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ERRATA TO

“THE CONSTRUCTION OF SOLVABLE POLYNOMIALS”

HAROLD M. EDWARDS

The following corrections need to be made to my article [1], which appeared in
the July 2009 issue of the Bulletin of the American Mathematical Society.

1. Formula (2.3) in Theorem 2.1 should be stated in the equivalent form

G(x) =
ν∏

j=1

(xµ − rjr
δ
j−1r

δ2

j−2 · · · rδ
ν−1

j−ν+1)

in order to include the case ν = 1. (When ν = 1, the argument of footnote 12 fails
and no δ satisfies the requirements of the theorem. When the formula is stated as
above, no δ is called for when ν = 1.)

In the special case ν = 1, the definition of G(x) in (5.2) should be replaced by
G(x) = xµ − sµ0 , where s0 is a nonzero Lagrange resolvent. (In this case, there is
no m, but this G(x) has the µ needed roots αjs0.)

When ν = 1, the assertion to be proved in Section 7 reduces to a tautology.
2. Proposition 4.1 contains a serious error that does not affect the rest of the

paper. The formula αjsi �→ αjsi+κ it gives for τ describes a permutation of the La-
grange resolvents, but does not describe an automorphism of Ω, so the proposition
fails to provide the needed τ . (The τ constructed in the proof is an automorphism,
but it does not combine with σ and η to generate the group.) Correction of the
formula for τ implies corrections in the relations, but the main assertions remain:

Proposition. Given an irreducible solvable polynomial g(x) of prime degree µ with
coefficients in an algebraic field K, let Ω be the field obtained by adjoining a µth root
of unity α �= 1 to the splitting field of g(x). The Galois group of Ω over K has order
µνλ, where ν and λ are divisors of µ− 1, and it is generated by automorphisms σ,
τ and η, of order µ, ν and λ, respectively, that satisfy relations στ = τσ, ητ = τη,
and ησ = σεη, where ε is an integer whose order modµ is λ. As permutations

of the Lagrange resolvents, such generators are described by σ : αjsi �→ αj+γ−i

si,
τ : αjsi �→ αjδsi+κ, and η : αjsi �→ αjεsi, where γ is the primitive root mod µ used
to define the Lagrange resolvents, where κ = (µ− 1)/ν, and where δ ≡ γ−κ mod µ.

Proof. Let G be the Galois group of Ω over K. In Section 4, σ is defined to be an
element of order µ in G. As is shown, one can assume without loss of generality that

it carries αjsi �→ αj+γ−i

si, as in the statement of the proposition. Also in Section 4,
η is defined to be a generator of the subgroup of G consisting of automorphisms
that leave s1, s2, . . . , sµ−1 fixed. As a permutation of the Lagrange resolvents, it
is then given by the formula in the proposition.
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What is missing from Section 4 is the correct definition of τ . It is a generator of
the subgroup of G consisting of automorphsims that leave the roots of g(x) fixed.
As is shown in Section 4, the most general permutation of the Lagrange resolvents

that arises from an element of G has the form αjsi �→ αaj−dγ−(i+b)

si+b for some
integers a, b, and d. The values of these integers are not arbitrary, however, but
must be such that α �→ αa and qi �→ qaiγb+d is an automorphism of Ω. (The letters
a and b here replace the letters ε and λ that were injudiciously used in Section 4.)
Since τ must carry α �→ αδ, where the order of δ mod µ is the order of the group
generated by τ , a must be a number δ with this property. Since τ (qi) = qi for each
i, d must be 0 and b must satisfy aγb ≡ 1 mod µ. Thus, as a permutation of the
αjsi, τ has the form described in the proposition when ν is taken to be the order
of the group of which τ is a generator.

The relations among σ, τ and η all follow from their formulas as permutations
of the Lagrange resolvents, and it remains only to show that σ, τ and η generate G,
which amounts to saying that G has order µνλ. The µ(µ− 1) Lagrange resolvents
αjsi are partitioned by σ and τ into κ orbits, each of length µν. (Two Lagrange
resolvents αjsi and αj1si1 are in the same orbit if and only if i ≡ i1 mod κ.)
Each orbit, unless it consists of µν zeros, contains the µν roots of an irreducible
(because G permutes its roots transitively) factor of

∏
(xµ − Ri) over K. As is

shown in Section 4, two nonzero Lagrange resolvents αjsi and αj1si1 are equal only
if j ≡ j1 mod µ and i ≡ i1 mod (µ − 1), and adjunction of one nonzero si adjoins
all of s1, s2, . . . , sµ−1. Therefore,

∏
(xµ − Ri) is a product of κ factors, each of

which is irreducible of degree µν over K, except that some (but not all) may be
xµν . Adjoining one root of one irreducible factor other than x is an extension of
K of degree µν. The entire extension from K to Ω is reached by then adjoining α.
The degree of this further extension is the order λ of η, so the degree of Ω over K
is µν · λ, and this is the order of G, as was to be shown. �

Note that the corrected formula for τ does not change the effect of τ on the si, so
the quantities ri defined by (5.1) are still permuted cyclically by the Galois group.

3. The proof near the end of Section 7 that η and τ commute should state that
the common value of τη and ητ for any root αjwi of G(x) is the unique µth root of
wµ

i+1 that can be expressed rationally in terms of αjwi, except when K(w) contains
a primitive µth root of unity; in the latter case, η is the identity and again ητ = τη.

4. In formula (8.1), the exponent γ−i should be replaced by a positive integer
solution r of rγi ≡ 1 mod µ. (For example, it could be replaced by the exponent
γ−i in formula (2.1). Since wµ

j can be expressed in terms of rj and absorbed into

the coefficient Fi(rj), only the class of the exponent mod µ matters in the formula.)
5. Page 398 line 6, “he says” should be “Kronecker says.”
6. Page 406, the third line from the bottom, the sentence beginning “This auto-

morphism, call it τ ,” should begin, “This automorphism τ”.
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