratio R,\i,'f/;if’
and hence the average reaction force of the flow Ri' is. proportional to v
Moreover, it follows from equations (38), (39), (41) and(42) that the reaction
force Ri' is proportional to the fluid viscosity . Hence, the proportionality

between Ri' and “x‘/lf may be expressed as follows:

[P VT e
R, x 10 v, (43)
in accordance with DARCY's law (1856) for a filter flow driven by a pressure
gradient in a statistically homogeneous porous medium

d - ko
- ax1 (p —pH) R Y (44)

Here K is a structural constant of the porous medium, i.e. the permeability.
This does not mean, according to MANDL, that K is an absolute structural
constant, as is usually assumed, but rather that K is a structural constant
only with respect to a class of mathematically similar micro-flow fields. We
must therefore expect the reaction force Ri' for a filter flow driven by shearing
along the boundary of a porous medium to be different from that for a filter
flow driven by a pressure gradient, even if Vifis the same,

Let us consider a filter flow driven solely by shearing along the boundary
of a 'smooth' bed of granular sediment. We choose a local frame [x, y] with
the x-coordinate parallel to the bed surface in the average flow direction and
the y~coordinate normal to the bed surface, pointing upwards, We define the
bed surface y =0 as a flat statistical surface element AS[0] intersecting the
particles of the bed surface at random and assume that the bed has a constant
porosity for y < 0 (see Fig., 2). The average drag force per unit bulk volume
RX’ exerted by the shearing filter flow on the total solid/fluid boundary surface
enclosed by a finite volume element §V [y], bounded by two sufficient large
statistical surface elements AS [y ~ % 6y] and AS [y +3 6y] a small but finite
distance 8y apart (y +3 6y 0), can be expressed as follows according to

equations (41) and (43) (see Fig. 2).
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2
o ~
-R':u-é-éu=f(=*—(1-0)uf (45)

X dy v
where KV is the 'shear' permeability of the porous medium. Since the micro~
flow behaviour is similar for different values of y, KV is independent of y and
equation (45) yields the following exponential velocity profile and fluid-shear

stress distribution:

1-C
S of ~f Y/ K
u [yl = u e v - (46)
i-c
=f _ _u ou_ -f v
ch =1 3y (oxy)oe (47)
The attenuation constant
-f
Nf
e 1 oan_ 1 Py 48)
KV a‘f oy 6_f dy
Xy

represents the hindrance of the viscous-momentum transfer by the solid
material, Obviously, the latter depends on the surface area of porous medium

per unit pore volume, Assuming linear dependence, we obtain

This relationship is the same as the KOZENY formula (1927) for the 'pressure’
permeability K

/1-C _ CA
R = 2.23 795 (49)

For a uniform bed of spherical grains A =6 Ds’ where A is the specific surface
area of the solid and DS the grain diameter,

MANDL (1963, 197.) found the following filter-flow equation by super-
position of a filter flow driven by a pore-pressure gradient [equation (44)] and
a filter flow driven by shearing along the boundary of a porous medium

(equation 486).
| £ 3 £ 3 y 2L
Tlyl=-5 5 Gpp + G e sz G e v (50)
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Beavers & Joseph (1967) measured the boundary velocity of a Poiseuille
flow over a horizontal fluid-saturated porous block. They related the slip
velocity '\Ti at the boundary y = 0 of the permeable block to the average shear
stress g, exerted by the Poiseuille flow on the block surface by the ad-hoc

boundary condition
g i (51)

and, using the results of their experiments, calculated the factor a, defined

in our terminology (see equations (47), (50) and (51) as

~

K (S
a = -(1—_6—) <—-f > (52)
[0)
xy y=0

assuming that the boundary y=0 intersects the roughness elements of the bed
surface at random (see Fig. 2). They used aloxite as a porous material with

a granular structure, and foametal as a material with a cellular structure. For
the aloxite (K=10_6 inz, average pore size = 0.013 in), they found a =0.1.

Sine (gxy)> (c_rf(y)o because the crests of the upper roughness elements absorb a
significant part of the total bed shear stress, these results indicate that the
'shear' permeability KV of a porous material with a granular structure is much
higher than its pressure permeability K (it should be noted here that Beavers

& Joseph measured KV near the surface and K inside the porous block).

; ~ _ i - = ,
Assuming (ny)o =1.5 (ny)o and C=0.6 at y =0 (near the block surface), 6

we find for the aloxite specimen with a granular structure (a =0.1, K= 10" inz,
av, pore size = (0,013 in) that KV = 560 K, or, using the Kozeny formula (1927)
for the pressure permeability K (equation 49).
R (53)

Since the micro-flow behaviour of a steady 'slow' viscous shear flow in
a statistically disordered porous medium is similar for different values of y,
the ratio giy/c}f;y is a structural constant of the porous medium independent
of y. Thus, the attenuation of viscous-momentum transfer from the boundary
to the interior of the porous medium is related in the same way to (sufficiently
large) statistical surface elements chosen parallel to the bed surface as it is

to the corresponding 'wavy' surface elements [see equation (48) and (53)]



30 3oL
1 Xy _ 1 Xy _ .]_"__.Q_NO 1 (._Cé.) (54)
a:’f 3y 5f dy KV 1-C =0
Xy Xy

These equations show that the viscous-momentum transfer from the
boundary to the interior of a granular bed is absorbed entirely by the solid
skeleton within a boundary layer of two or three particle diameters, From
here, any drag force on the solid is exerted by a pore-pressure gradient.

The linear-momentum balance equations (28a) reduce for the viscous
boundary layer in a stationary sediment bed with respect to the Cartesian

frame shown in Fig. 2, whilst only retaining terms of the highest magnitude,

to
~f ~f
d0 ap ~
Xy = !
5y = Ty T B (552)
ap? ~
- + =F" 55b
dy Pfgy y ( )
where
t = iy
Fl =T +oCg (56)

is the drag force per unit bulk volume exerted by the fluid flow upon the

solid particles (excluding the hydrostatic buoyancy force).

4,2, Drag and lift forces on particles of the bed surface

Let us now consider the average drag and lift forces acting on the
individual particles at the surface of a loose granular bed of uniform particle
size DS, subject to turbulent flow. We choose a local frame of reference (x,Yy)
with the x-axis along the bed surface in the main flow direction, and the
y-axis normal to the bed surface, pointing upwards, The plane y = 0 intersects
the particles&opmost grains) of the bed surface at random. We allow the
macro-element AS(0) of the bed surface to have a slope in the flow direction.

At low particle Reynolds' numbers (ReD< 0.5), where we define

P

—f
Su
Rep, = = (57
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we may express the average drag (F}'() and lift (Fs,l) forces 3exeirted by the
fluid flow (apart from the hydrostatic buoyancy force - oc3Dspfg) upon the
particles of sieve diameter Ds’ bounded by two sufficiently large 'wavy'
surface elements AS [y -2 sy] and Ag[y +38y], chosen parallel to the bed
surface (y=0) a short distance §y << DS apart (see Fig, 2)

3 ~f

oD d0
c o8 (% D2
F == ( 3y = (P - Py (58a)

3

a,D
t = _ .88 8 ~f
Fy c 3y (P" - py) (58b)

Here cfy is areal- average fluid shear stress and Sf the average fluid pressure
transmitted across AS [v] per unit area of the correspondlng smooth surface
element AS[y]. C is defined as the areal solid concentration along AS [y] and
is also equal to the volume concentration of solid enclosed between AS[y-3 5y]
and AS[y+38y]. The ratlo C/(on3 3 represents the number of particles with an
average volume a3D enclosed per unit bulk volume between AS [y—28y] and
AS [y+heyl.

According to SHIELDS (1936), we can also express F;I as

2

F}'{=Cd%pfﬁf o, D? (59)
where' C a is a drag coefficient and ﬁf the average fluid velocity at the particle
level. At low particle Reynolds' numbers, CdN;_l/(piDSﬁf) and

-f -f y o

= + =
Ea (gxy)o (y=0) (60)
Equations (58) should thus be modified as follows for a granular bed with a

non-uniform particle-size distribution:

~f
o, .D 30
11 s xy O~
F! = - —(p - 6la
X A2 < 37 =P pH)> (61a)
., D
127s 2
Fl = (P - by (61D)
y CAZ ay H
where 0qq and o, are particle-shape factors (For a bed of uniform spherical

grains 01 T 09 = 61T).
The attenuation of viscous-momentum transfer by particles of the bed

surface may be expressed as follows in accordance with equations (58a), (59)
[with CdN“l/(ptDsaf)]’ (60) and (61), and by analogy with equation (54):
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~f
d0
1 xy_
=t 3y - ™ CA (62)
Xy
Here 2y is an attenuation factor, depending on(A.y) and on the shape of the
particles.

A sufficiently slow viscous shear flow (?f = 0) does not exert an average
lift force on the solid in a statistically disordered porous medium. As shown
below, this follows from the symmetry of the micro-streamline pattern around
(spherical) particles in a shear flow,

An inspection of the micro-streamline pattern around a rigid particle
in a 'slow' viscous shear flow does not tell us the direction in which the fluid
streams. From the symmetry of the streamline pattern around a spherical particle,
it follows that the normal component (normal to the bed surface) of the viscous
force on any microscopic surface element in the upstream region of the particle
is equal in magnitude but opposite in direction to the corresponding component
on the downstream side of the particle,

Similarly, from the symmetry of the streamline pattern it follows that
the component normal to the bed surface of the fluctuation pressure pf' = pf—gf
on any microscopic element of the particle surface in the upstream region is
balanced by a corresponding component in the downstream region. The resulting
force exerted by shear flow on a spherical particle is thus in the average flow
direction, [This is no longer true when inertial forces start to play a role

in the flow - see SAFFMAN (1964)].

At high particle Reynolds' numbers, the flow is generally driven by
shearing along the boundary and we can express as follows the average drag
and lift forces on particles of the bed surface, (F)'{, ng)’ for a bed of uniform

particle size, under turbulent flow conditions, neglecting unsteady-flow terms:

“3D2 27
v - 2 S XY
F! = % (63a)
3
OL3D d —_—
—_— s 9 ~f _ o et
Fy C X (p +pf(1 C) v'v pH) (63b)
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~f ~f f

=g, - pf(l-C) uv!

Txy Xy (64)

is the surface average total fluid shear and {p + p4(1-C) Wf} the total fluid
pressure transmitted across a 'wavy' 'macro'-surface element Ag(y) chosen
parallel to the bed surface y=0. (u', v') are the (x,y)-components of the
turbulent fluid velocity fluctuations.

According to SHIELDS (1936), we can also express F}’( by means of
equation (59), where CD is only a weak function of ReD for ReD>>1. The
time-average fluid velocity u is given for ReD» 1, as a function of y, by
[NIKURADSE (1933)]

""hl

= 5,75 1ogk—y— + 8.5 (y=0) (65)
S

s*lcl

For turbulent boundary layers with suction or injection, the logarithmic
velocity scale is according to TENNEKES (1964) proportional to (u* +9 ng),
at low suction rates and not too high injection rates (-0.04= Qg/u*f— 0.2) :

=t

— - 5.751log + + 8.5 (652)

@ +97,) ks

= 1
Here u* = (’r(f /pf)2 is the mean shear velocity, and ks the surface roughness
(approximately equal to the particle diameter DS). Equations (63) should thus

be modified as follows for a granular bed with a non-uniform particle-size

distribution:
2 ~f
Q4D oT
, _ 21" Xy
Fx CA 3y (662)
2
Ao D
v o _Jers 8 of st
Fl A 35 B tedl-0 ¥V -py) (66b)
where o 21 and Qo 2Te particle-shape factors, (For a bed of uniform spherical

grains Qgy =g ~ ™).

The attenuation of turbulent momentum transfer by particles of the bed
surface obviously depends on the total surface area of particles obstructing the
flow and can be expressed as follows in accordance with equations (59), (65)

and (66a) for if = 4, and by analogy with equation (62)

~f
aT
1 xy
?f Tl a, CA (67)

Xy



- 27 -

Here al depends on A,y or y/ks, ReD and the shape of the particles,
According to equations (66a) and (67), the attenuation factor can also be

considered as

Q F!
g 5T (68)
21 OLZDS Txy y=0
where F! /(Ct xy) is the apparent shear stress exerted by the flow on that

portion of the bed surface occupied by a grain (OLZD ) divided by the areal
average turbulent fluid shear stress at the bhed surface, Tf . For a uniform bed
of spherical grains A = 6/st, ay =n/4, ag =1/6 and F! = aler T,

A shearing flow also exerts a lift force on the grains at high shear

particle Reynolds' numbers.

=& FL (69)

CHEPIL (1959) found from experiment that for large values (>> 1) of ReD the

lift coefficient on prominent particles in an air stream has a constant value

The lift factor Eo must depend on A.y, ReD and the shape of the particles.

of i =0.85, For turbulent boundary layers with suction or injection, &, will

also be a function of v /ut.

5. BALANCE OF FORCES ON THE BED LOAD

In the main turbulent flow above a granular bed, particles are transported
in suspension. These particles constitute the 'suspended load'. In a thin turbulent
boundary layer between the bed and the main flow, particles are transported
rolling and saltating over the bed. Turbulent momentum is transferred by the
fluid to these particles that constitute the 'bed load', and is then transmitted
as a shear stress and a 'dispersive' grain pressure, to the bed.

