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Abstract 

A computationally efficient artificial neural network (ANN) for the purpose of dynamic 

nonlinear system identification is proposed. The major drawback of feedforward neural 

networks such as a multilayer perceptron (MLP) trained with backpropagation (BP) 

algorithm is that it requires a large amount of computation for learning. We propose a 

single-layer functional link ANN (FLANN) in which the need of hidden layer is 

eliminated by expanding the input pattern by Chebyshev polynomials. The novelty of this 

network is that it requires much less computation than that of a MLP. We have shown its 

effectiveness in the problem of nonlinear dynamic system identification. In presence of 

additive Gaussian noise to the plant, the performance of the proposed network is found 

similar or superior to that of a MLP. Performance comparison in terms of computational 

complexity has also been carried out. 

Index Terms—Chebyshev polynomials, functional link neural networks, multilayer 

perception, nonlinear system identification. 

 

I. INTRODUCTION 

IDENTIFICATION of a complex dynamic plant is a major concern in control theory. 

This is due to the fact that effective solutions are needed for some of the long-standing 

problems of automatic control, such as: to work with more and more complex systems, to 

satisfy stricter design criteria and to fulfill the previous two points with less a priori 

knowledge of the plant [1]. In this context, great efforts are being made in the area of 

system identification, toward development of nonlinear dynamic models of real processes. 

Recently, artificial neural networks (ANNs) have emerged as a powerful learning 

technique to perform complex tasks in highly nonlinear dynamic environments [2]. Some 

of the prime advantages of using ANN models are: their ability to learn based on 

optimization of an appropriate error function and their excellent performance for 

approximation of nonlinear functions. There are different paradigms of ANNs proposed 



 

 

by different researchers for the task of system identification and control. Recently, 

recurrent ANNs with internal dynamics have been proposed with adequate results [3], [4]. 

These networks are capable of effective identification and control of complex process 

dynamics, but with the expense of large computational complexity. A continuous-time 

additive dynamic neural network has been proposed to identify real processes using on-

line training methods [5]. The models obtained with this approach are in state-space and 

work quite effectively in continuous-time domain. 

Presently, most of the ANN-based system identification techniques are based on 

multilayer feedforward networks such as multilayer perceptron (MLP) trained with 

backpropagation (BP) or more efficient variation of this algorithm [6]–[9]. This is due to 

the fact that these networks are robust and effective in modeling and control of complex 

dynamic plants. Narendra and Parthasarathy [6] have proposed effective identification 

and control of dynamic systems using MLP networks. These methods have been applied 

successfully to several real processes for example: control of truck-backer-upper problem 

[7] and robot arm control [8]. 

As an alternative to the MLP, there has been considerable interest in radial basis 

function (RBF) networks [10]–[13], primarily because of its simpler structure. The RBF 

networks can learn functions with local variations and discontinuities effectively and also 

possess universal approximation capability [13]. This network represents a function of 

interest by using members of a family of compactly or locally supported basis functions, 

among which radially-symmetric Gaussian functions are found to be quite popular. A 

RBF network has been proposed for effective identification of nonlinear dynamic 

systems [14], [15]. In these networks, however, choosing an appropriate set of RBF 

centers for effective learning, still remains as a problem. Considering as a special case of 

RBF networks, the use of wavelets in neural networks have been proposed [16], [17]. In 

these networks, the radial basis functions are replaced by wavelets which are not 

necessarily radial-symmetric. Wavelet neural networks for function learning and 

nonparametric estimation can be found in [18], [19]. 

The functional link ANN (FLANN) proposed by Pao [20] can be used for function 

approximation and pattern classification with faster convergence and lesser 

computational complexity than a MLP network. A single-layer orthonormal neural net-

work using Legendre polynomials has been reported for static function approximation 

[21]. Sadegh [22] reported a functional basis perceptron network for functional 

identification and control of nonlinear systems. Linear and nonlinear ARMA model 

parameter estimation using an ANN with polynomial activation functions for biomedical 

application has been reported [23]. A FLANN approach using a tensor model for 

expansion has been applied to thermal dynamic system identification [24]. A FLANN 

using     and     functions for functional expansion for the problem of nonlinear 

dynamic system identification has been reported [25]. It is shown that with proper choice 

of functional expansion, the FLANN is capable of performing as good as and in some 

cases, even better than MLP in the system identification problem. However, input plant 

noise which is inherent in practical systems was not considered. 

