
Mon. Not. R. Astron. Soc. 418, 2106–2108 (2011) doi:10.1111/j.1365-2966.2011.19432.x

Erratum: The late jet in gamma-ray bursts and its interactions
with a supernova ejecta and a cocoon

by Rongfeng Shen,� Pawan Kumar and Tsvi Piran

Key words: errata, addenda – diffusion – radiation mechanisms: thermal – gamma-ray burst: general – supernovae: general –
X-rays: general.

The paper ‘The late jet in gamma-ray bursts and its interactions
with a supernova ejecta and a cocoon’ was published in Mon. Not.
R. Astron. Soc. 403, 229–245 (2010).

In section 3.3 of the paper, the thermal emission luminos-
ity of the ‘late cocoon’ at its breakout, Lth, was incorrectly es-
timated as the blackbody luminosity for the internal tempera-
ture of the ‘late cocoon’. This was an overestimate because it
did not include the photon diffusion process which will certainly
happen inside the extremely optically thick cocoon. The correct
estimate is provided here.

We first consider the generalized problem of the surface luminos-
ity from an expanding sphere of gas and radiation. Later we apply
the obtained analytical results about L(t) – the evolution of the sur-
face luminosity – to the case of the late cocoon. We will consider a
homologous, subrelativistic expansion, meaning v(r) ∝ r where r is
the radius inside the sphere. We further assume the internal energy
of the sphere is dominated by the radiation, and the accumulated ra-
diative loss up to a given time t is very small compared with Eint(t) –
the total internal energy at t. These two assumptions should hold at
least during the early phase of the cocoon expansion. Therefore, the
adiabatic law for a photon gas applies, i.e. Eint(t) ∝ R(t)−1, where
R(t) is the outer boundary radius of the sphere. Let E0, R0, T0 and τ 0

be the initial internal energy, radius, central temperature and optical
depth of the sphere at t = 0, respectively. The sphere expands as
R(t) = (t0 + t)v, where v is a constant and t0 = R0/v.

Arnett (1980; also see Arnett 1996) has developed an analytical
model based on the diffusion of radiation from a homologously
expanding gas sphere. Utilizing the photon diffusion approximation
throughout the sphere, i.e. L ∝ −r2∂T 4/∂r , his model provides a
solution of L(t) as in Lrela(t) = Lrela(0)φ(t), where Lrela(0) = E0/t0,d,
and t0,d � τ 0R0/c is the diffusion time-scale of the whole sphere at
t = 0; the temporal behaviour of Lrela is described by

φ(t) = exp

[
− t

t0,d

(
1 + t

2t0

)]
. (1)

Since t0 � t0,d, the decline of φ(t) steepens from being flat towards
a Gaussian at t = √

2t0t0,d , which sets the characteristic time-scale
for Lrela(t). In this model, the density structure is one of a series of
eigenfunctions, which in turn determines the temperature structure.
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Note that the luminosity temporal behaviour φ(t) (equation 1) is
insensitive to the choice of the eigenvalue. Among all the eigen-
functions, the one corresponding to a uniform density structure is
the most interesting one and has been argued to be the ‘relaxed’
case the system tends towards on a hydrodynamic time t0 from any
initial structure. This relaxation is probable because the large radia-
tive flux during t � t0 accelerates the outer layers and thus gives a
very non-homologous expansion after t0 (Arnett 1980).

Earlier than t0, we usually should expect a ‘transient’ pulse. This
is due to both the facts that photons at the skin layer can easily
diffuse out and that the adiabatic expansion has not cooled the tem-
perature down. This transient lasts for the hydrodynamical time t0,
after which it transitions to the ‘relaxed’ solution. Its amplitude
generally differs from Lrela(0) because it is determined by the initial
density and temperature structures, while the ‘relaxed’ solution is
insensitive to the initial structures. We estimate the transient lumi-
nosity in the following.