Let us consider the balance of forces acting on the bed load under
uniform-flow conditions, We choose for that purpose a local frame of reference
X,y with the x-coordinate parallel to the bed surface in the average flow
direction and the y-coordinate perpendicular to the bed surface, pointing upwards.
We locate the origin of the frame on the flat 'wavy' macro-surface element
A§[0] separating the particles of the bed load from those of the bed. We
separate the bed load from the main flow by means of a smooth macro-surface

element AS[&B] at a small distance 5 above the bed, assuming that no
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particles are transported in suspension,
The linear-momentum balance equations (36) reduce with respect to this

frame for 0< y=< GB’ only retaining terms of the highest magnitude, to:

oD ff, D g
2 [0,0-0) T + & [o1-00 ] + 52 [p, -0 TV ] =

~f
3 ~f —f o ~
= - — - Tog Xy 1
= P p¢1-C) u'u pH] + 3y X (70a)
) ~f =k T
0=-55 [P +p1-C) viv" -pyl - FY (70b)

3 —g. , O -5-8. 3 ~S=8, _
ot [PSCU ]+ % [pscu u ] * dy [pscu v ] -

s
= _2 5 TS . xy &1
=-5x [P e Cuu ]+ —= + (o -0 Cgp v Fy (70¢)
0= - = [(3%+p, OTWST+ o -pp Cg + T (70d)
5 P P PgTPp OB T FY

Here (u,v) are the (x,y)-components of the fluid (fy or solid (s) velocities,
(u',v') are the corresponding turbulent velocity fluctuations, and (F;{, Fg}) are
the average drag and lift forces exerted per unit bulk volume by the flow

upon the bed-load particles [equation (56)],

~8 8 T8
Txy oxy pSCuv (71)

is the surface-average total solid shear stress and ?}f{y

fluid shear stress [equation (64)] in the saltation layer.

the average total

Under uniform-flow conditions, these surface averages may also be considered
time averages (denoted by the suffix —) if the bed surface AS'[07 is chosen
sufficiently large, Equations (70) then reduce to

o7t =

—-5& -F =0 (72a)
S {:’—f+ 1-8) vV - p} - Fro= 0 (72b)

3y P T Py Py y

S
oT
X _ ~ o~ -
—2L + (o -pp Ty +Fy =0 (720)
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-5 B+ TV )+ o -p) T g + Fl =0 (729)

Integration of equations (72) over the entire thickness 6B of the saltation

layer gives
—_— 5 __
~ ~ _ ~g _ ~Y
o™ To " To 7 j e dy (732)
o
— — Sp_
(7 eo00) 79 - T e p )= Fay
f H y=8g f Hj) y0 J y
o
(73D)
_ s %3
el fay+ [ e, -0)Te ay (73¢)
0 (o]
5 %8
~§ _ ~ _ J‘ _ —
P, f Fy dy (og—pp ng dy (73d)
0 0o

where FFo is the total average bed shear stress (at y = éB) and (?ﬁ, ('rvi) the
corresponding fluid and solid components (at y = 0).

Let B’.B be the average number of bed-load particles rolling and saltating
per unit area above the bed surface and let (F}‘( , F!) be the average drag and
lift forces exerted by the flow on these particles (excluding the hydrostatic
buoyancy force). Then

[

Let further o p? be the average volume of the bed-load particles and DS the

’1:12|

F' (T4a)

38
corresponding sieve diameter. Then
°s
f (og-pp Cgdy = oc3 ECHET - A (74Db)
o}

The integral linear momentum balance equations (73) can thus be

simplified as follows for a bed-load of uniform particle size:

o 0 ) EB F (752)
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~f = oot } (ot = b IR

BT 0 a0V <py f gy {01 VW opy [y = B By (75)
~s - oa 3

To=0g (FL+aDy (o -0 8] (75¢)
~8 = rEy 3 _

P, = - g (E - aD (g~ op &) (750)

According to these equations, an average drag force of the fluid on the bed-load
particles results in a reduction of turbulent fluid shear at the bed surface,
while an average 'dispersive grain pressure' on the bed results in a turbulent

fluid pressure drop across the surface.

6. STABILITY CONDITIONS FOR BED SURFACE

6.1. SHIELDS' grain-movement condition

The upper layer of particles on a loose granular bed will start rolling
if the moment of the surface forces exerted by the fluid on the particles at
points of contact with underlying particles is greater than the moment of the
resisting force of gravity (see Fig. 3). According to CHEPIL (1959), we can
express the average threshold drag acting on grains of sieve diameter DS at
the surface y =0 of a horizontal sediment bed, bounded by two 'wavy'
surfa ces Ag(i%éy), located a short distance 8y <<DS apart, as

!
X

= tan ¢ (76)

1

3
OLSDS (ps_pf)g—Fy y=0

where o should be approximately equal to the angle of repose (320 for a loose
sand bed), CHEPIL (1959) found from experiments that for the topmost grains
on a loose granular bed a = 24°, This small value is due to the fact that the
drag force on those grains acts above the centre of the particles (see Fig. 2).
Substitution of (63a), (67) and (69) in (76) gives the following equation for

the turbulent bed shear stress at the threshold of sediment motion

~f
T o, tan o
0 _ 3 (77
g = pp gDy gy 24 (1 + 5 tana)
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GRASS (1970) has shown that for any given area of a flat bed there will
be a random distribution of critical shear stresses corresponding to those
shear stresses that will move individual grains. This randomness is caused
by (a) a variation in drag force for a given bed shear stress (this variation
is primarily a function of y/DS), and (b) a variation in the critical drag
angle ¢, We may define ¢ in equation (76) as the average drag angle for the
topmost grains that form part of the bed at one moment during incipient
sediment motion, We can define the bed surface y =0 at any given moment by
the wavy surface A§(O) separating the particles of the bed (at rest) from
those of the bed load (in motion).

SHIELDS (1936) plotted the temporal mean bed shear stress ’_ro in
dimensionless form

1. _____9____
(] o 0P gh (78)

at the threshold of continuous sediment motion ('Fo = '-}"C) versus the shear
REYNOLDS' number
D u

Re];k = —f T o= P! (79)
and found that 1/41 has values ranging from 0,035 for ReD 10 to 0,06 for
Re ep a2 and ReD N400 (see Fig. 5).

We can also defme a critical shear stress T, 28 the areal-average
turbulent fluid shear, fr (O), that will just move the topmost grains forming
part of the bed at any gwen moment at the threshold of continuous sediment
motion, GRASS (1970) has shown that at SHIELDS' grain-movement condition
the topmost grains are just moved by the temporal mean bed shear stress ;e'
Using SHIELDS' ;c for TN(f), we find by comparing expressions (77) and (78)
that the attenuation of turbulent momentum transfer from the surface to the
interior of the bed is correctly expressed by equation (67), the attenuation
factor ay being a weak function of Re;. For o = 24° and go = 0,85, as found
by CHEPIL (1959), tg :% and Qgy =, valid for a bed of uniform spherical
particles), ay has according to equation (77) values ranging from 1,54 for
1/111 =0, 035 to 0.90 for 1/\b = 0.06. According to equation (68), this means
that for Re =10 the topmost grains 'absorb' 3.6 - 6 times the areal average

bed shear stress.
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Substitution of expressions (6la) and (62) for F}'{, neglecting the longitudinal
fluid-pressure gradient at the bed surface, and of F;’ = 0, in (76), gives the

following equation for the areal-average viscous fluid shear at the threshold of
ES

sediment motion, at low shear Reynolds' numbers (ReD < 0.5)

~f
T aAD tan g

(0 —c;)gD - 3(1 aSAD (80)
s f s 1171 s

*
Vanoni (1964) found empirically l/ll!c =0.22 for ReD = 0,4. This value

should also be valid for ReD
the particles (It should be noted here that this is not predicted by Shields'

%
diagram). For l/’l!c =0,22 as found by Vanoni for ReD =0,4, q= 24° as predicted

< 0.4, as long as there is no cohesion between

by Chepil for high shear Reynolds' number, O :%, 0q1 = 6m and A = G/DS
(valid for a bed of uniform spherical particles), the attenuation factor ay has
according to equation (80) a value of 0.337.

If the bed surface has a downward slope g8 in the flow direction, 1/11!C is

reduced by a factor

1 _ (1 sin (o - B) 81
] vy sin o (81)
c ¢/ =0

This follows from the balance of moments acting at points of contact
with underlying particles on the topmost grains, assuming that the average
hydrodynamic drag and lift forces on those grains act at fixed particle points
that are independent of the slope B (see Fig. 3). This assumption is justified
for either sufficiently small <0.5) or very large (>>1) shear Reynolds' numbers

(when the flow pattern is similar for different flow velocities).

6.2. During bed-load transport

Let us consider during bed-load transport the conditions for stability of
the upper layer of particles that at a given moment form part of a small area
ArSU(O) of a loose granular bed. Experiments have shown that the number of
bed-load particles colliding with or rolling over a certain portion of the bed's
surface at a particular moment during bed-load transport is very small
compared with the number of particles that form part of that surface at that
moment, As a result, the particles of the bed load that exert contact forces
at relatively few and constantly changing points on the bed's surface cannot
stabilise the far greater number of other surface particles. Consequently, the

various forces that continuously act together on the upper layer of particles
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forming part of the bed at any given moment during bed-load transport, i.e.
gravity, surface forces of the fluid and intergranular forces from underlying
particles, must be in equilibrium,

During bed-load transport there will be 'locally' (above the area AS (0))

and instantaneously, in arbitrary succession:
a, simultaneous erosion and deposition,

b. erosion but no deposition,

c. deposition but no erosion.

During erosion, in cases a. and b., the topmost grains forming part of
the bed at one particular moment (at rest, by definition) must be at the threshold
of motion, The fluid part :rvf) of the turbulent bed shear stress 'T'Jo must then be
equal to the critical fluid-ghear stress Te that will just move the topmost grains
that form part of the bed at that particular moment, In case c., during
deposition without simultaneous erosion, ';f) will be smaller than ot

According to this concept, the bed load, consisting of particles rolling
and saltating over the bed, reduces the maximum fluid-shear stress ?i,max at
the bed surfaceto the critical value Te by exerting an average reaction force
on the surrounding fluid, This concept is in agreement with BAGNOLD's theory
{1956) for low bed-load concentrations, However, BAGNOLD assumed this value,
and also the temporal mean value of 'rNg, #fo, to be constant as long as the bed-
load concentration is so low that it does not seriously affect the turbulence
structure at the bed surface, GRASS (1970) and WILLIAMS & KEMP (1971), on
the other hand, have pointed out that for any given area of a flat bed there will
be a random distribution of critical drag forces that will move individual grains,
At incipient particle motion only the topmost grains will be eroded, To will
thus increase as ?0 increases and the bed load will not effectively reduce the
fluid part of the turbulent bed shear stress, This can also hardly be expected
since at incipient motion the bed-load particles only cover a small portion of
the bed surface. With increasing bed-load transport rate, however, o must
become a constant, Tger This will occur once the bed is so smooth due to
erosion of the most protruding particles and selective deposition that it will
not become smoother just by removing the topmost grains that are at rest.

This can be shown and Tgo €21 be determined experimentally, as follows.
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Consider a uniform flow over a 'smooth' granular bed of uniform particle
size, of which one partis consolidated and one part is loose. The consolidated
part of the bed is located upstream of the loose part. At the threshold of
sediment motion only the topmost grains of the loose bed will be eroded and
these grains will be carried away downstream by the flow or will be selectively
deposited in local depressions of the bed surface. The bed-load transport will
thus cease after a short while. With increasing flow velocity, more particles
will be eroded from the bed surface but the bed-load transport will soon cease
again as long as the maximum turbulent bed shear stress ';o,max is less than

the critical value Tge! The bed-load transport will not cease, however, once

~

T 0, max
b
The critical shear stress Tgo €21 thus be determined by measuring the

exceeds Tgo' This will lead to non-ceasing scour of the loose bed.

maximum turbulent bed shear stress at the initiation of non-ceasing scour.

We may conclude that at a sufficiently high bed shear stress, the bed
load, consisting of particles rolling and saltating over the bed, will reduce
the maximum turbulent fluid shear at the bed surface to the critical value Tee'
This conclusion is inevitable, since, if TNf) were to exceed Tge? the topmost
grains under the 'wavy' bed surface §(0) would not be at rest and would thus,
by definition, form part of the bed load. The bed load thus forms a protective
'shield' at high bed-load concentrations, which controls the erosion rate.

At high concentrations, the bed load will seriously affect the turbulence
structure at the bed surface. This may have an influence on the ratio between
fluid shear stress and distribution of drag forces on the particles of the bed
surface, and therefore on the value of Tse’ BAGNOLD (1954, 1956) concluded

from the results of experiments he performed with concentrated suspensions
f

0
approach zero for high bed-load concentrations. In our opinion, this is not true

sheared in the annular space between two concentric drums, that 7. must

because during bed-load transport particles are almost continuously eroded

from the bed surface by the turbulent flow, also at high concentrations,
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7, BED-LOAD TRANSPORT EXPERIMENTS

7.1. Description of experiments

In order to verify our conclusion that the bed load reduces the maximum
turbulent fluid shear at the bed surface to a critical value, Tge? and to study
the mechanism of bed-load transport in general, we carried out a series of
experiments in which we measured the mean rate of bed-load transport (c_ls),
the average particle velocity (us), the average number of particles deposited
per unit area per second (nD) and the average length of individual particle
steps ()\g)s), in water, as a function of temporal mean bed shear stress (rro).
Use was made of five different bed materials, and the measurements were
taken at a horizontal position and three different downward slopes (120, 18
and 220) of the flow channel,

Figures 4a and 4b show the 8 m long, 0.20 m high and 0.10 m wide
closed rectangular flow channel with transparent sides used for this purpose,

which was mounted on a 2.5 m high scaffolding thus permitting rotation about

)

an axis perpendicular to the transparent sides, Water was withdrawn from a
constant-level reservoir located at a height of 3.5 m above the centre of the
channel and entered the flow channel through a diffuser designed to give the
flow at the entrance approximately the same velocity distribution as at the
centre of the flow channel, The degree of turbulence, however, was higher

at the entrance, A 1 m long consolidated bed with a slope of 1 : 30 was buried
under the loose bed right behind the diffuser to prevent scour at the entrance
of the channel. During bed-load transport, the length of the flat portion of the
loose bed ranged between 7 m at the beginning and 5 - 5.5 m at the end of each
experiment (see Fig. 4a). The maximum scour depth behind the consolidated
slope was in none of the cases more than 10 mm,

In order to measure the critical bed shear stress at the initiation of
scour, we placed a 4 m long consolidated bed of the original grain size
between the diffuser and the consolidated slope, and we observed the non-
ceasing scour at a distance of 6 m from the diffuser.