Pattern classification using Chebyshev neural networks has been reported in [26]. 

However, its performance compared to an MLP has not been studied. A Chebyshev 



 

 

polynomial-based unified model ANN for static function approximation is reported [27]. 

It is based on a FLANN with Chebyshev polynomial expansion in which recursive least 

square learning algorithm is used. It is pointed out that this network has universal 

approximation capability and has faster convergence than a MLP network. 

One of the solutions for the problem of slow convergence of MLP is to use some 

efficient learning algorithm instead of BP algorithm. In this direction, the scaled complex 

conjugate gradient algorithm as proposed by Moeller [28] is of great importance. This 

algorithm chooses the search direction and the step size using information from a second 

order Taylor expansion of the error function. Some of the other proposals on higher order 

conjugate gradient algorithms can be found in [29]–[31]. For data classification and 

function interpolation problems a MLP trained by conjugate gradient algorithm has been 

reported [32]. 

In this paper, we propose a FLANN structure similar to [27] for the problem of 

identification of nonlinear dynamic systems in presence of input plant noise. Generally, a 

linear node in its output is used in the FLANN structure reported by other researchers. 

But, in our proposed network, we have used a nonlinear node with nonlinearity in the 

output layer for better performance. In [27], identification of only static systems without 

any consideration to plant noise has been reported. For functional expansion of the input 

pattern, we have chosen the Chebyshev polynomials and the network is named as 

Chebyshev-FLANN (CFLANN). Selecting some of the system examples reported by 

Narendra and Parthasarathy [6], we have compared performance of the proposed network 

with that of a MLP network used by them. The primary purpose of this paper is to 

highlight effectiveness of the proposed simple ANN architecture in the problem of 

nonlinear dynamic system identification in presence of additive plant noise. 

 

II. CHARACTERIZATION AND IDENTIFICATION OF SYSTEMS 

The primary concern in the problem of characterization is the mathematical 

representation of the system under study. Let us express the model of a system by an 

operator P from an input space  into an output space . The objective is to categorize 

the class   to which P belongs. For a given class  , P   , the identification problem 

is to determine a class   and  such that  ̂ approximates P in some desired 

sense. In a static system, the space and  are subsets of   and   , respectively. 

Whereas, in a dynamic system, they are assumed to be bounded Lebesgue integrable 

functions in the interval,   - or ,   -. However, in both cases, the operator P is defined 

implicitly by the specified input-output pairs [6].  

A typical example of identification of static system is the problem of pattern 

recognition. By a decision function P, compact input sets     
 are mapped into 

elements     
  for         in the output space. The elements    of denote the 

pattern vectors corresponding to class   . Whereas, in a dynamic system, the input–output 

pairs of the time function * ( )  ( )+ ,   ,   - , implicitly define the operator P 



 

 

describing the dynamic plant. The main objective in both types of identification is to 

determine  ̂ such that 

 

where    ,  is some desired small value    and ‖ ‖ is a defined norm on the output 

space. In (1),  ̂ and   denote the output of the identified model and the plant, respectively. 

The error      ̂ is the difference between the observed plant output and the output 

generated by the model. 

In Fig. 1, a schematic diagram of system identification of a time-invariant, causal, 

discrete-time plant is shown. The input and output of the plant are represented by   and 

 ( ), respectively, where   is assumed to be an uniformly bounded function of time. The 

stability of the plant is assumed with a known parameterization but with unknown 

parameter values. The objective is to construct a suitable model generating an output 

 ̂( )which approximates the plant output  ( ) . In the present study we considered 

single-input–single-output (SISO) plants and four models are introduced as follows. 

 

Here  ( ) and   ( ) represent the input and the output of the SISO plant at the  th 

time instant, respectively and    . In this study ANNs (MLP and CFLANN) have 

been used to construct the nonlinear functions   and   so as to approximate such 

mappings over compact sets. It is assumed that the plant is bounded-input–bounded-

output (BIBO) stable. In contrast to this, the stability of ANN model can not be assured. 

