Found. Comput. Math. 529-531 (2007)

© 2007 SFoCM FOUNDATIONS orF
DOI: 10.1007/510208-007-7162-6 COMPUTATIONAL
MATHEMATICS

‘The Journal of the Society for the of C

Errata for Quantitative Robust Uncertainty Principles

and Optimally Sparse Decompositions
(DOI: 10.1007/s10208-004-0162-x)

Emmanuel J. Candes and Justin Romberg

Applied and Computational Mathematics
California Institute of Technology
Pasadena, CA 91125, USA

In the proof of Theorem 4.1, ® = (I F*) is the dictionary constructed by
concatenating the Dirac and Fourier orthobases, and @, ®r are subdictionaries
constructed by extracting columns from @ corresponding to the index sets I", I"'.
The assertion is made that if |[I'| = |I"/|, and if both ®, & are full rank, then
it must follow that Range(®r\r') = Range(®rnr). This is true if &r and &
are both orthogonal matrices, but is false in general (including the context of the
Theorem).

A correct proof of Theorem 4.1 requires a different tack. The statement is the
same, except with a very minor change in the constant. We will also not require
Lemma 4.2.

Theorem 4.1. Let f = Pa be a signal of length N > 512 with support set
I' = T U Q sampled uniformly at random with

2681 N
V(B + l)logN’

and with coefficients o sampled as in Section 2. Then the solution to (Py) is unique
and equal to a with probability at least 1 — O ((log N)'/? . N=F).
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Proof. Theorem 3.1 is easily generalized so that if I" is chosen uniformly at
random with

5583q N

JB+DlogN’

IT|+ 1] =

forany 0 < g < 1/2, then

| For*Forll < q 4.1)

with probability 1 — O((log N)!'/?> - N=#). We will show that taking ¢ just less
than 1/2 (¢ =~ .4802) will guarantee (with probability 1) that a random coefficient
sequence on a I' which satisfies (4.1) can be recovered by solving (FP).

Givenal obeying (4.1), the (continuous) probability distribution on the {«(y), y €
'} induces a continuous probability distribution on Range(®r). We will show that
for every I'' 2 I' with [T| < ||

Range(®r) # Range(dr). “4.2)

As such, the set of signals in Range(®r) that have expansions on alternate supports
[ that are at least as sparse as their expansions on I" is at most a finite union of
subspaces of dimension strictly smaller than |I"|. This set has measure zero as a
subset of Range(®r ), and hence the probability of observing such a signal is zero.

Consider any I'' = T’ U Q' different than I" with || < |I'|. The range of ®r
will equal the range of ®r only if each column ¢, for y € I'"\TI is in the range of
dr. Without loss of generality, suppose T'\T # @ (the same argument, with the
roles of time and frequency reversed, also applies to the case where Q'\Q # ).
Take ¢,, = &, to be a spike at location 7y € T'\T . Using the uncertainty principle,
we will show that §,, cannot be in Range(®r).

Arguing by contradiction, suppose that §,, € Range(®r). Then there must
be a linear combination of the sinusoids in @, that is zero everywhere except on
T U{ty}. Expressed differently, there exists oo supported on 2 such that f = F*y
vanishes outside of T' U {#y}. Let fr be the values of f on T, and f{,,, the value at

t. Since f is supported on €2 and the pair (7', 2) obeys (4.1), it follows that
1713 = IFarRafIP < qll /115,

which gives | fii,)|> > (1 — )| f|13. By construction, 1g- - f = 0 or, equivalently,
FRY fr = fu, Fd, on Q° implying that

. 12
||19r~FRTfT||%=|f{,0}|2||1mFam||§=|f{to}|2-(1—7 . (4.3)

On the one hand, we have

g - FRE frl3 < I frl3 < qll f13
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and on the other,
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where the last inequality holds for § > 1 and N > 512. Therefore, (4.3) can hold
only if

g=(1—-¢q)-(1—.1581q)
which is not true for g < .48026. As a result, (4.2) holds, and « is £y-unique with
probability 1 (conditioned on I' obeying (4.1)). O

The generalization to Theorem 5.2 (whose statement does not change) is also
an easy change. We simply apply Theorem 5.1 with C; = Cp/2, using the same
reasoning about support sizes as in Corollary 4.1.
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