Water flowing out of the channel was discharged via a second constant-
level tank 5 m below the reservoir.

We used two sands as bed material (density Pg” 2640 kg/mg) with mean
(by weight) sieve diameters of DS =0.9 mm and DS = 1,8 mm, gravel
(pg = 2640 kg/m3) of Ds = 3.3 mm, walnut grains by = 1340 kg/ms) of DS =1,5mm
and magnetite (ps = 4580 kg/mg) of DS =1,8 mm. All fractions had upper and

lower sieve limits of 1,33 Ds and 0.67 Ds’ respectively, a standard deviation
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of 0,17 DS, and D90 =1,25 DS (D90 is the diameter for which 90% of the material
by weight is finer). The water depth ranged from 0.08 m for the gravel and the
magnetite to 0.12 m for the other bed materials.

The average flow velocity was measured during bed-load transport with a
small Pitot tube through the entire cross-section of the channel at different
locations and was found to be practically two-dimensional above the (5 cm wide)
centre part of the bed. Figure 4b shows a contour plot of the average flow
velocity distribution in the channel, We computed the temporal mean bed shear
stress q—'o at the centre part of the bed using the Moody diagram for pipe friction
with the hydraulic radius corresponding to the 0,05 m wide centre part of the
bed region. We also measured the hydraulic gradient (with an electrical pressure
transducer), and '?0 values derived from this gradient showed good agreement
with values derived from the Moody diagram, Finally, we also measured the
turbulent fluid-velocity fluctuations during bed-load transport at a distance of
4.5 or 9 mm above the centre part of the bed, using a laser-Doppler velocity
meter, For that purpose a He-Ne laser beam with a diameter of 1 mm was
split into two parallel beams, 34 mm apart, and the beams were focussed by
means of a lens with a focal distance of 190 mm, crossing at the centre of the
flow chanpel. The distance between two adjacent maxima (intensitydin water was
4,72 x 10-6 m and the volume of water enclosed by the crossing beams was
approx. 10"2 rnm3. Milk particles were added to the water of the flow channel
(1 litre per 25 m3 of water) in order to scatter the diffracted light, The
resulting Doppler frequency was measured by means of a phote-electric cell
and an electronic frequency follower connected to a tape recorder and a high-
speed ultra-violet chart recorder (see Fig. 4b). The probability density P(u)
of the longitudinal velocity was obtained by sampling the U.V.-recordings.

We measured the mean rate of bed-load transport (as) by photographing at
regular intervals the foreset bedding formed by the sediment transported above
the centre part of the channel in a 0.04 m deep and 0.4 m long transparent
container at the end of the channel (see Fig, 4a). We only measured the bed-
load transport as long as the bed was flat. Through the transparent side walls
of the channel, a 16 mm colour film (speed 32 - 45 frames/s) was taken of a
small portion (0.25 x 0.10 m) of the bed during bed-load transport, The film
was taken at a distance of 6 m from the entrance of the channel, in a plane
perpendicular to the axis of the channel, It was taken at an angle of 63° to
the plane of the bed surface in cases where the water depth was 0.12 m, and
at an angle of 43% in cases where the water depth was 0.08 m., These angles

were reduced in the flow chamnel to 42° and 310, respectively, owing to
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refraction of the light (see Fig. 4b). The average particle velocity (ﬁS), the
mean number of particles deposited per unit area per second (nD) and the
average length of individual particle steps ()st) were measured visually above
the 5 cm wide centre part of the bed by projecting the film repeatedly at a
speed of 16 frames/s and averaging the observed ﬁs, BD and )\—DS values,
Each value reported in this paper represenis an average of at least 20
measurements. The average particle velocity GS was measured visually by
following, with a pencil in one hand and a stopwatch in the other, small groups
of particles moving together to establish the time required by the particles to
cover a fixed distance on the screen. A ruler and a stopwatch shown in the
film allowed us to calculate the original time and distance. The number of
particles nD deposited per unit area per second were counted visually on a
small rectangular portion of 20 x 20 to 50 x 50 mm of the bed surface shown
on the projection screen, which was further covered with black paper. The
average length ;‘BDs of individual particle steps was drawn with a pencil on
the screen while the film was projected. Individual frames of the colour film
were also projected in a sequence to study the motion of individual bed-load

particles more closely.

7.2. Results of experiments

Tables 1-6 and Figs. 5-14 show the results of the experiments, We only
measured the bed-load transport at low shear stress (1.1 < f?o/fr_cs 2.7,
without ripples, and the turbulence intensity was relatively low in our closed
flow channel. During our experiments the flow Reynolds' number as defined
by the Moody diagram ranged from 3, 104 to 12, 104 The shear Reynolds'
number, however, as defined by equation (11) was sufficiently large (15<Re <165)
to ensure fully developed turbulent flow near the bed surface, particularly for
the heavy sediments gravel and magnetite.

Figure 5 shows the temporal mean bed shear stress at the threshold of
continuous sediment motmn [,r ={p S—pf)g DS/¢C] ag a function of the shear
Reynolds' number (ReD) We found that at SHIELDS' grain-movement condition
the bed-load concentration CB,defined as the total projected area of bed-load
particles above a unit bulk area of the bed, had a temporal mean value of
EB = 0,001 (this corresponds to an average distance between two adjacent bed-
load particles of approx. 25 DS). We used this value of CBc to define To for

all bed materials and slopes.
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Figure 6a shows the probability density P[u] of the turbulent fluid velocity
distribution P(u) derived by sampling the longitudinal velocity fluctuations
measured at a distance of y = 4,5 mm above the bed of magnetite (below the
threshold of bed-load transport: 1/¥ = 0,0275), This function has an almost
normal distribution with a standard deviation of 0.19 u, a skewness factor of
0.017 and a flatness factor (kurtosis) of 2.99.

Figure 6b shows the probability density P(u) measured during bed-load
transport at a distance of 4, 5 mm above the finest-sand bed (DS = 0,9 mm),

We also measured the turbulent fluid-velocity fluctuations at a distance
of 9 mm above the bed of magnetite (Fig. 6¢) and found for the standard
deviation of the longitudinal velocity distribution divided by the mean fluid
velocity at y = 9 mm a value (0,18) that was 5% lower than at y = 4.5 mm
(Fig. 6a). Figures 6d, 6e and 6f show P(u) for the other bed materials
measured during bed-load transport at y = 9 mm, These velocity distributions
have a standard deviation ranging from 0.14 u for the bed of walnut grains to
0.21 u for the gravel bed.

Figure 7 shows the maximum time interval Atmax during which the
instantaneous bed shear stress % exceeded a given value (?O/FFO) without
interruption, derived from the longitudinal fluid-velocity distribution measured
for 10 s at a distance of y = 4,5 mm above the bed of magnetite (DS = 1.8 mm)
and above the finest-sand bed (Ds = 0.9 mm).

Figure 8 shows the temporal mean bed-shear stress at the initiation of
scour [;sc =(pg - pp8 Ds/“bsc] versus the shear REYNOLDS' number (Re;;) for
a horizontal bed of different materials (see also Tables 1-5), The value of
1/\lfSC varies between 0,050 for the finest-sand bed (Ds = 0.9 mm) and 0,058
for the gravel bed (DS = 3.3 mm).

Figure 9 and Tables 1-5 show the rate of bed-load transport as a
function of the time mean bed-shear stress for the different bed materials
at different slopes of the bed surface, using the dimensionless expressions
1/¥ (equation 78), the l/wc—values shown in Fig, 5 and EINSTEIN's dimenionless

expression for the intensity of bed-load transport

3 = 2 (82)
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The line in Fig. 10 satisfies the equation

3/2
3= 5.7@--4}1—) (83)

c
Figure 10 and Tables 1-5 show the average number of particles deposited
on the bed surface per unit area per second, ED’ in a dimensionless form

n Dg
=5 (84)

J(Ez' ) e,

as a function of (1/V - 1/4!@), for the different bed materials at different slopes

of the bed surface. The line satisfies the equation

3/2
- 1_1
ND—0.038<w ; > (85)

[¢]

Figure 11 and Tables 1-5 show the average particle velocity (denoted by GS)

as a function of the shear velocity

u = (7, /pp) (86)
*

and the critical shear velocity u, corresponding to SHIELDS' grain-movement

condition for the different bed materials at different slopes of the bed surface.

The line satisfies the equation
- * *
ug =115 (u - 0.7u) (87)

We plotted u directly versus (u - 0.7u ) and not simply versus u because
u had d1fferent values for different bed materlals and different slopes of the
bed surface (see Tables 1-5)., The scatter of the data points about a single
line would have been distinctly larger than shown in Fig. 11 if we had simply
plotted ﬁs versus u’,

We also measured the average velocity of bed-load particles by projecting
a sequence of individual frames of the film (see Fig, 12). We did this for a
horizontal bed of sand (Ds = 1.8 mm) at four different shear velocities.
Table 6 shows the results. We found that this average velocity, denoted by U
was less than us. For saltating particles we found uB 0.8 u . Close
examination of the motion of saltating particles showed that these particles
were transported almost in suspension for the greater part of their trajectory

at the average velocity ﬁs. They struck the bed surface at this average
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velocity, and then their longitudinal velocity was reduced to a fraction of ﬁs.
By following small groups of particles that moved together on the projection
screen we obviously followed those particles that were carried in suspension
at almost the same velocity and not those particles that were just being
eroded and had a much lower transport velocity.

We measured the instantaneous velocity reduction of the sand particles
due to collisions with the bed surface, at various transport rates, and found
that for (1/y - 1/¢rc) < 0.04 the longitudinal veloiity 1reduction was 0.85 ﬁs, as
an average. At the highest transport rates (for i E > 0.04) we could no
longer measure the velocity reduction because it was difficult to distinguish
the motion of individual particles on the projection screen.

Figure 13 shows a cumulative frequency curve of the length )\BDS of
individual steps of saltating bed-load particles, measured over a horizontal bed
of walnut grains, sand and magnetite, Within the experimental range, the
average step length was proportional to the particle size, the proportionality
factor XB being independent of the solid density and of the mean bed-shear

stress.

7.3. Evaluation of experimental results and discussion

Figure 5 shows that the measured -4%- values fit the SHIELDS' curve well
for g= 00, especially for the heavy sedimgnts gravel, magnetite and sand of
D =1.8 mm. The 1 values for these bed materials at downward slopes of
g = 120 18° and 220c satisfy equation (81) for o = 47°. The -,%— ~values for the
lighter sediments walnut grams and sand of D =0.9 mm alsg satisfy equation
(81) for o= 47° and g= 12°, but give somewhat larger values of ¢, according
to this equation, for g = 18° and 22°. Since equation (81) is valid for sufficiently
large shear REYNOLDS' numbers (ReD>> 1) we may conclude that at SHIELDS'
grain-movement condition ¢ = 47° for ReD>>1 This value is much larger than
the value of o= 24° , which CHEPIL (1959) found for the topmost grains on a
loose granular bed{even larger than the angle of repose), while according to
GRASS (1979) the topmost grains are just moved by the temporal mean bed
shear stress F . Apparently, at the grain-movement condition we use,
comparing @1—- at different slopes of the bed surface for C = 0.001, particles
with an on—value of 47° are at the threshold of motion owing to a large
instantaneous bed shear stress. If we assume that the topmost grains have
an g-value of 24° and are just moved by the time mean shear, grains with
an g-value of 47° are moved, according to equation (77), by an instantaneous

bed shear stress equal to 1,74 times the temporal mean shear (for §0= 0.85).
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We can obtain an estimate of the probability density of the turbulent bed
shear-stress, P(?O), by assuming that the instantaneous bed shear stress 'rNo is
proportional to the square of the instantaneous fluid velocity u at a short
distance of 4.5 mm above the bed (see Figs. 6 and 14). This assumption is
only valid as an approximation because for this purpose a distance of 4.5 mm
is not sufficiently close to the bed surface. According to GRASS (1970), the
standard deviation of P(?o) should be equal to 0.4 ;0, while we found a value

0.36 ;0 for a sand bed (see Fig. 14). Our value is apparently 7.5% too low.

For 1,_\,0 max We found a value of 2.57 :':Jo’ which according to GRASS's results
should have been 2.87 . For T . we found a value of 0.25 7 , which should
o} o,min o

have been 0.18 W—'o.

For a particle of the bed surface that becomes unstable at a critical bed
shear stress Te? to be eroded at a higher instantaneous bed shear stress, this
shear stress must prevail at the bed surface for a sufficiently long period of
time for the particle to be lifted from the bed. Let us try to estimate how long
this period must be. We assume that the particle starts rolling at t=0 in a
direction that makes an angle ¢ = 470 with the plane of the bed surface, and
must cover a distance of at least 0.1 DS in this direction before it can be
eroded. We further assume that the bed shear stress increases from To at
t=10 (us = ﬁs =0) to ?o,max at t=2 At ax(To)’ and then decreases again,
according to the maximum time versus shear distribution represented by Fig.7,
until the particle stops again, At the critical shear stress Teo? the drag force

in the direction of incipient motion is equal to the resisting force of gravity:
ocD3(p - PJE COS
37s s f

At TN0> Te? the excess drag force in the average flow direction is for us<<u,f

3 . 2 _
Ds pf(ufsm Q- ds) =

T
0 3 .
(TC - 1> cggDs (pS - pf)g sin g cos o + CMCLS
_ 3 _ .
= agDg Pl (88)

Here CMpfang is the virtual mass of fluid accelerated with the particle, ug
the areal-average fluid velomty at the particle level and ug the longitudinal

= 0,5 (this is the

particle velocity. For u, = 6 ( (r /pf)2 (see equation 65), C

f M
theoretical value for spherical particles in a dilute suspension), o= 47° and

To™ 2 F_ro’ a sand particle (ps/pf= 2.64) subject to this acceleration scheme
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travels a maximum distance of 0.062 mm in the direction of incipient motion,
while a magnetite particle (Ps/pf = 4, 58) travels 0.092 mm, If Te ™ 2,05 q_'o, the
sand particle only travels 0.033 mm and the magnetite particle 0.045 mm.
From the foregoing we must conclude that the critical bed shear stress Te
cannot exceed approximately 2 To for sand particles of DSZ 0,33 mm, or
magnetite particles of DSZ 0.045 mm, This maximum value of Te should rather
be 2.2 Tor agsuming that we underestimated o, by 7.5%. The critical bed
shear stress at the initiation of scour varies agcording to Fig. 8, between
0.11< Tsc/[(ps—pf)g Ds] < 0,13, assuming that Tse = 2.2 ;sc'

WILLIAMS & KEMP (1971) measured the threshold drag at the initiation
of non-ceasing scour by assuming that this condition corresponds to the
initiation of ripples on an initially flat bed. They found similar values for T sc
as we did for similar shear REYNOLDS' numbers. In our closed flow channel,
however, ripples only started to develop at much larger values of the mean bed
shear stress, as shown in Tables 1-5, Ripples started to develop slowly,
outside the measuring section, at the values of 1/0 marked by a single asterisk.
At the values marked with a double asterisk, a regular ripple pattern developed
very quickly along the whole length of the channel and the experiment had to be
stopped. It is interesting to note here that if these ripples were small (in height)
and the value of 1/{ was reduced to a smaller value, but still larger than 1 /d;sc
(say 1/4 = 1.6/1110), they would disappear and the bed would be flat again, We
therefore gained the impression that, although the condition To > Tse is required
for the initiation of ripples, this condition is not sufficient.