Therefore, in order to guarantee that the parameters of the ANN model converge, a 



 

 

series–parallel scheme is utilized. In this scheme, output of the plant instead of the ANN 

model is fed back into the model during training of the ANN [6]. 

 

III. THE ARTIFICIAL NEURAL NETWORKS 

Here, we briefly describe the architecture and learning algorithm for the two types of 

ANNs (i.e., MLP and FLANN) used in this study. 

A. Multilayer Perceptron 

The MLP is a multilayer architecture with one or more hidden layer(s) between its 

input and output layers. All the nodes of a lower layer are connected with all the nodes of 

the adjacent layer through a set of weights. All the nodes in all layers (except the input 

layer) of the MLP contain a nonlinear      () function. A pattern is applied to the input 

layer, but no computation takes place in this layer. Thus, the output of the nodes of this 

layer is the input pattern itself. The weighted sum of outputs of a lower layer is passed 

through the nonlinear function of a node in the upper layer to produce its output. Thus, 

the outputs of all the nodes of the network are computed. The outputs of the final layer 

(output layer) are compared with a target pattern associated with the input pattern. The 

error between the target pattern and the output layer node is used to update the weights of 

the network. The mean square error (MSE) is used as a cost function. The BP algorithm 

attempts to minimize this cost function by adapting all weights of the network. More 

details about the MLP and BP algorithm can be found in [2]. 

B. Functional Link ANN 

The FLANN, initially proposed by Pao [20], is a single-layer ANN structure capable 

of forming complex decision regions by generating nonlinear decision boundaries. In a 

FLANN, the need of hidden layer is removed. In contrast to linear weighting of the input 

pattern produced by the linear links of a MLP, the functional link acts on an element or 

the entire pattern itself by generating a set of linearly independent functions. In this study, 

the functional expansion block comprises of a subset of Chebyshev polynomials. 

Separability of the input patterns in the enhanced pattern space is possible. For example, 

consider a 2-D input pattern   ,       -
 . An enhanced pattern obtained by using 

Chebyshev functions is given by    ,         (  )       (  ) -
 . This enhanced 

pattern can be used for classification/estimation purposes. The BP algorithm used to train 

the FLANN becomes simpler and has a faster convergence due to its single layer 

architecture. A generalized FLANN structure with a single output node is shown in Fig. 2. 

C. Learning Algorithm for FLANN 

Learning of an ANN may be considered as approximating or interpolating a 

continuous, multivariate function  ( )  by an approximating function   ( ) . In the 

FLANN, a set of basis functions 𝛷 and a fixed number of weight parameters   are used 

to represent   ( ). With a specific choice of a set of functions, the problem is then to 

find the weight parameters   that provides the best possible approximation of   on the 



 

 

 

 

set of input–output examples. This can be achieved by recursively updating  . Detailed 

theory on the FLANN may be found in [22]. 

Let a training pattern be denoted by *     + and the weight matrix by  ( ).  Discrete 

time index,   is given by        for          and            where   is total 

number of training patterns. At  th instant, the  -dimensional input pattern and the  -

dimensional FLANN output are given by    ,   ( )     ( )       ( )-
  and  ̂  

,  ̂ ( )     ̂ ( )       ̂ ( )-
 , respectively. Its corresponding target pattern is represented 

by    ,   ( )     ( )       ( )-
 . The dimension of the input pattern increases from 

  to   by a basis function 𝛷 given by 𝛷(  )  ,  (  )     (  )         (  )-
 . The 

(   ) -dimensional weight matrix is given by 
 ( )  ,  ( )     ( )       ( )-

  where,   ( ) is the weight vector associated 

with  th output and is given by   ( )  ,   ( )      ( )        ( )-. The  th output 

of the FLANN is given by 

 

for            The error associated with  th output mode is given by   ( )  

  ( )   ̂ ( ). Using the BP algorithm, weights of the FLANN can be updated as   

 

where,  ( )  ,  ( )     ( )       ( )-
 ,   ( )  (   ̂ 

 ( ))  ( )  and   and   are 

learning parameters and momentum factor, respectively. 

D. Chebyshev Expansion 

In this study we used Chebyshev polynomials for functional expansion as shown in 

Fig. 2. These polynomials are easier to compute than that of trigonometric polynomials. 

