Erratum

Int J Epidemiol 2007;**36:**847–57

In issue 36(4) an incorrect version of Figure 4 was displayed as part of Figure 5, while the correct version of Figure 4 was shown at the bottom of page 852. The publisher apologises for this error, and prints the two affected figures again below:

Impact of allocation concealment on conclusions drawn from meta-analyses of randomized trials

J Pildal, A Hróbjartsson, K J Jørgensen, J Hilden, D G Altman and P C Gøtzsche

Study	n meta-analyses	<i>n</i> trials		Ratio of odds ratios 95% Cl			Weight %	Ratio of odds ratios 95% Cl		
Schulz 1995 ⁴	33	250		+			17.77	0.66	[0.59,	0.73]
Moher 1998 ⁵	11	127			.		9.64	0.63	[0.45,	0.88]
Kjaergard 2001 ⁶	14	190			+		3.96	0.60	[0.31,	1.16]
Egger 2003 ⁷	39	304			-		17.32	0.79	[0.70,	0.89]
Balk 2002 ⁸	26	276		-	+		16.59	0.95	[0.83,	1.09]
Als-Nielsen 2004 ⁹	48	523			÷		17.09	1.02	[0.90,	1.16]
Pildal 2007 [this study]	29	286		+	-		17.64	0.90	[0.81,	1.00]
Total (95% CI)				•	•		100.00	0.82	[0.71,	0.94]
Test for overall effect: Z	= 2.73 (P = 0.006)									
-			0.2	0.5	1 2	5				
	Trials wit concealr effect of	Trials with unclear or inadequate concealment show a more favourable effect of the experimental treatment			Tria sho exp	Trials with adequate concealment show a more favourable effect of the experimental treatment				

Figure 4 Meta-analysis of how the present study adds to the other published studies of the impact of allocation concealment on treatment effect estimates. RORs below 1 indicate that trials without adequate concealment show a more beneficial treatment effect. RORs were combined in a random effects generic inverse variance meta-analysis

Study	Log [Ratio of odds ratios] (SE)	Ratio of odds ratios 95% Cl	Weight 95% Cl	Ratio of odds ratios 95% Cl		
Schulz 1995 ⁴	-0.1863 (0.0770)	-	24.72	0.83 [0.71, 0.97]		
Moher 1998 ⁵	0.1044 (0.1946)		5.54	1.11 [0.76, 1.63]		
Kjaergard 2001 ⁶	-0.5798 (0.2777)		2.84	0.56 [0.32, 0.97]		
Egger 2003 ⁷	-0.1278 (0.0834)	-=-	22.25	0.88 [0.75, 1.04]		
Balk 2002 ⁸	-0.0202 (0.1147)	_ 	13.87	0.98 [0.78, 1.23]		
Als-Nielsen 2004 ⁹	0.0953 (0.1621)		7.72	1.10 [0.80, 1.51]		
Pildal 2007 [this study]	-0.0619 (0.0812)	-	23.06	0.94 [0.80, 1.10]		
Total (95% CI)		•	100.00	0.91 [0.83, 1.00]		
Test for overall effect: Z =	1.99 (P = 0.05)					
	0.2 Trials without double-blinding s a more favourable effect of the experimental treatment	0.5 1 2 how Trial a mo expo	5 als with double-blinding show ore favourable effect of the perimental treatment			

Figure 5 Meta-analysis of how the present study adds to the other published studies of the impact of double-blinding on treatment effect estimates. RORs below 1 indicate that trials without double blinding show a more beneficial treatment effect. RORs were combined in a random effects generic inverse variance meta-analysis. Only one study⁷ besides our own made the number of meta-analyses and trials that contributed to the estimates available