Expression (83) for the rate of bed-load transport is in agreement with
the MEYER-PETER & MI.J.LLER formula (1948) for bed-load transport, apart
from the small value of the coefficient (5.7). MEYER-PETER & MI.J.LLER found
a value of 8 for this coefficient, while WILSON (1966) found a best-fit value of
12 when measuring the bed-load transport at high shear stress. The smallness
of the coefficient we obtained can be explained by the fact that we only measured
bed-load transport at low shear stress (L.1< FO/FCS 2.7), that our l/wc—values
were on an average, smaller than 1/1};0 = 0.047 used in MEYER-PETER &
MULLER's equation (see Tables 1-5), that the turbulence intensity was relatively
low in our closed flow channel, and, finally, that we defined DS as the average
sieve diameter of a fraction, while each fraction had upper and lower sieve
limits of 1,33 DS and 0.67 Ds’ respectively, and D90 =1,25 Ds'

According to EINSTEIN (1950), bed-load particles are transported along
the bed in a series of steps, the length of which is proportional to the particle

size, and deposited on the bed after passing through one or more of these steps.
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The rate of deposition per unit area then depends on the transport rate past a
given section and on the probability that the dynamic forces are such that a
particle may be deposited, The rate of erosion from this. area, on the other
hand, depends on the number and properties of particles in the unit area and
on the probability that the hydrodynamic force on each particle is sufficiently
large to move it, For the bed to be stable, the average rate of deposition must
be equal to the average rate of erosion. The mean transport rate C—ls’ expressed
as solid volume of particles of diameter DS moving through a cross-section per
unit width, can then be expressed, according to EINSTEIN's theory (see list of
symbols), as:

- 3 -
g = OL3Ds ALDsn"D (89)

where ALDs is the average distance covered by the bed-load particles from
the moment they are eroded until the moment they are deposited on the bed.
According to EINSTEIN's theory, this distance is related to the average length
of the individual particle steps, XBDS, by

Ap = AB/PD (90)
where PD is the probability of a bed-load particle being deposited as it strikes
the bed.

Substitution of equations (82), (83), (84) and (85) in (89) shows that AL
was a constant during all our experiments, equal to 288 for 0g = 0.52. We also
found a constant average value for ?\B, independent of Ds’ oy 8 and 1/, This
value was equal to ‘g = 16,

Figure 13 shows a cumulative frequency curve of the >\B~distribution for
horizontal beds of walnut grains, sand and magnetite, The probability PD of
a bed load particle being deposited as it struck the bed was, according to
equation (90) a constant:

Py =0.0555 (for 1.1< »FO/FOS 2.7
This proves that PD mainly depends on the probability that a particle strikes
the bed at a local depression of its surface where To < Ter Once eroded, the
bed-load particles performed an average of AL/{B =18 steps before being
deposited again., This result contradicts EINSTEIN's theory (1950). [According
to EINSTEIN's theory: P, = 1- PE =1/1 +A_ %), where Pp is the probability
that a particle of the bed surface is eroded at any time, and where A, is an

empirical factor with a value of 43.5].
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For the greater part of their trajectory, both the vertical and the
horizontal accelerations of saltating bed-load particles were very small in
comparison with the acceleration that they would experience owing to a drag
force equal to their submerged weight (see Fig, 12). This implies that the
saltating particles experience a lift force by the shear flow, for the greater
part of their trajectory, which is approximately equal to their submerged
weight, and that the average fluid velocity at the bed-load particle level is
reduced by the presence of the bed load, This result contradicts YALIN's
theory (1963). [According to YALIN, the saltation of a grain is analogous
to the ballistics of a missile]. The average lift force can be expressed as
follows for suspended bed-load particles transported at the terminal velocity

ﬁs, according to equation (87)

2 Qo g 3
32.4C ; agD (o - P8 (91)

- 2
1 b =
CLZ pf(ll. 5u us) OLZDS . L o 7

where 11.5 u* is the average fluid velocity at a short distance above the
suspended particles (not at the particle level since the particles are not
accelerated in suspension). This average fluid velocity would prevail at a
distance of y = 3.3kS above the bed surface, in the absence of a bed load,
according to equation (65)., For c, =0. 514, onz/cx3 = 3/2 and 1/‘l!C =0.04,
the lift force is equal to the submerged particle weight.

If the bed surface is inclined in the flow direction, the component of the
submerged particle weight perpendicular to the bed surface is only
OtaDz(ps - Df)g cos B, where B is the slope angle, For values of 8§ smaller
than 25°, cos B is larger than 0,9, and this will hardly affect the longitudinal
velocity of suspended bed-load particles,

We can now estimate the average drag force on saltating bed-load particles
as follows. For this purpose we consider a particle that has just been lifted
from a horizontal bed and is accelerated, at a distance of the order of one
particle diameter above the bed surface, by a flow that has a constant
longitudinal velocity u,, while the longitudinal particle velocity starts at
ug = 0.15 ﬁs for t =0 and reaches the terminal value ﬁs =k Gf for t = ts,
after covering a distance of )‘BDs = 16 DS. The particle will experience a
drag force and an acceleration (U s)

o £ 1

3 . _, 2 Uf - 2
aDop i = 3 Cpha,DY <1 +chS> oglue —uy) (92)
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where CD is a drag coefficient and CM an inertial coefficient associated with

the virtual mass of fluid CMpfagDz accelerated with the particle. It will reach
the terminal velocity ﬁs, assuming that CD and CM are constants, for
% 2 % <E_s_+ c ><k2 ) 0.15k2> 3)
DS Cp ag \Pg M/ \1-k 1-0,15k

= _4a-_2 % (% k _ _0.15k 1-k
g ~167T <p +CM><1—k 1—0.15k+ln1—0.15k> (94)

The average longitudinal particle velocity during a saltation, GB, is given

by

B_28% _ . %2 _ P <k2 __0.15%° >‘1 (95)
as DCL3 (ps+prM), 1-k 1-0.15%k

The drag coefficient CD is a weak function of the particle Reynolds'
number ReD = pf(ﬁf— us)Ds/“ for ReD>> 1. The inertial coefficient CM has a
theoretical value of 0.5 for spherical particles accelerated in a dilute
suspension. Substitution of the empirical value GB/GS =0,8 that we found for
the ratio of the average to the terminal velocity of saltating sand particles,
ps/pf = 2,64 and CM =90.5, in equations (94) and (95), gives k=10.85 and
CD = 0, 98, According to equation (92), the acceleration of the particle at the
terminal velocity ug = 0.85 e is negligible. The particle reaches a velocity of
0.75 ug after covering a distance of only 3.1 Ds' For the other bed materials
- walnut grains and magnetite - we find, according to these equations, very
similar results. For walnut grains (ps/pf =1, 34, CM =0.5, CD =1) k=0.9 and
gB/aS =0.834. For magnetite (p_/p;=4.58, Cy; =0.5, Cp=1) k=0.8 and
uB/ﬁS =0.768. This result is not very sensitive to variations of C, .

According to equations (65) and (87), the average fluid velocity ﬁf = ﬁs/0.85
at the suspended particle level prevails at a height above the bed surface of
only y/kS =0,17 for q__o = ;c’ and y/kS =0, 84 for ;0 =3 q—-c. This explains why
the bed-load particles strike the bed surface at the terminal velocity u and
are, on an average, not decelerated, prior to colliding.

The average drag force on a saltating bed-load particle, F;{, from the
moment it starts a saltation (us =0,15 u) until it strikes the bed surface at
the terminal velocity ug and its longitudinal velocity is hereby reduced again

- . . )_\ - . - - - .
to 0.15 uS, after covering a distance of BDS 16 DS in ts )‘BDs/u'B’ is equal
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to the transfer of momentum by the particle to the bed surface

u_u
3 s B 2 -2

r = =

F =0,85 C{,S (p + C pf) X 5 ¢y OLZDS pfu s (96)

Bs

where, according to equation (95)

(97)

0.15 k2 \ 1
1-0.15k

2
= 0.425 Cpy <1 -

We calculated F)’( as the average drag force on a saltating bed-load
particle at the average fluid velocity corresponding to the temporal mean bed
shear stress :1:0. The instantaneous bed shear stress at this fluid velocity,
however, is 0. 96 Ty due to the skewness of the probability-distribution
function P(?’o) (see Fig. 7). We may thus express the average drag force on
the bed-load particles as a function of the instantaneous bed shear stress qr:)o,

according to equations (86), (87) and (96), for 1—‘0= :rVO/O. 96 as

F'(’T)_1320 (102f_-o7f_) (98)

According to equation (97), the factor ¢y has a value of 0.090 for sand
(k = 0,85), 0,054 for walnut grains ¢k = 0.9), and 0.14 for magnetite (k = 0. 8),
assuming that CD =1 and C =0, 5.,

We can relate any functmn of the instantaneous bed shear stress , f(’T ),

to the time mean value of that function, f(fro), by

~

To, max
fiy= [ @)@, 7)aft, (99)
To,min

According to equation (98), the average drag force on the bed-load particles
as a function of the instantaneous bed shear stress, F;{(?O), is almost linearly
proportional to T (plus a constant), The temporal mean value of F)‘( may

therefore be represented by the same equation
F' (r )—132 ¢y 0‘2 (1 02 / -0.7/ 7 ) (100)

as long as the minimum instantaneous bed shear stress To minNO.Z;O(see
Fig. 7), is higher than SHIELDS' critical bed shear stress f—rc.
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According to KALINSKE (1947), we can express the mean rate of bed-load

transport Els as

- 3- - Y3 - =
g = oglgup Pp = a, Dy ug Cp (101)
[see EINSTEIN's expression (89) for comparison], Here GB is the average
velocity of the bed-load particles in the mean flow direction, BB the number of
particles, on an average, rolling and saltating over a unit area of the bed, and
EB = 0y Dg EB) the temporal mean, areal concentration of the bed load.
KALINSKE (1947) assumed a constant value for EB of 0.35, and concluded that
GB must be proportional to aS/DS.

Substitution of (78), (82), (83), (86), (87) and (95) in equation (101) gives
the following expression for I_aB and _C-B

) <1_.1_>3/2
a, d v -V
- 2 - 2 S i [
C.=qD%n =2—8 - (102)
B %2 s"B oy Douy 2 /T /T
y T
where
o 2 2
_0.062 (s Kk  _0.15k
27 ¢, <pf+CM> <1—k 1-0,15k> (103)

According to this equation, the factor ¢, has a value of 0,914 for sand
(ps/pf = 2,64, CM =0.5, CD =1, k=10,85, 0.908 for walnut grains (ps/ple. 34,

Cy=0.5, Cp =1, k=0.9), and 0,973 for magnetite (ps/pf-’: 4.58, Cy = 0.5,

Cp = 1, k=0.8). Figure 15 shows EB versus (1/} - l/wc) for sand (c2 =0,914),

for 1/‘lfc =0,04+ 0,015 For 0,01<(1/ - l/wc)s 0.1, this function is almost
linearly proportional to (1/¥ - l/lilc), the proportionality factor being equal to

1,37=1.5 Co- This result clearly contradicts KALINSKE's assumption (1947)

that EB is a constant (see Fig, 15),

Since the time mean value of DB(TNO), ﬁB(q—-o), is almost linearly
zropcirtional to :r.o (see Fig. 15), nB(TNO) s EB(;O), given by equation (102), for
o7 Te /

~ - .3/2
CZ(TO - Tc)

(T) = ——3 = =
B 0, - ege /T, - 0.1./5)

(104)




- 48 -

The average reduction in fluid shear at the bed surface due to the bed-
load, EB.F—‘;(’ is given as a function of the temporal mean bed shear stress }-0,

according to equations (97), (100), (102) and (103), by

3/2 2
N O K NN
npF! =38.48 (= +Cp |- = —

x P -ppg D (/7—(3'0-7E>

(105)

f

According to this equation, Fig. 16 shows EBF)'( versus q—-o for sand, walnut
M=0 5 and 1/U =0.04 +0.015, For
0.0l (1/y -1/ E 1, the function nBF'/[(p ng ] is practically
proportional to (1/11; -1/¥ ) , the proportionality factor being equal to
8 =2.55 (ps/pf +0.5),
According to Fig, 16 at low bed-load concentrations (for CB << 1), the
average reduction in fluid shear at the bed surface, nBF}'(, is much less than
(T —Tc), a functional relationship predicted by BAGNOLD (1956). For sand
the reduction in fluid shear only becomes equal to (q—-o - '_rc) for (1/y - 1/\JJC)=0.12.
For CB << 1, the bed load will only reduce the turbulent fluid shear at a

grains and magnetite, for C

small, constantly changing part of the bed surface, and we can relate the areal
average bed-load concentration to the number of particles eroded from a unit

area of the bed surface due to an increase in fluid shear from :rvo to (fr“o +d :rvo)

as TNO
e [ es
Te

This relation is based on the assumption that we can make a clear distinction
between particles of the bed load and particles of the bed. This assumption is
justified because the probability that, once a particle has been eroded, it is
deposited again when it strikes the bed surface, is very small (PD =0, 0555).
Substitution of n, = 1.5 cz( ’;o-rFC)/[azDz (ps—pf)g] as an approximation of
equation (35) shows that for 0.01 < CB << 1, nig is almost a constant:

nt = 1.5 cz/[azng’ (0 -0p8]-

A saltating bed-load particle can effectively reduce the turbulent fluid
shear on an area of the bed surface equal to the area covered by the wake
behind the particle. This area can be 10 - 20 times the projected particle area,
At high bed-load concentrations, for CB > 0.1, the bed load can thus effectively

reduce the fluid shear at the entire bed surface, on an average, to
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Figure 17 shows ?j versus TNO for sand, walnut grains and magnetite, according
to equations (98), (104) and (107). This figure shows that :rvf’ never reaches the
critical shear corresponding to the initiation of scour, Tse ™ 2,2 ;sc’ which we
found experimentally (see Section 7.3), while the areal bed-load concentration
has a value of approximately 0.1 for ?Jo = Tger according to equation (104).