In our study, we found superior performance by using CFLANN. The first few 

Chebyshev polynomials are given by:   ( )     ,   ( )    and   ( )    
   .The 

higher order Chebyshev polynomials may be generated by the recursive formula given by 

 

E. Computational Complexity 

Here we present a comparison of computational complexity between the MLP and 

FLANN structures trained by BP algorithm. Let us consider an  -layer MLP with    
nodes (excluding the threshold unit) in layer  ,          , where     and    represent 

number of nodes in the input and output layers, respectively. An  -layer ANN 

architecture may be represented by *               + . Three basic 



 

 

computations, i.e., addition, multiplication and computation of     ( ) are involved for 

updating weights of the ANN. The computations in the network are due to the following 

requirements: 

1) forward calculations to find the activation value of all the nodes of the entire 

network; 

2) back-error propagation for calculation of square error derivatives; 

3) updating weights of the entire network. 

Total number of weights to be updated in one iteration in an MLP is given by 

(∑ (    )    
   
   ) , whereas in the case of a FLANN it is only (    )  . A 

comparison of the computational requirements in one iteration of training using BP algo-

rithm for the two ANNs are provided in Table I. From this table it may be seen that the 

number of additions, multiplications and computation of are much less in the case of a 

FLANN than that of a MLP network. As the number of hidden layers and number of 

nodes in a layer increase, the computations in a MLP increase. However, due to absence 

of hidden layer in the FLANN, its computational complexity reduces drastically. 

 

IV. SIMULATION STUDIES 

Extensive simulation studies were carried out with several examples of nonlinear 

dynamic systems. We compared performance of the proposed CFLANN with that of a 

MLP for those problems reported by Narendra and Parthasarathy [6]. For this purpose, 

we used the same MLP architecture {1 20 10 1} as used by them. 

During the training phase, an uniformly distributed random signal over the interval 

[    ] was applied to the plant and the ANN model. White Gaussian noise was added to 

the input of the plant. As it is usually done in adaptive algorithms, the learning parameter 

  and the momentum factor   in both ANNs were chosen after several trials to obtain 

best results. In a similar manner, the functional expansion of the FLANN was carried out. 

The adaptation continued for 50000 iterations during which the series–parallel 

identification scheme was used. Thereafter, adaption was discontinued and the ANN was 

used for identification purpose. During the test phase, the effectiveness of the ANN 

models were studied by presenting a sinusoidal signal given by 

 

Performance comparison between the MLP and the CFLANN was carried out in terms of 

output estimated by the ANN model, actual output of the plant and modeling error. A 

standard quantitative measure for performance evaluation is the normalized mean square 

error (NMSE) and is defined as [33] 



 

 

 

where  ( )  and  ̂( )  represent plant ANN model outputs at  th discrete time, 

respectively and    denotes variance of the plant output sequence over the test duration 

  . It may be noted that, in the results for all the examples provided below, the ANN 

model was trained with random signals. Whereas, testing of the ANNs were carried out 

by applying a sinusoidal signal (5) to the plant and the model. The results are shown for 

600 discrete samples, i.e.,       . 

Example 1: We consider a system described by the difference equation of Model 1. 

The plant is assumed to be of second order and is described by the following difference 

equation: 

 

where nonlinear function   is unknown, but        and        are assumed to be 

known. The unknown function   is given by:  ( )        (  )        (   )  
       (   ) . To identify the plant, a series-parallel model was considered which is 

governed by the following difference equation: 

 

The MLP used for the purpose of identification has a structure of {1 20 10 1}. For 

the CFLANN, the input was expanded to 14 terms using Chebyshev polynomials. Both   

and   [refer (3)] were chosen to be 0.5 in the two ANNs and a white Gaussian noise of 

 10 dB was added to the input of the plant. The results of the identification with the 

sinusoidal signal (5) are shown in Fig. 3. It may be seen from this figure that the 

identification of the plant is satisfactory for both the ANNs. But, the estimation error in 

the CFLANN is found to be less than that of the MLP. The NMSE for the MLP and the 

CFLANN models are found to be  16.69 dB and  26.22 dB, respectively. 

