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Appendix H

This appendix gives an algorithm for computing the trapezoidal diagram of a
set S of n line segments in O(n?) expected time. The algorithm uses randomized
divide-and-conquer: take random R C S of size r = n/logn, and compute 7 (R)
using Goodrich’s algorithm.!® (Alternatively, use an algorithm analogous to the
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suboptimal one given in Ref. 20.) Insert the remaining segments of S into 7(R),
and use subsampling of the segments meeting each T' € T(R) to yield subproblems
all of size O(+/Iogn) with high probability. Now use an optimal serial algorithm for
such subproblems, and Goodrich’s algorithm for the remainder.

The insertion step, in more detail: note that the complete adjacency represen-
tation of 7(R) divides the segments of R into O(r?) total pieces, with O(r?) on
any segment of R (actually O(ra(r)) trapezoids meet any given segment, but the
larger bound will suffice). We use list ranking? to obtain, for each segment in R, a
sorted array of the pieces induced by 7 (R), with pointers to the trapezoids meeting
each piece. Now for each segment a € S, use binary search on the array for every
segment b € R, to find the trapezoids containing the intersection point of a and b.

This does not give all the trapezoids meeting a; the remaining trapezoids are
obtained as follows: consider the conver diagram of R, the subdivision induced
using visibility edges from segment endpoints only, not intersection points. The
trapezoids within each region of the convex diagram can be ordered top to bottom;
such orderings can be obtained by list ranking, applied to adjacencies between
trapezoids with common edges that are visibility segments from intersection points.
The trapezoids in a convex cell that meet a segment a € S are an interval in that
list, and the highest and lowest trapezoids contain either intersection points of a
with R, or endpoints of a. Binary searches suffice to locate the endpoints of a in the
list, if either are contained in trapezoids in the cell. Finally, the trapezoids meeting
a, other than the highest and lowest, can be obtained after sufficient processors are
allocated to do this. (Note that the number of trapezoids met is available.) We
have, for every a € S, the set of trapezoids of 7(R) that it meets. By integer sorting
we obtain a collection of subproblems as discussed in §3.1. This completes the first
phase of processing.

Now for each T' € T (R), take a random subset of the segments that meet it, of
size K|nr|log|nr|/+/logn, where nt is the number of segments meeting T, and K
is an-appropriate constant. Again apply Goodrich’s algorithm to each such subset,
and use the same insertion technique, to obtain a collection of subproblems. Now
after appropriate processor allocations, apply an optimal serial algorithm to those
subproblems with no more than v/logn segments, and apply Goodrich’s algorithm
to the remainder.

Analysis. It is easy to verify that the algorithm consists of a constant number
of stages each requiring O(logn) time in the worst case.

It is also easy to verify that O(n?) expected work is required, using Lemma 1.
For example, computing the trapezoidal diagrams of the random subsets in the
second phase of processing requires expected work proportional to

> [O(Inz])log Inz|/+/logn) log [n|;

TeT(R)
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since |n7| = O(log? n) for all T' with probability 1 —1/n, the above is no more than

Z O(|n7|?)(loglog n)?/ logn,
TeT(R)

which is O(n?%(loglogn)?/logn).