We stated in Section 3.2 that the bed-load must reduce the maximum
turbulent fluid shear at the bed surface to Tse! From the foregoing it even
appears that the bed-load reduces ?g to a value below Tse® It also appears
that BAGNOLD's assumption (1956) that :rvf’ must approach zero for large
bed-load concentrations is justified (see Fig. 17). However, expression (105)
for the average reduction in fluid shear at the bed surface cannot be correct
for high bed-load concentrations because ?f) would even become strongly
negative, according to that equation, for (1/¥ —1/4!0) ~ 1 (see Fig. 16).

According to WILSON (1966), the MEYER-PETER & MULLER formula
for bed-load transport (1948) is also valid for high transport rates. According
to Table 5, expression (87) for the average particle velocity ﬁs is at least
valid for 1/ < 0.1, or §<0.1. It must also be approximately valid for higher
transport rates Eecause for u* >>uz it becomes almost proportional to the
shear velocity u , or equal to the fluid velocity at a constant distance (3.3
particle diameters) above the bed surface. Thus, we must conclude that
nB(?o) ~ EB(q_-O) will increase continuously, almost linearly, with increasing
bed shear stress, also at high transport rates.

During erosion of the bed surface, with or without simultaneous deposition,
the fluid part of the turbulent bed shear stress, ?f), must have a value between
the limits ;c and T e The exact value of ?f) at a given moment will depend on
the roughness of the bed surface at that moment., Since np increases
continuously with increasing bed shear stress, ';(f) must become practically
equal to Tso during erosion of the bed surface, with or without deposition in
local depressions, for :rvo >Tsc’ once the bed is so smooth due to erosion of
the most protruding particles and selective deposition that it will not become
any smoother by further erosion., This implies that the average fluid drag force
on the saltating bed-load particles F)’{ must become constant, proportional to
QSDz(pS—pf)g, for ?0 >> T The average_particle velocity GB will then be
practically equal to the terminal velocity ug because the average velocity
reduction of the bed-load particles due to collisions with the bed surface will

have to be much less than 0,85 ﬁs, the value we found for low transport rates.
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Substitution of :i:'i = Tge! equations (82), (83) and (101), and expression (87)
for GB‘*’ ﬁs, in equation (107) gives the following expression for F}’< at the total
bed shear stress To = To > Tge

'Fo'T <;0~Tsc><“/§_0’7f;—sc>

_ o Tsc_ 3. -
F! = o cgagDg (P -0 8 T N3/3
"o Te )

(108)
-7,

WILSON (1966) found that the proportionality constant in the MEYER-
PETER & MULLER formula (84) has a best-fit value of 12 for high bed-load
concentrations. Using this value and expression (87) for GBN ﬁs, we find for
factor cy in equation (108) a value of 0,96, For sufficiently large values of TNo’
the average drag force on the bed-load particles F)‘( must thus be approximately
equal to a3Dz(pS—pf)g. This can be made plausible using BAGNOLD's concept
of 'dispersive grain pressure' (1954, 1956).

According to BAGNOLD (1956), the bed-load must exert an average
dispersive grain pressure 53 on the bed surface proportional to the reduction

in fluid shear (equation (75a))

NS_— ~
’To ’TO T

QO en

=ng F)’( (109)

The dispersive grain pressure is related as follows to the average lift

force exerted by the fluid on the bed-load particles (equation (75d))

~NS - 3 B =

p, =1y LoDy (P - P8 Fy] (110)
The ratio

~g

To

—— = tan © (111)
~g

Py

is determined by the various directions of the impact forces created by particles
of the bed-load colliding with the bed and by the roughness configuration of the
bed's surface. BAGNOLD (1954) measured the total shear stress and 'dispersive
pressure' at the boundary of concentrated suspensions sheared in the aﬂml—ar
space between two concentri_c_d_r_ums with a smooth surface and found ?i/ﬁi=0.75
in the viscous region, and ?(S)/p”i =0.32 in the grain-inertia region, We found

that at low rates of bed-load transport, particles colliding with the bed in water
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thereby lose most of their kinetic energy and hence exert a force on the bed
surface in the direction of their approach as they collide with particles of the
bed. Since the angle of approach _relative to the plane of the bed surface is
very small (in water), the ratio T’”i/ pN (S) > 1, At high rates of bed-load transport,
the ratio ';cs)/ P (S) will be smaller, but must still exceed the value BAGNOLD
found for shearing along the smooth surface of two concentric drums.

Assuming that the average lift force on the bed-load particles fgf is

proportional to their submerged weight
Fl = £50D0 (b -pp 8 (112)
y B¥3"s s f

we find the following expression for f}'{, according to equations (109), (110),
(111) and (112)

= 3
Fo=@A-8g)tanboa, D (P -0y g (113)

F' will thus be equal to be submerged particle weight for (1~ gB) tan 0 = 1,

Th1s condmon can in principle, be well satisfied (e.g. tan 9 & 45° if §B<<1
H 1

thus for ’roz po and Fy <« FX).

8. BUIX EROSION

8,1, Definition

The protective action of the bed load over the bed surface described in
the preceding section can only be effective if the local instantaneous fluid-
pressure gradient at the bed surface is sufficiently small, Under highly erosive
flow, the instantaneous fluid-pressure gradient in the turbulent boundary layer
may be such that the stability condition (20) for particles at the bed's surface
cannot be fulfilled, even if the bed load reduces the fluid part TN(f) of the total
bed shear stress to zero. This will lead to bulk erosion. During the latter,
the bed-load sediment can instantaneously absorb the total viscous-momentum
transfer 8T~f /3y from the surface flow to the bed surface. Accordingly, we
define bulk erosion locally and instantaneously by the extreme condition that
the fluid part ?(f of the total bed shear stress is reduced to zero at the
instantaneous erosion boundary, while the drag and lift forces exerted by the
local instantaneous fluid-pressure gradient on the particles at the instantaneous
erosion houndary y = 0 satisfy the stability condition (76), or rather, if the local

instantaneous erosion boundary has a slope in the flow direction
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3 of
Pg-rd CB -5 (P - Py

= tan q (114)

Il

(b =Py C gy+§3-, (3t - p) | ¥=0

The condition for bulk erosion will in general only be fulfilled locally and
instantaneously if the turbulent fluid-pressure distribution above the bed changes
so rapidly that large pore-pressure gradients can build up at the bed surface
before the bed is eroded by shear only.

Bulk erosion can occur at high sediment-transport rates under highly
turbulent flow with a relatively small time-averaged fluid pressure gradient,
particularly in the case of an undulating bed where the flow contains a rapidly
changing pattern of unstable stagnation points.

We can estimate the possible extent of zones of bulk erosion created in
a loose granular bed by highly erosive flow. We consider a flat horizontal
portion of the bed, subject to plane turbulent flow of sufficiently rapidly
increasing energy for bulk erosion to occur, We define a fixed Cartesian frame
[X,Y] at the threshold of sediment motion (t = 0) with the X-coordinate along
the (horizontal) bed surface and the Y-coordinate normal to the bed surface
and pointing upwards, The pore-pressure distribution at the instantaneous
erosion boundary Y* [X], at one particular moment during bulk erosion, will
then satisfy the equation

gt
oX = tan (o - B) (115)

0
W(p—pH)_F(pS—pf)Cg Y = Yy*

where 8 is the downward slope of the erosion boundary

X = - tens (116)

We can now calculate the instantaneous erosion boundary Y* (X7 by solving
the differential equations (115) and (116), provided we know the pore-pressure
distribution in the zone of bulk erosion. For instance, in the limiting case
when the suspended bed-load sediment is still in a state of 'slow' bulk motion,
the filter flow satisfies Darcy's law (44) and (pf' - pH) satisfies the Laplace
equation

2 2
<—§3 + -5—-2-> G -p) = 0 (17)
X dY
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assuming that the solid concentration in the zone of bulk erosion changes
'slowly’ as a function of time.

In general, there will be an infinite set of curves fitting the directional
field. In the case of a local instability, however, the end (in the flow direction)
of the boundary line Y* [X] must lie at the bed surface. This condition
specifies a subset of potential boundary surfaces from which the curve of
furthest deviation from the bed surface is defined as the erosion boundary.

In the next section we shall apply this method to calculate the extent of the
zone of instantaneous instability under a two-dimensional jet of rapidly

increasing energy.

8.2. Application to the problem of scour near a stagnation point in the surface

flow

One of the important cases of severe scour is that which occurs near a
stagnation point of the surface flow.

A frictionless flow with a stagnation point at the origin of the fixed
co-ordinate system [X,Y], introduced in the preceding chapter, may be defined

by the following two-dimensional stream function

v X, Y] = - Ut —— (y= 0) (118)

2+A2

Here A characterises the stagnation area, A being the distance from the
stagnation point at which the pressure (according to Bernoulli's theorem) has
decreased to half its maximum value, The corresponding streamlines are
shown in Figure 18a, This flow maintains a fluid-pressure distribution
2
~f 2 A
P [X, 0,t] =3p,UTt] —5——5 (119)
X" +A

at the bed surface [X, O], The pore-pressure head in the sand bed is found

as a solution to the differential equation (117)

plx v 11=40,07 LB L =0 (120)
X+ A-Y)

Figure 18a also shows the streamlines of the corresponding flow.

Now we rapidly increase the kinetic energy of the surface flow by increasing
U [t] [equation (118)7 from a value at t=t:1 corresponding to the threshold of
bed-load transport, to a large value at t= t2; we assume that the fluid-pressure
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distribution at t = tz still satisfies the differential equation (117) for Y <0, and
is thus given by equation (120).

The location of the boundary surface Y* [X, t2] of the zone of instantaneous
instability in the sand bed at t= t2 can be calculated numerically using the
method described in Section 8,1, [solving the differential equation (116) after
substitution of equations (115) and (120)]., We have calculated these potential
erosion boundaries for a horizontal bed using a critical-drag angle o of 32°
(equal to the maximum angle of repose of a loose medium fine sand) and for
various values of U [tZ]. The results are given in Figure 18b.

Figure 18b shows that equations (115), (116) and (120) only have a solution
for

o U”

¥ e 1, 33 121

Figure 19 shows an example of such an erosive flow. A two-dimensional
jet of water with a nozzle width of 2 mm was directed vertically downwards,
towards an initially flat horizontal sand bed (D =1 mm) from a distance of
44 mm The stagnation pressure on the bed surface was p [0 0] =1.625. 1()3
N/m (U=1.8 m/s) and the initial width of the stagnation area was 2A = 36 mm
(¢ [A, 0] =% ¢[0,0]). The parameter ¢* of equation (121) had a value of 10,

Figure 20a shows the material in bulk motion, illustrating the erosive
power of a flow with a large pressure gradient (g¢* = 10). Figure 20b shows
that the calculated zone of bulk erosion was practically eroded within 0,16 s,
This corresponds approximately with the time required by the jet to reach a
maximum velocity at the nozzle opening (The actual shape of the erosion
boundary cannot be expected to be exactly the same as the calculated shape,
because the surface flow pattern at t = 0,16 s was strongly affected by the scour
pit, while this was not taken into account in our calculation,

This experiment is an example of bulk erosion under a flow with an
almost steady stagnation point, However, bulk erosion can also occur locally
and instantaneously under a turbulent flow with a relatively small time-averaged
fluid pressure gradient, particularly in the case of an undulating bed where
the flow has a rapidly changing pattern of unstable stagnation points (see Fig.2l),
If the Reynolds' number of the turbulent flow is sufficiently high we may neglect
the effect of internal friction and consider the fluid to be ideal. The flow near
a stagnation point above a rippled bed (sz in Fig. 21) is thus similar to the
ideal flow shown in Fig. 18a, and we may apply the condition for bulk erosion

(121).
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The condition for bulk erosion defined by equation (121) derived from
(115), (116) and (120) is easily satisfied, locally and instantaneously, above a
rippled bed. If we assume, as an example, for geometrically similar ripples,
that 2A = 50 DS (where DS is the grain diameter), that U =12 “/:Fo/pf (where
'Fo is the instantaneous bed shear stress), and that C =0.6, the condition for
bulk erosion defined by equation (121) is satisfied for r?'oz 0.277 (pS - pf) gDS.
This instantaneous shear can be reached at a flow intensity of only 1/4= 0.1,
It must be noted here that the seepage flow will also affect the fluid velocity
distribution in the turbulent boundary layer and that this will result in high
shear stresses and large particle velocities in the vicinity of the stagnation
point (see eq. 65a).

We do not find scour pits in a rippled bed (Fig. 21), as we did under a
two-dimensional jet (Fig. 19), because the exact location of the stagnation

points s, changes very rapidly., We can still conclude, however, that in an

area of iulk erosion above a rippled bed the bed load cannot prevent scour.
An equilibrium between simultaneous erosion and deposition cannot exist and
the bed is severely eroded instantaneously.