Example 2: We consider a plant described by the difference equation of Model 2: 

 

It is known a priori that the output of the plant depends only on the past two values of the 

output and the input of the plant. The unknown function   is given by  (     )  
    (      )(      ) (      

    
 ). The series-parallel scheme used to identify 

the plant is described by 

 

A MLP of {1 20 10 1} structure was used. In the CFLANN, the 2-dimensional 

input vector was expanded by the Chebyshev polynomials upto 12 terms. A Gaussian 

noise of  30 dB was added to the input of the plant. For the MLP the values of   and   

were set to 0.05 and 0.10, respectively. In the case of CFLANN, the values of   and   



 

 

 

were chosen to be 0.07 and 0.01, respectively. After the completion of training, the 

sinusoidal signal (5) was applied to the plant and the ANN models. The results of the 

identification are shown in Fig.4. The values of NMSE for the MLP and the CFLANN 

are found to be  19.47 dB and  21.20 dB, respectively. It may be seen that the 

performance of both ANN models are similar and satisfactory. 

Example 3: Here, the plant is of Model 3 and is described by the following difference 

equation: 

 

where the unknown functions   and   have are given by:  ( )  ( (     )) (    
  )  and  ( )   (     )(     ) . The series parallel model for identification is 

given by 

 

where and  are the two ANNs used to approximate the two nonlinear functions  

 and   ,respectively.  

In the case of MLP, both and  were represented by {1 20 10 1}whereas, in 

the case of CFLANN these were represented by {14 1} structure. To improve the 

learning process, the output of the plant was scaled down by a scale factor (SF) before 

applying it to the ANN model. The SF was chosen as 2.0. The learning parameters   and 

  were chosen as 0.50 and 0.25, respectively, for the MLP. Whereas, in the case of 

CFLANN,   and   were selected as 0.20 and 0.10, respectively. A Gaussian noise of  20 

dB was added to the input of the plant. The results of the identification are depicted in Fig. 

5. The NMSE values are found to be  19.45 dB and  20.25 dB for the MLP and 

CFLANN models, respectively. It may be seen that the CFLANN is capable of estimating 

the plant response similar to that of the MLP. 

Example 4: The plant model selected here is the most general of all the examples 

chosen. It belongs to the Model 4 and is described by 

 

where the unknown function  is given by  ,              -          (   
   ) (      

    
 ). The series-parallel model for identification of the plant is given by 

 

In the case of MLP and FLANN,  is represented by {5 20 10 1} and {10 1} 

structures, respectively. The inputs,   ’s and  ’s were expanded by using the Chebyshev 

polynomials to 10 terms and used in the CFLANN for identification of the plant. A 

Gaussian noise of  10 dB was added to input of the plant and a SF of 1.5 was selected. 

The learning parameter   and the momentum factor   for the MLP model were chosen as 



 

 

0.01 and 0.10, respectively. Whereas, both   and   for the CFLANN were selected as 

0.50. 

The outputs of the plant and the ANN models along with their corresponding errors 

are shown in Fig. 6. The NMSE for the MLP and CFLANN models were found to be 

 18.43 dB and  16.60 dB, respectively. It may be observed that the performance of the 

CFLANN is slightly inferior to that of the MLP model. 

Comparison of computational load between a MLP and a CFLANN for the four 

examples studied is provided in Table II. It may be seen that computational requirements 

of a CFLANN in terms of number of additions, multiplications and computation of      

are much lower than that of a MLP [34], [35]. 

 

V. CONCLUSIONS 

We have proposed a novel single-layer ANN structure for identification of nonlinear 

dynamic systems. In a functional-link ANN, functional expansion of the input increases 

the dimension of the input pattern. Thus, creation of nonlinear decision boundaries in the 

multidimensional input space and identification of complex nonlinear dynamic systems 

become easier. In the proposed CFLANN, the input functional expansion is carried out 

using the Chebyshev polynomials. In the four models of nonlinear dynamic systems 

considered in this study, the CFLANN is found to be effective in identification of all the 

systems. The prime advantage of the proposed ANN is its reduced computational 

complexity without any sacrifice on its performance. Simulation results indicate that 

performance of the proposed network is as good as that of a MLP network in presence of 

additive noise to the system. The CFLANN may be used for on-line signal processing 

applications due to its less computational requirement and satisfactory performance. 
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