Analogously to that of a shocked SN envelope (e.g., Chevalier
1992; Matzner & McKee 1999), we consider that the gas sphere
initially has a power-law density structure as in

ρ(r) ∝ (1 − r/R)θ , (2)

where θ > 0 corresponds to centrally condensed, and θ < 0 to a
shell-like structure. The temperature structure is found by applying
the constant entropy throughout the sphere, thus, T(r) ∝ (1 − r/R)θ/3.
The total mass is given by M = 8πR3ρ(r = 0)/[(1+ θ )(2+ θ )(3+
θ )]. The temporal behaviour of the density is due to the expansion,
i.e. ρ(t) ∝ (1 + t/t0)−3. The temporal behaviour of the temperature
is given by the photon gas adiabatic law, i.e. T(t) ∝ (1 + t/t0)−1.
The total internal energy is E(t) = E0(1 + t/t0)−1.

Consider a surface layer of thickness s whose photon diffusion
time is t, i.e.

sτ (s)

λc
= t, (3)

where τ (s) = ∫ R

R−s
ρκdr = τ0(s/R)(θ+1) is the optical depth of this

layer. It can be solved to give

s =
(

ctR3+θ

τ0R
2
0

) 1
2+θ

. (4)
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The internal energy contained in this surface layer is Erad(t) =∫ R

R−s
4πr2aT (r, t)4dr . The integral can be carried out to give

Erad(t) = E0

18

(
R

R0

)−1 ( s

R

)4θ/3+1

×
[

(4θ + 6)(4θ + 9) − 2(4θ + 3)(4θ + 9)
( s

R

)

+ (4θ + 3)(4θ + 6)
( s

R

)2
]

. (5)

For early times that we are interested in, s/R � 1, so

Erad(t) � (4θ + 6)(4θ + 9)

18
E0

(
R

R0

)−1 ( s

R

)4θ/3+1
. (6)

This portion of energy will diffuse out of the sphere during time
t, so the diffusive luminosity is L(t) � Erad(t)/t. Plugging in the
expression for s and the temporal dependence in R(t), it gives

L(t) = (4θ + 6)(4θ + 9)

18

E0

t0

(
c/v

τ0

) 4θ+3
3(θ+2)

×
[

t

t0

(
1 + t

t0

)]− (3−θ )
3(θ+2)

. (7)

In particular, the luminosity at t = t0 is

Ltran(t0) = 2
θ−3

3(θ+2) × (4θ + 6)(4θ + 9)

18

E0

t0

(
c/v

τ0

) 4θ+3
3(θ+2)

, (8)

which sets the amplitude of the early ‘transient’ signal. After t0,
the system adjusts hydrodynamically toward the ‘relaxed’ state cor-
responding to Arnett’s solution, and the luminosity falls from the
peak value Ltran(t0) to the ‘relaxed’ value Lrela(0). This adjustment
of the sphere structure occurs in a time-scale between t0 and t0,d.
Fig. 1 collectively illustrates the overall evolution of L.

Note that the assumed initial structure of the sphere, most inter-
estingly θ , affects the ‘transient’ peak luminosity. For instance, as θ

increases, Ltran(t0) drops. This is because a more steeply decreasing
density structure means less energy is contained in the outer layers
of the sphere and can diffuse out within time t0.

The most interesting case of the sphere’s initial structure is the
one in which both the density and the temperature are uniform in the
sphere, not only because it has the simplest form but also because

Figure 1. Illustration of the evolution of the bolometric luminosity from
a hot, expanding cocoon. It is jointly described by a ‘transient’ solution
for t � t0 and a ‘relaxed’ solution afterwards. The parameter values that
correspond to the curve shown here are τ 0 = 2 × 107, E0 = 1 × 1050 erg,
R0 = 1011 cm, v = c/

√
3 and θ = 0. As θ increases, the peak luminosity

of the ‘transient’ drops; when θ ≈ 3, it drops to the luminosity level of
the ‘relaxed’ solution, thus becoming observationally indiscernible from the
latter.

the ‘transient’ pulse can precede and easily stand out against the
later, ‘relaxed’, diffusive emission. As regards to the late cocoon,
the isothermal condition is probably viable because the cocoon
was heated by the passage of the jet, hence the heating was done
throughout the cocoon, from the rear end to the front end, which is
different from the heating in a star where the heating source is at
the centre and a temperature gradient is required by the diffusion
and by the hydrostatic equilibrium equation.