We calculated the extent of the zone bulk erosion that would be created
locally and instantaneously in a loose granular bed under a two-dimensional
jet, if the jet were introduced so rapidly that the zone of bulk erosion would
still be in a state of 'slow' motion. We then found experimentally that the zone
of bulk erosion thus calculated was completely eroded within 0.16 s, just as
rapidly as the energy of the erosive fiow could be increased., We concluded that
in an area of bulk erosion, for instance above a rippled bed, the bed load
cannot prevent scour and the bed is severely eroded instantaneously

Bulk erosion will occur where the momentum of the surface flow changes
so radically that the bed load cannot protect the bed surface against scour.
The change in momentum of the surface flow, and not the momentum itself,
constitutes the criterion for bulk erosion,

9, CONCLUSIONS

We have arrived at a set of integral and differential 'macro'-equations
that govern the momentum transfer from a Newtonian fluid to particles in a
fluid-solid mixture, in particular near the surface of a loose granular bed
subject to erosive flow: under the bed surface, at the bed surface, and in the
saltation layer, These equations show, in combination with the results of
experiments reported in the literature, that the viscous-momentum transfer from
the boundary to the interior of a granular bed is absorbed entirely within a layer
of two or three particle diameters only. From there on, a drag force on the

solid is only exerted by a pore-pressure gradient.

By
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SHIELDS' dimensionless expression for the critical bed shear stress at
the threshold of continuous sediment inotion, 1/1,';c, must attain a constant value
for low shear Reynolds' numbers (ReD< 0.5), as long as there is no cohesion
between the particles.

Comparing the threshold drag acting at different downward slopes of the
bed surface, for —C—B
concluded that, at this grain-movement condition, particles with a critical

drag angle of 47° must be at the threshold of motion due to a high instantaneous

=0.001,a critical-drag angle of 47° was found. It is

bed shear stress, equal to approximately 1,74 times the mean shear.

The MEYER-PETER & MI'J.LLER formula for bed-load transport in
horizontal flow can be generlised to the case of flow over an inclided bhed, at
least up to downward slopes of 22° considered in the experiments.

The rate of deposition was found to be proportional to the rate of bed-load
transport and the average length of individual particle steps was found to be a
constant equal to 16 particle diameters for different bed materials. The
probability of a bed-load particle being deposited when striking the bed surface
was constant within the experimental range (PD =0,0555). This contradicts
EINSTEIN's theory (1950). The bed-load particles covered a distance of 288
particle diameters, on an average, from the moment they were eroded until
they were deposited again.

Close examination of the motion of saltating bed-load particles revealed
that these particles are transported almost in suspension for the greater part
of their trajectory, The average transport velocity of the suspended particles
was equal to the average fluid velocity calculated for a turbulent flow without
a bed load, at about three particle diameters above the bed surface, minus a
constant. The constant was proportional to the critical shear velocity at
SHIELDS' grain-movement condition, This can be explained by considering that
the turbulent shear flow must exert a lift force on the suspended particles that
is practically equal to their submerged weight, and by assuming that the
average fluid velocity at the bed-load particle level is reduced owing to the
presence of the bed-load. The longitudinal velocity of saltating bed-load
particles was reduced by collisions with the bed surface, on average, at low
transport rates, by 0.85 times their maximum velocity in suspension,

Combining the MEYER-PETER & MfJLLER formula for the rate of
bed-load transport and the above-mentioned expression for the average transport
velocity of the bed-load particles shows that the areal bed-load concentration
increases linearly with increasing bed shear stress. This contradicts KALINSKE's
theory (1947).
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It can be concluded on a theoretical basis that the bed load must reduce
the maximum turbulent fluid shear at the bed surface to a critical value,
corresponding to the initiation of non-ceasing scour. The basis of this conclusion
is imply that, if we make an instantaneous division between particles of the
bed load (rolling and saltating) and particles of the bed (at rest by definition),
separated by an imaginary 'wavy' surface Ag[()], the particles of the bed must
be in equilibrium and therefore, ?gswsc. At sufficiently high transport rates,
TNf) must be almost equal to ?sc during erosion, with or without simultaneous
deposition,

Calculation of the average reduction in fluid shear at the bed surface due
to the bed load, using empirical relations for the transfer of momentum of
bed-load particles to the bed surface by intergranular collisions, and for the
areal bed-load concentration, as a function of the mean bed shear stress,
reveals that, at low transport rates, contrary to BAGNOLD's theory (1956),
this reduction is very small, It is due to the effect of the wakes of few
saltating particles on the fluid flow at the bed surface. The critical shear
stress required to erode the topmost grains of the bed surface must therefore
increase with increasing bed shear stress, owing to progressive smoothening
of the bed surface. The increase in areal bed-load concentration per unit
increase in total shear is equal to the total projected area of the particles
eroded from the bed surface owing to the increase in shear. The number of
particles eroded per unit area and per unit increase in total shear was found
experimentally to be almost a constant at low bed-load concentrations., It was
also found that the average reduction in fluid shear due to the bed load
increases so rapidly with increasing bed-shear stress that at higher transport
rates the remaining fluid shear will nowhere exceed the threshold drag
corresponding to the initiation of non-ceasing scour measured behind a
consolidated bed. If we extrapolate the experimental results to high transport
rates, it is even found that the bed load must 'absorb' the total bed shear
stress at high concentrations. This would be in agreement with BAGNOLD's
theory (1956). However, it can be shown that the expression we found
empirically for the average reduction in fluid shear at the bed surface cannot
be extrapolated to such high transport rates. The expressions for the rate of
bed-load transport and for the average particle velocity can be extrapolated and
show that at high bed-load concentrations the average drag force on the bed-load
particles must be approximately equal to their submerged weight. This can be

made plausible using BAGNOLD's concept of 'dispersive grain pressure’.
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It is concluded that a loose granular bed will be severely eroded
instantaneously where and when the momentum of the turbulent surface flow
changes radically and the bed load cannot protect the bed surface against scour,
This condition, defined as the condition for bulk erosion, can occur at high
sediment transport rates under highly turbulent flow, particularly in the case
of an undulating bed where the flow contains a rapidly changing pattern of
unstable stagnation points, This bulk erosion is due to large instantaneous fluid
pressure gradients in the transition zone between the flow region and the bed.
The instantaneous change in momentum of the surface flow constitutes the
criterion for bulk erosion.

A method has been developed that permits determination of the extent
of the zone of bulk erosion created locally and instantaneously in a loose
granular bed by highly erosive flow, With this method the extent of the zone
of bulk erosion is calculated that would be created locally and instantaneously
under a two-dimensional jet, if the jet were introduced so rapidly that the
zone of bulk erosion would still be in a state of 'slow' motion, It was found
experimentally that the zone of bulk erosion thus calculated was completely
eroded just as rapidly as the energy of the erosive flow could be increased
(within 0,16 s), It is concluded that in an area of bulk erosion, for instance
above a rippled bed, the bed load cannot prevent scour and the bed is severely
eroded. The instantaneous change in momentum of the surface flow constitutes

the criterion for bulk erosion.
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Factor in Beavers & Joseph's equation for the boundary velocity

of a Poiseuille flow over a porous block

Attenuation factor for the transmission of fluid shear at the
bed surface

Superscript for fluid/solid boundary surface inside statistical
volume

Specific surface area of the particles per unit solid volume
Average distance covered by particles of the bed load /DS
Constant in Einstein's bed-load transport equation
Proportionality factors

Solid concentration by volume

Areal bed-load concentration

Drag coefficient

Lift coefficient

Particle-sieve diameter

Subscript or superscript for fluid phase

Stress vector

'Areal-averaged'drag and lift forces exerted by the fluid on
or of the bed load
'Areal-averaged'drag and lift forces exerted by the flow,

particles of the bed surface,

excluding the buoyancy force

Average force per unit bulk volume exerted by the fluid upon
the particles in a fluid/solid mixture

Average force per unit bulk volume exerted by the flow upon
the particles in a fluid/solid mixture, excluding the buoyancy
force

Acceleration due to gravity

Water depth

Ratio of terminal particle velocity over fluid velocity

Surface roughness

Permeability

'Shear' permeability

Length

Number of particles rolling and saltating over the bed surface
per unit area

Number of particles deposited on the bed surface per unit

area per second
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Number of particles eroded from the bed per unit area and
per unit increase in fluid shear

Unit vector along the outward-drawn normal of an element dS
of a smooth closed surface S around a volume V, or of an
element dSb of the fluid/solid boundary surface of the fluid
volume Vf

Measure of ratio between inertial and viscous stresses in
suspension

Dimensionless expression for the rate of particle deposition
Fluid pressure

Hydrostatic fluid pressure

Dispersive grain pressure

Dispersive grain pressure on the bed surface

Probability density

Probability of a bed-load particle being deposited as it strikes
the bed

Probability of a bed-surface particle being eroded at any time
Bed-load transport rate in solid volume per unit width per
second

Particle Reynolds' number

Shear Reynolds' number

Reaction force per unit bulk volume exerted by the solid on the
pore fluid inside a bulk volume bounded by a smooth surface
Reaction force per unit bulk volume exerted by the solid on the
pore fluid, apart from the hydrostatic buoyancy force

Subscript or superscript for solid phase

Smooth surface (area)

'Wavy' surface (area)

Fluid/solid boundary surface inside bulk volume V

'Wavy' part of fluid/solid boundary along 'wavy' surface
Average shear stress exerted by the bed load on the bed surface
Longitudinal fluid velocity

Longitudinal particle velocity

Average transport velocity of bed-load particles
Shear velocity

Critical shear velocity

Reference fluid velocity
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Fluid/solid velocity component along x-axis
Fluid/solid velocity component along y-axis
Fluid velocity

Solid velocity

Volume

Coordinates of Cartesian frame
Coordinates of fixed Cartesian frame

Cartesian coordinates of erosion boundary

Critical drag angle

Particle shape factors

Projected particle area in a plane perpendicular to the average

flow direction
Projected particle area in a plane parallel to the bed surface

Particle volume

Downward slaope of the bed surface
Pre-script for pseudo-micro element
Thickness of saltation layer
Kronecker delta

Pre-script for macro-element

Angle "of 'friction' for the bed load
'Virtual-mass' coefficient

Linear grain concentration

Step length of saltating particles /DS
Fluid viscosity

Apparent viscosity of suspension
Apparent viscosity of fluid component
Lift factor for the topmost grains of the bed surface
Lift factor for the bed load
Fluid/solid density

Total/fluid /solid macro-stress tensor

Total/fluid /solid areal average bed shear stress

Critical shear stress at Shields' grain-movement condition
Mean bed shear stress at Shields' grain-movement condition
Critical shear stress at the initiation of scour

Mean bed shear stress at the initiation of scour
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Standard deviation

Fluid/solid stress tensor

Intensity of bed-load transport

Dimensionless stagnation pressure

Shear intensity

Shear intensity at Shields' grain-movement condition
Stream function

Suffix for time-mean value

Suffix for areal average along the fluid/solid boundary surface
inside statistical volume

Suffix for areal average along fluid part of smooth surface
Suffix for areal average along solid part of smooth surface
Suffix for areal average along 'wavy' surface

Suffix for areal average along fluid part of 'wavy' surface
Suffix for areal average along solid part of 'wavy' surface

Index for turbulent fluid or solid velocity fluctuations



Table 1

BED-LOAD FUNCTIONS FOR WALNUT GRAINS (ps = 1340 kg/m3, DS =1.5mm)

1 * * _
B 5 Rep | u (m/s) & N, us(m/s)
0° | 0.0380 | 16.3 | 0.0137 *
0.0550 | 19.7 | 0.0166 ok
0.0474 | 18.3 | 0.0154 | 0.00480 | 0.000039 0.0779
0.0550 | 19.7 | 0.0166 | 0.0136 0.000099 0.0907
0.0669 | 21.8 | 0.0183 0.0228 0.000254 0.105
0.0760 | 23.2 | 0.0195 0.0281 0.000255 0.119
0.0848 | 24.5 | 0.0206 | 0.0476 0.132 okok
0.0994 | 26.6 | 0.0223 0.151 A
12° | 0.0300 | 14.6 | 0.0122 *
0.0598 | 20.6 | 0.0173 0.0212 0.000128 0.0963
0.0659 | 21.7 | 0.0182 0.0241 0.000220 0.113
0.0706 | 22.5 | 0.0188 0.0284 0.000275 0.126 ok
0.0800 | 23.8 | 0.0200 0.0571 0.143 ok ok
18° | 0.0255 | 13.5 | 0.0113 *
0.0420 | 17.3 | 0.0145 0.0121 0.0779
0.0531 | 19.4 | 0.0163 0.000123 0.0962
0.0605 | 20.7 | 0.0174 | 0.0256 0.000315 0.116
0.0714 | 22.5 | 0.0189 | 0.0530 0.000379 0.136 ook
0.0848 | 24.5 | 0.0206 0.0768 0.152 kK
0.1076 | 27.6 | 0.0232 0.187
22° 1 0.0230 | 12.7 | 0.0107 *
0.0297 | 14.6 | 0.0122 0.0676
0.0474 | 18.4 | 0.0154 0.0001025 | 0.0913
0.0647 | 21.4 | 0.0180 0.0399 0.000189 0.1075
0.0714 | 22.5 | 0.0189 | 0.0533 0.119
0.0760 | 23.2 | 0.0195 0.0692 0.136 ook
0.0873 | 24.9 | 0.0209 0.163 Kook x
* Threshold of continuous sediment motion
** Initiation of scour

**%  Initiation of ripples
***%*  Rapid development of ripples



Table 2

BED-LOAD FUNCTIONS FOR SAND (p_ = 2640 ke/m®, D = 0.9mm)

