TABLE ERRATA

533.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill Book Co., New York, 1954.

On p. 284, in formula (1) of Section 16.4, for $\Gamma(\alpha+n+1)$, read $\Gamma(\alpha+1)$. This formula will then agree with the result of putting $\rho=\alpha$ in formula (3), p. 284, and using Vandermonde's theorem [1] to sum the hypergeometric series ${ }_{2} F_{1}$.

On p. 286, in formula (12) of Section 16.4, for $\Gamma(\sigma-\beta+m+1)$, read $\Gamma(\sigma-\beta+m-n+1)$. When $\beta=0$, the resultant expression agrees with formula (13) of the same section. In the special case $\sigma=\beta, m=n$, it agrees with certain special cases of formulae (5), (7), (10), (16), (17), and (20); when $\sigma=\beta, m \neq n$, it gives the zero result of formula (9).

Alistair R. Carr

School of Physics
University of Melbourne
Parkville, Victoria 3052, Australia

1. L. J. SLATER, Generalised Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966, Section 1.7.
534.-I. S. Gradshteyn \& I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Academic Press, New York, 1965.

In formula 7.391 (3), for $\Gamma(\alpha+n+1)$ read $\Gamma(\alpha+1)$.
In formula 7.391 (9), for $\Gamma(\sigma-\beta+m+1)$ read $\Gamma(\sigma-\beta+m-n+1)$.
Alistair R. Carr

School of Physics

University of Melbourne,
Parkville, Victoria 3052, Australia
535.-Milton Abramowitz \& Irene A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series No. 55, U. S. Government Printing Office, Washington, D. C., 1964.

Equation 10.4.76, p. 449, should read

$$
\left(M^{2}\right)^{\prime \prime \prime}+4 x\left(M^{2}\right)^{\prime}+2 M^{2}=0 .
$$

Jackson B. Lackey
Henry C. Thacher, Jr.
Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506
536.- Albert Eagle, The Elliptic Functions as They Should Be, Galloway \& Porter, Ltd., Cambridge, 1958.

Table I in Supplement B, pp. 476-479, has been completely checked by a calculation briefly described in [1].

A total of 24 last-figure corrections are required in the values of the modulus k as a function of the period-ratio $\mu=K^{\prime} / K$; namely, increase k by a final unit when $\mu=$ $1.30,1.32,1.36,1.52,1.54,1.82,1.92,1.94,1.96,1.98,2.04,2.14,2.20,2.24,2.32$, 2.34, 2.36, 2.40, 2.80, 2.84, 2.88; decrease by a unit when $\mu=1.18,1.78,2.96$.

The following 21 last-figure corrections are required in the complementary
modulus k^{\prime} : increase by a final unit when $\mu=1.06,1.74,1.78,1.80,1.88,1.90,2.00$, 2.02, 2.04, 2.06, 2.20, 2.44, 3.20 ; decrease by a similar amount when $1.16,1.36,1.38$, 1.50, 1.52, 1.58, 1.94, 2.60.

Twenty corrections are required for the complete elliptic integral of the first kind, K; namely, increase the final digit by a unit when $\mu=1.26,1.38,1.60,1.62,1.64$, $1.70,1.94,2.38,2.76$; decrease by a like amount when $\mu=1.02,1.46,1.76,1.88$, $1.98,2.02,2.24,2.44,3.25,3.40$; and for 914 , read 194 when $\mu=1.04$.

Thirty-three corrections are required for the associated complete elliptic integral of the first kind, K^{\prime}. Of these, 28 are of a unit in the last place; namely, increase by that amount when $\mu=1.06,1.26,1.52,1.60,1.62,1.64,1.68,1.70,2.38,2.50,2.62$, $2.82,3.50$; decrease when $\mu=1.14,1.56,1.78,1.88,1.90,2.00,2.02,2.20,2.22,2.26$, $2.28,2.44,3.20,3.25,3.35$. The remaining corrections are as follows: increase by two final units when $\mu=1.72$; decrease by three units when $\mu=1.76$; decrease by six units when $\mu=1.74$; when $\mu=2.58$, for 476 read 576 ; and when $\mu=2.64$, for 410 read 511.

The 18 values of k and k^{\prime} as functions of μ in Table $3.31, \mathrm{p} .76$ were found to be free from error.

Ove Skovgaard
Institute of Hydrodynamics \& Hydraulic Engineering
Technical University of Denmark
DK-2800 Lyngby, Denmark

1. Math. Comp., v. 28, 1974, p. 1181, MTE 512.

537.-British Association for the Advancement of Science, Mathematical

Tables, Vol. VI: Bessel Functions, Part I, Cambridge Univ. Press, Cambridge, 1937, reprinted 1950 and 1958.

A complete check of Table II, pp. 171-173, revealed a total of 78 terminal-digit errors (none exceeding a unit) of which 70 are new.

In addition to the eight errors noted by Gerber [1], the values of $j_{0, s}$ are too low by a final unit when $s=105,115$, and 145 .

Of the 150 tabulated values of $j_{1, s}$ a total of 38 require correction in the last place. Thus, increase the values of $j_{1, s}$ each by a final unit for $s=56,57,58,64,66$, $70,74,76,87,90,93,94,96,98,103,106,113,115,119,134,135,136,142,146$, and 147, and decrease by a similar amount for $s=61,69,72,78,82,83,91,92,101$, $128,137,140$, and 141.

The following 20 corrections are required in the values of $J_{1}\left(j_{0, s}\right)$: increase by a final unit for $s=2$ and 94 , and decrease by the same amount for $s=34,35,43,46$, $54,60,73,82,88,102,105,110,125,127,133,134,140$, and 148.

Similarly, for $J_{0}\left(j_{1, s}\right)$ increase by a final unit when $s=90$, and decrease by a similar amount when $s=54,80,94,98,99,109,113$, and 126.

The first 100 zeros $j_{0, s}$ were checked against the table in [1] and the remaining values of $j_{0, s}$ were computed from the first five terms of Mc Mahon's expansion. The first five values of $j_{1, s}$ were checked by using a table of Luke [2, p. 233], and the remainder were computed from the first eight terms of the appropriate Mc Mahon expansion.

The values of $J_{1}\left(j_{0, s}\right)$ and $J_{0}\left(j_{1, s}\right)$ were calculated to 15 S by means of a PI/I version of BESLRI [3].

Ove Skovgatrd

[^0]1. HENRY GERBER, "First one hundred zeros of $J_{0}(x)$ accurate to 19 significant figures," Math. Comp., v. 18, 1964, pp. 319-322.
2. Y. L. LUKE, The Special Functions and Their Applications, Vol. II, Academic Press, New York, 1969.
3. D. J. SOOKNE, "Bessel functions of real argument and integer order," J. Res. Nat. Bur. Standards Sect. B, v. 77, 1973, pp. 125-132.
538.-C. R. Wall, P. L. CREWS \& D. B. Johnson, "Density bounds for the sum of divisors function," Math. Comp., v. 26, 1972, pp. 773-777.

On p. 775, in the sixth line of the text, for $3^{2} 5 \cdot 7$, read $3^{2} 5 \cdot 7 p(11 \leqslant p \leqslant 41)$, and at the end of the eleventh line, for $3^{4} 5 \cdot 13$, read $3^{4} 5 \cdot 13 p(17 \leqslant p \leqslant 23)$.

SEPPO PAJUNEN

[^1]
[^0]: Institute of Hydrodynamics \& Hydraulic Engineering
 Technical University of Denmark
 DK-2800 Lyngby, Denmark

[^1]: Department of Mathematics
 Tampere University of Technology
 Tampere, Finland