* *
8 % Rep | u (m/s) 8 Ny us(m/s)
0° | 0.0380 | 16.8 | 0.0235 *
0.0503 | 19.3 | 0.0270 *ox
0.0375 | 16.6 | 0.0233 0.0708
0.0435 | 17.9 | 0.0251 | 0.00319
0.0445 | 18.1 | 0.0254 0.0000227 | 0.0897
0.0485 | 18.9 | 0.0265 | 0.00716
0.0503 | 19.3 | 0.0270 0.0000364 | 0.115
0.0515 | 19.5 | 0.0273 | 0.0129
0.0545 | 20.1 | 0.0281 0.0000508 | 0.143
0.0642 | 21.8 | 0.0305 | 0.0286 *oxk
0.0655 | 22.0 | 0.0308 0.163
0.0738 | 23.3 | 0.0327 0.192 Fokok ok
12° | 0.0305 | 15.0 | 0.0210 *
0.0330 | 15.7 | 0.0219 0.0000051 | 0.0652
0.0391 | 17.0 | 0.0238 0.0000194 | 0.0840
0.0408 | 17.4 | 0.0244 | 0.00422
0.0456 | 18.3 | 0.0257 0.0000662 | 0.104
0.0481 | 18.9 | 0.0264 | 0.0109
0.0496 | 19.1 | 0.0268 0.0000740 | 0.117
0.0589 | 20.8 | 0.0292 | 0.0216 Hoxok
0.0609 | 21.2 | 0.0297 | 0.0280 Kok
18° | 0.0270 | 14.1 | 0.0198 *
0.0380 | 16.8 | 0.0235 ok
0.0307 | 15.1 | 0.0211 0.0000138 | 0.0894
0.0381 | 16.8 | 0.0235 | 0.00416
0.0391 | 17.0 | 0.0238 0.0000319 | 0.103
0.0462 | 18.5 | 0.0259 0.0000762 | 0.117
0.0474 | 18.7 | 0.0262 | 0.00971
0.0601 | 21.0 | 0.0295 Kook
0.0634 | 21.6 | 0.0303 | 0.0323 0.180 Hrk ok
22° | 0.0240 | 13.3 | 0.0186 *
0.0263 | 13.9 | 0.0195 0.0821
0.0340 | 15.8 | 0.0222 0.0000305 | 0.108
0.0381 | 16.8 | 0.0235 0.0000756 | 0.132
0.0401 | 17.2 | 0.0241 | 0.00647
0.0428 | 17.8 | 0.0249 0.0000774 | 0.144
0.0474 | 18.7 | 0.0262 | 0.0116
0.0485 | 18.9 | 0.0265 0.155
0.0557 | 20.3 | 0.0284 | 0.0299 otk
0.0655 | 22.0 | 0.0308 | 0.0542 Koakk
* Threshold of continuous sediment motion
Hok Initiation of scour

**x  Initiation of ripples
6% Rapid development of ripples




Table 3

BED-LOAD FUNCTIONS FOR SAND (Qs = 2640 kg/m3,' Ds = 1,8 mm)

* *
B % Rey | u (m/s) § N, ﬁsun/m
0° | 0.0370 | 46.8 | 0.0327 *
0.0506 | 54.6 | 0.0383 Kok
0.0392 | 48.2 | 0.0337 | 0.000728
0.0420 | 49.9 | 0.0349 | 0.00297
0.0457 | 52.0 | 0.0364 0.0000306 0.145
0.0506 | 54.6 | 0.0383 0.0000579 0.186
0.0530 | 56.3 | 0.0394 | 0.00799
0.0539 | 56.3 | 0.0395 0.0000774 0.214
0.0561 | 57.6 | 0.0403 | 0.0185
0.0630 | 61.1 | 0.0427 0.000168 0.241 KAk
0.0665 | 62.8 0.0439 HoAA K
12° | 0.0200 | 41.4 | 0.0290 *
0.0318 | 43.3 | 0.0303 0.140
0.0369 | 46.7 | 0.0327 | 0.00484 0.172
0.0409 | 49.2 | 0.0344 | 0.00858 | 0.0000284 0.195
0.0475 | 53.0 | 0.0371 | 0.0143
0.0483 | 53.4 | 0.0374 0.0000820 0.234 Kok
0.0512 | 55.0 | 0.0385 | 0.0229 HE K
18° | 0.0250 | 38.4 | 0.0269 *
0.0267 | 39.7 | 0.0278 0.126
0.0292 | 41.6 | 0.0291 | 0.00153
0.0300 | 42.2 | 0.0295 0.0000102 0.139
0.0362 | 46.4 | 0.0324 0.0000684 0.170
0.0369 | 46.7 | 0.0327 | 0.00766
0.0423 | 50.0 | 0.0350 | 0.0213
0.0445 | 51.4 | 0.0359 0.000111 0.194 KAk
0.0506 | 54.7 | 0.0383 0.000265 0.233 kKK
22° 1 0.0200 | 34.4 | 0.0241 *
0.0214 | 35.5 | 0.0249 0.105
0.0237 | 37.4 | 0.0262 | 0.00103 0.125
0.0272 | 40.1 | 0.0281
0.0294 | 41.6 | 0.0292 | 0.00731 0.150
0.0338 | 44.7 | 0.0313
0.0369 | 46.8 | 0.0327 0.181
0.0432 | 50.5 | 0.0354 0.212 Kok
0.0490 | 53.9 | 0.0377 0.233 Kk
* Threshold of continuous sediment motion
ok Initiation of scour

*x*k  Initiation of ripples
*¥*x*  Rapid development of ripples




Table 4

BED-LOAD FUNCTIONS FOR GRAVEL (p = 2640 kg/ni3, D_ =3.3mm)

B . oo i (m/
3 Rep | u (m/s) 8 Np u (m/s)
0° | 0.0455 | 129 0.0492 *
0.0580 | 145 0. 0555 *x
0.0480 | 132 0.0505 | 0.000704
0.0505 | 136 0.0518 0.171
0.0616 | 150 0.0572 | 0.00681 | 0.000092 0.210
0.0692 | 159 0.0606 0.000161 0.249 | ***
0.0747 | 165 0.0630 0.304 | *wrx
12° | 0.0365 | 115.3 | 0.0440 *
0.0501 | 135 0.0516 | 0.0124 0.0000508
0.0572 | 144 0.0551 0.000142 Hoxk
0.0722 | 162 0.0619 0.000153 Hrkx
18° | 0.0305 | 113 0.0431 *
0.0301 | 105 0.0400 0.114
0.0339 | 111 0.0424 | 0.00144 | 0.0000108 0.151
0.0400 | 121 0.0461 | 0.00532 0.187
0.0488 | 133 0.0502 | 0.0141
0.0501 | 135 0.0516 0.220 | ***
0.0557 | 142 0.0544 0.265 | ¥xxx
22° | 0.0270 | 99.2 | 0.0379 *
0.0276 | 100 0.0383 0.149
0.0355 | 114 0.0434 | 0.00517 | 0.0000203 0.180
0.0371 | 116 0.0444 0.0000397 | 0.208
0.0450 | 128 0.0489 0.237 | ***
0.0572 | 144 0.0551 KAk k

* %
* koK
%ok kok

Threshold of continuous sediment motion

Initiation of scour

Initiation of ripples
Rapid development of ripples




Table 5

BED-LOAD FUNCTIONS FOR MAGNETITE (p_ = 4580 ke /m°, D =1.8mm)

1 * * _
B8 3 Rey | u (m/s) % Np us(m/s)
0° | 0.0420 | 73.6 | 0.0515 *
0.0514 | 81.4 | 0.0570 o
0.0475 | 78.2 | 0.0548 0.00174 | 0.0000223 0.198
0.0514 | 81.4 | 0.0570 0.00636 | 0.0000548 0.240
0.0622 | 89.6 | 0.0627 0.0144 0.0001045 0.282
0.0650 | 91.6 | 0.0641 0.0181 0.298 ook
0.0729 | 97.0 0.0679 Rk
12° | 0.0340 | 66.2 | 0.0464 *
0.0327 | 65.1 | 0.0455 0.147
0.0448 | 76.0 | 0.0532 0.00458 | 0.0000298
0.0491 | 79.6 | 0.0557 0.0102 0.0000596 0.243
0.0514 | 81.4 | 0.0570 0.0215 0.000118 0.267
0.0560 | 85.0 | 0.0595 0.0408 0.295 kK
0.0579 | 86.4 | 0.0605 HhKK
18° ] 0.0270 | 59.0 | 0.0414 *
0.0310 | 63.2 | 0.0443 0.175
0.0391 | 71.0 | 0.0497 0.00880 | 0.0000699 0.240
0.0436 | 75.0 | 0.0525 0.0128 0.0000955 0.272
0.0486 | 77.8 | 0.0554 0.0232 0.000189 0.294
0.0503 | 80.5 | 0.0564 kK
0.0549 | 84.1 0.0589 *ARE
22° | 0.0220 | 53.3 | 0.0372 *
0.0283 | 60.4 | 0.0422 0.00253 | 0.0000292
0.0346 | 66.9 | 0.0468 0.0111 0.0000695
0.0386 | 70.5 | 0.0494 0.0146 0.000133
0.0468 | 77.7 | 0.0543 0.0349 0.000182 Hokok
0.0554 | 84.6 | 0.0592 Kk
* Threshold of continuous sediment motion
Hok Initiation of scour

ook Initiation of ripples
*¥*¥%  Rapid development of ripples




Table 6

Average transport velocity GB of saltating bed-load particles measured by
projecting a sequence of individual frames of a motion picture taken at
45 frame/s, versus average particle velocity ﬁs measured visually by project-
ing the motion picture at 16 frame/s and following small groups of particles

moving simultaneously on the screen.

Py = 2640 kg/ms, D =1.8mm

*
1/‘!fC = 0.0370, u, = 0.0327 m/s

Number of

* - - - g counted time
1/v u m/s u m/s U m/s uB/uS

intervals of

0.0222 s
0.0457 0.0364 0.145 0.107 0.74 489
0.0506 0.0383 0.186 0.149 0.80 657
0.0539 0.0395 0.214 0.171 0.80 1197

0.0630 0.0427 0.241 0.193 0.80 241
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SMOOTH, FLAT, MACROSCOPIC SURFACE ELEMENT AS IN A
FLUID CONTAINING SOLID PARTICLES INTERSECTING THE FLUID

AND THE SOLID AT RANDOM, AND 'WAVY' MACROSCOPIC
SURFACE ELEMENT AS, FLUCTUATING TO A MINIMUM ABOUT AS
AND THEREBY INTERSECTING THE SOLID AT INTERGRANULAR

CONTACTS ONLY.
As=asf+ass, aS-asF.ass, a8f-as . ASP
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FIG. 2

CROSS-SECTION OF A SMOOTH SAND BED AND
PARTICLES BOUNDED BY TWQ'WAVY’SURFACES,
AS[y-'%6Y] AND AS[y+%8Y]
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FIG.3
OVERRIDING MOMENT EXERTED ON PARTICLE OF SUBMERGED WEIGHT
a3(ps-ps)gDS, SUBJECTED TO DRAG FORCE Fy~ DZ Tf AND LIFT
FORCE Fy~ Fy,BY ASHEAR FLOW AT THE SURFACE OF AN INCLINED BED.
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CROSS-SECTION OF FLOW CHANNEL WITH CONTOUR PLOT OF AVERAGE FLOW-VELOCITY
DISTRIBUTION AND SET-UP OF LASER-DOPPLER VELOCITY METER AND MOVIE CAMERA.
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DISTRIBUTION FUNCTIONS P(u) DERIVED BY SAMPLING TURBULENT FLUID-VELOCITY FLUCTUATIONS MEASURED
DURING BED-LOAD TRANSPORT WITH LASER-DOPPLER VELOCITY METER



Material D [mm] ps[kg/ms] A NI o/T | T el B
Sand 0.9 2640 0.80 0.36 2.57
Magnetite 1.8 4580 252 0.37 2.58
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MAXIMUM TIME INTERVAL Atmgy[s] DURING WHICH THE INSTANTANEOQOUS

SHEAR STRESS T, EXCEEDS A GIVEN VALUE WITHOUT INTERRUPTION
(meosured for a total period of 10s)
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CUMULATIVE FREQUENCY CURVE OF THE LENGTH Ag Dy OF
INDIVIDUAL STEPS PERFORMED BY SALTATING PARTICLES
OF THE BED LOAD AT VARIOUS FLOW RATES.
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0.08 s

t=0.12 s

FIG. 19

Erosion of a sand bed by a two-dimensional jet.
Stagnation pressure p (0,0) = 1.625 103 N/mz.
Initial width of stagnation area 2A = 36 mm,

Photographs taken at 0.04 s intervals.
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F1G.20a.EROSION OF A SAND BED BY A TWO - DIMENSIONAL JET
PHOTOGRAPH TAKEN AFTER 0.16s



} /
/
— I —
\ ‘ ! -~
\ \ | ,’
\ \ / 1
/ \ / \
7 \ / N
‘~\. /./
N
Calculated

erosion boundary
Actual erosion boundary

2A

FIG.20b
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FIG. 21

STREAMLINE PATTERN AND STAGNATION POINTS OF THE FLOW
ABOVE AN UNDULATING BED



SUMMARY

In this thesis first a general derivation is given of the 'macro'-equations
of mass- and linear-momentum balance that govern the momentum transfer
from a Newtonian fluid to rigid particles in a fluid-solid mixture. In particular,
attention is paid to a) the attenuation of viscous-momentum transfer from the
boundary to the interior of a granular bed subject to a surface flow, b) the drag
and lift forces exerted by a turbulent shear flow on particles of the bed surface,
and, c) the balance of forces acting on a bed load under uniform-flow conditions,

It is shown that filter flow driven by shearing along the boundary of a
granular sediment bed exerts a drag force on a layer of only two or three
particle diameters within the bed. A drag force on the bulk mass of sediment
is only exerted by a pore-pressure gradient,

Stability conditions are formulated for a loose granular bed subject to
erosive flow, at SHIELDS' grain-movement condition and during bed-load
transport, 'Macro'-stresses acting along 'wavy' surfaces parallel to the bed
are defined for that purpose, and an attenuation factor is introduced for the
transmission of turbulent fluid shear from the surface towards the interior of
the bed.

It is shown that SHIELDS' dimensionless expression for the critical bed
shear stress at the threshold of continuous sediment motion, 1/\1!0, must reach
a constant value for low-shear Reynolds' numbers (Re*D <0.5), as long as
there is no cohesion between the particles.

It is concluded that the bed load, consisting of particles rolling and
saltating over the bed, must reduce the maximum turbulent fluid shear at the
bed surface, at sufficiently high bed shear stress, to the critical threshold
drag that would lead to the initiation of non-ceasing scour.

Results are presented of a series of experiments in which were measured:
the mean critical bed shear stress at SHIELDS' grain-movement condition and
at the initiation of non-ceasing scour, the rate of bed-load transport, the
average particle velocity, the rate of deposition, and the average length of
individual steps of saltating bed-load particles, in water, as a function of the
time-mean bed shear stress. These experiments were performed in a
closed rectangular flow channel at different slopes of the bed surface and using
five different bed materials (two sands, gravel, magnetite and walnut grains).

Comparing the threshold drag acting at different downward slopes of the
bed surface (00, 120,
of 47° was found. The initiation of non-ceasing scour of a loose granular bed

was studied experimentally behind a consolidated bed of the same material as

18° and 220), a surprisingly large critical-drag angle



the loose bed. The corresponding instantaneous threshold drag was about three
times larger than the threshold drag acting at SHIELDS'. grain-movement
condition, Ripples started to develop at even larger values of the instantaneous
bed-shear stress.

The rate of bed-load transport measured as a function of the mean
bed-shear stress satisfies a genersalised MEYER-PETER & MULLER formula
(1948), also at various downward slopes of the bed surface, as investigated up to 22°,
The rate of particle deposition was found to be proportional to the rate of
bed~load transport, and the average length of individual particle steps was found
to be a constant, This implies that the probability of a bed-load particle being
deposited when striking the bed surface is independent of the flow rate within
the experimental range. This result contradicts EINSTEIN's theory of bed-load
transport (1950),

Close examination of the motion of saltating bed-load particles revealed
that these particles are transported almost in suspension for the greater part
of their trajectory, The average transport velocity of the suspended particles
was found to be equal to the average fluid velocity calculated for a turbulent
flow without a bed load, at about three particle diameters above the bed surface,
minus a constant. The constant was proportional to the critical shear velocity
at SHIELDS' grain-movement condition. This can be explained by considering
that the turbulent shear flow must exert a lift force on the suspended particles
that is practically equal to their submerged weight, and by assuming that the
average fluid velocity at the bed-load particle level is reduced owing to the
presence of the bed load,

Combining the MEYER-PETER & MULLER formula for the rate of bed-~load
transport and the above-mentioned expression for the average transport velocity
of the bed-load particles shows that the areal bed-load concentration increases
linearly with increasing bed-shear stress. This contradicts KALINSKE's theory
(1947).

Calculation of the average reduction in fluid shear at the bed surface due
to the bed load, using empirical relations for the transfer of momentum of
bed-load particles to the bed surface by intergranular collisions and for the
areal bed-load concentration, reveals that at low transport rates this
reduction is very small. The critical shear stress required to erode the topmost
grains of the bed surface must therefore increase with increasing bed shear
stress. The number of particles eroded per unit area and per unit increase in
total shear was found experimentally to be almost a constant at low bed-load
concentrations, It was also found that the average reduction in fluid shear due

to the bed load increases so rapidly with increasing bed-shear stress that at



higher transport rates the remaining fluid shear will nowhere exceed the threshold
drag corresponding to the initiation of non-ceasing scour measured behind a
consolidated bed,

It is concluded, on a theoretical basis, that at high transport rates,
during erosion, with or without simultaneous deposition, the turbulent fluid
shear at the bed surface must be approximately equal to the critical threshold
drag at the initiation of non-ceasing scour. It is found on this basis, by
extrapolating empirical expressions for the rate of bed-load transport and for
the average transport velocity of bed-load particles, that at high bed-load
concentrations the average drag force on the bed-load particles must be
approximately equal to their submerged weight. This can be made plausible
using BAGNOLD's concept of 'dispersive grain pressure' (1954, 1956),

it is concluded that a loose granular bed will be severely eroded
instantaneously where and when the momentum of the turbulent surface flow
changes radically and the bed-load cannot protect the bed surface against
scour. This condition, defined as the condition for bulk erosion, can occur at
high sediment-transport rates under highly turbulent flow, particularly in the
case of an undulating bed where the flow contains a rapidly changing pattern
of unstable stagnation points. This bulk erosion is due to large instantaneous
fluid-pressure gradients in the transition zone between the flow region and
the bed., The instantaneous change of momentum of the surface flow constitutes
the criterion for bulk erosion,

A method has been developed that permits determination of the extent of
the zone of bulk erosion created locally and instantaneously in a loose granular
bed by highly erosive flow. The method is applied to a specific example,
verified experimentally, in which local stagnation of the main flow creates a

zone of bulk erosion in the bed via the associated pressure field,



SAMENVATTING

In dit proefschrift worden eerst macroscopische massa- en impuls-
balansvergelijkingen afgeleid die de overdracht van lineaire impuls
beheersen vanuit een newtonse vloeistof naar vaste deeltjes in die vloeistof,

In het bijzonder wordt aandacht geschonken aan

a) de demping van viskeuze impulsoverdracht vanaf het opperviak naar het

binnenste van een korrelbed onder oppervlaktestroming,

b) de sleepkracht en de liftkracht die een turbulente stroming op deeltjes aan

het oppervlak uitoefenen,

c) het krachtenevenwicht op over de bodem getransporteerde deeltjes onder

uniforme stromingscondities,

Aangetoond wordt dat filterstroming gedreven door een schuifspanning aan
het oppervlak van een korrelbed een sleepkracht uitoefent op een laag van
slechts twee of drie korreldiameters onder het oppervlak, Een sleepkracht op
de bulkmassa onder het oppervlak kan alleen worden uitgeoefend door middel
van een pori€ndrukgradiént,

Stabiliteitsvoorwaarden worden vervolgens afgeleid voor een los korrelped
onderworpen aan een erosieve stroming, onder SHIELDS' conditie voor het
begin van bodemtransport, en gedurende continu bodemtransport. 'Macro'~
spanningen langs een 'golvend' oppervlak evenwijdig aan het bed worden daartoe
gedefinierd, en een dempingsfactor wordt geintroduceerd om de overdracht
van turbulente schuifspanning vanuit de vloeistof naar de korrels van het
bedoppervlak te beschrijven,

Er wordt aangetoond dat SHIELDS' dimensieloze uitdrukking voor de
kritische bodemschuifspanning (1 /q;c) aan het begin van continu bodemtransport

een constante waarde moet bereiken voor lage schuifspannings-Reynolds'-
%
D
De conclusie wordt getrokken dat de 'bed load', bestaande uit korrels die

rollend en 'springend’ (saltating) over het bedoppervlak worden getransporteerd,

getallen (Re_ < 0.5),zolang er geen cohesie is tussen de korrels.

de maximale turbulente vloeistofschuifspanning aan het bedopperviak moet
beperken bij voldoend hoge totale bodemschuifspanning tot een kritische schuif-

spanning die continue uitschuring van het bed zou veroorzaken,



Resultaten worden gegeven van een serie experimenten, waarbij werden
gemeten: de tijd-gemiddelde kritische bodemschuifspanning bij SHIELDS' conditie
voor het begin van bodemtransport, en bij het begin van continue uitschuring,
de intensiteit van het bodemtransport, de gemiddelde korrelsnelheid, de snelheid
van afzetting, en de gemiddelde lengte van de stappen die 'springende' korrels
boven het bed maken, als functie van de gemiddelde bodemschuifspanning.

Deze experimenten werden in een gesloten rechthoekige stroomgoot uitgevoerd,
en wel in water, bij verschillende hellingen van het bedoppervlak en gebruik
makend van vijf verschillende materialen (twee zandsoorten, grind, magnetiet
en walnootkorrels),

Door de kritische bodemschuifspanning bij het begin van continu bodem-
transport te meten bij verschillende neerwaartse hellingen van het bedopperviak
(00, 120, 18% en 220), werd een verrassend grote kritische sleephoek van 470
gevonden. Het begin van continue uitschuring van een los korrelbed werd
experimenteel bepaald achter een geconsolideerd bed van hetzelfde materiaal
als het losse bed, De corresponderende kritische schuifspanning was ongeveer
drie keer zo hoog als de bodemschuifspanning bij SHIELDS' conditie voor het
begin van bodemtransport. Ribbels ontstonden pas bij een nog grotere bodem-
schuifspanning.

De intensiteit van het bodemtransport, gemeten als functie van de
gemiddelde bodemschuifspanning, voldoet aan een gegeneraliseerde MEYER-
PETER & MULLER formule (1948), ook bij verschillende neerwaartse hellingen
van het bed, in ieder geval tot de maximale hoek van 22° bij de proeven,

De snelheid van afzetting bleek evenredig te zijn aan de intensiteit van het
bodemtransport en de gemiddelde staplengte van 'springende' korrels bleek
constant te zijn, Dit houdt in dat de waarschijnlijkheid dat een korrel van de
'bed load' wordt afgezet bij een botsing met het bed onafhankelijk is van de
stroomsnelheid, althans binnen ons meetgebied, Dit resultaat is in tegenspraak
met de theorie van EINSTEIN (1950).

Een nauwgezette studie van de beweging van 'springende' korrels toonde
aan dat deze korrels praktisch in suspensie worden getransporteerd voor het
grootste deel van hun traject, De gemiddelde transportsnelheid van de gesus-
pendeerde deeltjes bleek gelijk te zijn aan de gemiddelde stroomsnelheid,
berekend voor een turbulente stroming zonder korreltransport, op ongeveer
drie korreldiameters afstand van het bed, minus een constante, De constante
was evenredig met de kritische schuifspanningssnelheid bij SHIELDS' conditie
voor het begin van bodemtransport. Dit kan worden verklaard door in aan-

merking te nemen dat de turbulente stroming een liftkracht op de gesuspendeerde



deeltjes uitoefent die praktisch gelijk is aan hun ondergedompeld gewicht, en
door aan te nemen dat de gemiddelde vloeistofsnelheid op het niveau van de
getransporteerde korrels gereduceerd is door de aanwezigheid van de 'ved load’.

Een combinatie van de MEYER-PETER & MULLER formule voor de
intensiteit van het bodemtransport en de hierboven genoemde uitdrukking voor
de gemiddelde transportsnelheid van de 'bed load' toont aan dat de oppervlakte-
concentratie van de 'bed load' lineair toeneemt met toenemende bodemschuif-
spanning, Dit is in tegensprask met de theorie van KALINSKE (1947).

Een berekening van de gemiddelde reductie van de vloeistofschuifspanning
aan het bedopperviak ten gevolge van de 'bed load', gebruik makend van
empirische formules voor de impulsoverdracht van korrels van de 'bed load!'
aan het bedoppervlak bij intergranulaire botsingen, en voor de oppervlakte-
concentratie van de 'bed load', toont aan dat deze reductie bij lage transport-
intensiteit erg klein is. De kritische schuifspanning die vereist is om de
bovenste laag korrels van het bedoppervlak te eroderen, neemt dus toe bij
toenemende bodemschuifspanning, Het aantal korrels dat per eenheid van
bedoppervlak en per eenheid vantoename van de totale bodemschuifspanning
wordt geérodeerd, bleek experimenteel praktisch constant te zijn bij lage
transportintensiteit. Het bleek ook dat de gemiddelde reductie van de vloeistof-
schuifspanning aan het bedopperviak ten gevolge van de 'bed load' zo snel
toeneemt met toenemende bodemschuifspanning, dat bij hogere transport-
intensiteiten de resterende vloeistofschuifspanning de kritische schuifspanning
die continue uitschuring van het bed zou veroorzaken, niet zal overschrijden.

Op theoretische basis wordt geconcludeerd dat bij hoge transportintensiteit,
gedurende erosie, met of zonder gelijktijdige afzetting, de turbulente vloeistof-
schuifspanning aan het bedoppervlak ongeveer gelijk moet zijn aan de kritische
schuifspanning die continue uitschuring van het bed zou veroorzaken, Op die
basis wordt gevonden, door empirische uitdrukkingen voor de intensiteit van
het bodemtransport en voor de gemiddelde transportsnelheid van de 'bed load'
te extrapoleren, dat bij hoge concentraties de gemiddelde sleepkracht op de
korrels van de 'bed load' ongeveer gelijk moet zijn aan hun eigen gewicht,

Dit kan plausibel worden gemaakt door gebruik te maken van BAGNOILD's
uitdrukking voor de 'dispersieve korreldruk' aan het bedoppervlak (1954,1956),

De conclusie wordt getrokken dat een los korrelbed sterk en ogenblikkelijk
zal worden geé&rodeerd, op plaatsen waar de impuls van de turbulente stroming
aan het oppervlak radicaal verandert en de 'bed load' het bed niet tegen uit-
schuring kan beschermen, Deze conditie, gedefinierd als de voorwaarde voor

bulkerosie, kan zich bij hoge transportintensiteiten voordoen, onder een sterk



turbulente stroming, in het bijzonder bij een geribbeld bed waar de oppervliakte-
stroming een snel veranderend stromingspatroon met instabiele stuwpunten bevat,
Deze bulkerosie is een gevolg van grote vloeistofdrukgradiénten die instantaan
in de overgangszone tussen de opperviaktestroming en het bed optreden. De
instantane. verandering van impuls van de oppervlaktestroming is een maat
voor bulkerosie,

Een methode wordt getoond om de penetratiediepte van een zone van
bulkerosie te bepalen die lokaal en instantaan in een los korrelbed onstaat
door een sterk erosieve stroming. Deze methode wordt toegepast om een
specifiek geval door te rekenen, waarbij een lokale stagnatie van de opper-
vlaktestroming een zone van bulkerosie in het bed opwekt via het daarme

samenhangende poriéndrukveld. De uitkomst wordt experimenteel geverifiderd,
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