For θ = 0, i.e. uniform density structure, the peak luminosity
of the ‘transient’ pulse is Ltran(t0) ≈ √

c/(τ0v)E0/t0. When com-
pared with the blackbody luminosity, using E0 = 4πR3

0aT 4
0 /3,

one has Ltran(t0) ≈ 4πR2
0σT 4

0 /
√

τ0c/v. Therefore, the ‘transient’
peak luminosity is about

√
τ0c/v times smaller than the blackbody

luminosity for the internal temperature of the sphere.
In the case of the late cocoon, assuming uniform density,

the thermal emission luminosity at the late cocoon breakout is
Ltran(t0) ∼ √

csc/τcEc/rSN, where cs ≈ c/
√

3 is the sound speed
in the cocoon and is also the speed at which the broken-out late
cocoon expands, Ec is the total energy of the late cocoon and is
equal to the late jet luminosity times the jet penetration time of the
supernova ejecta, rSN is the supernova ejecta shell radius which is
of the same order as the late cocoon size, and τ c is the late cocoon’s
initial optical depth. τ c depends on the mass of the late cocoon,
Mc, of which we do not have a firm knowledge; we can only infer
Mc to be a small fraction of the SN ejecta mass. As a crude, order-
of-magnitude, estimation we take Mc ∼ 10−3−10−1M	, which
implies τ c ∼ 107−1010. Plugging in numbers we find

Ltran(t0) ≈ 3.3 × 1045 L
1/2
j,49θj,−1M

1/2
SN,1M

−1/2
c,−1 r⊥,11

× 

1/2
SN,11r

−1
SN,11 erg s−1. (9)

Explanations of additional parameter symbols are provided in Shen,
Kumar & Piran (2010).

The non-spherical shape of the late cocoon, e.g. elongated along
the late jet axis, may change the number slightly but not by an
order of magnitude. A radially decreasing density distribution in the
cocoon will result in a lower Ltran(t0). For a very steeply declining
density distribution (e.g. θ > 3), Ltran(t0) may be so low that the
transient signal would be observationally indiscernible from that of
the ‘relaxed’ diffusive solution, and the latter would dominate the
long time-scale signal with a luminosity of

Lrela

(
t ≤ √

2t0t0,d

) ≈ 2 × 1041 L
1/2
j,49θj,−1


1/2
SN,11M

1/2
SN,1

× rSN,11M
−1
c,−1 erg s−1 (10)

up to t = √
2t0t0,d ≈ 3 × 105 M

1/2
c,−1 s, after which it drops in a

Gaussian.
Our previous estimation of the duration of this thermal transient,

i.e. the time it takes for the bulk of the late cocoon to escape the
ejecta, is still valid since that time is numerically equivalent to the
time that the late cocoon takes to double its size.

In summary, while our conclusion that the late jet–SN ejecta in-
teraction produces a thermal transient which peaks at X-ray band
and lasts for ∼10 s is not changed, the bolometric luminosity of
this transient is corrected to be ∼1045–1046 erg s−1. For a typical
gamma-ray burst redshift of z = 1–2, this luminosity translates to
an observed flux of ∼10−13–10−11 erg s−1 cm−2. With a sensitiv-
ity of 2 × 10−14 erg s−1 cm−2 in 104 s (Gehrels et al. 2004), the
Swift X-Ray Telescope (XRT) may not be able to detect this thermal
transient since the predicted flux is only marginally above the sensi-
tivity whereas the duration of the transient is much shorter than the
sensitivity-required integration time. The slow-varying signal of the
‘relaxed’ diffusive stage is less luminous (Lrela ∼ 1041–1043 erg s−1)
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and lasts longer (t ∼ 104–105 s). This signal would have a typical
flux ≤10−14 erg s−1 cm−2, thus has very little chance to be detected
by XRT. These conclusions are consistent with the non-detection of
a thermal emission component by XRT in early afterglows so far,
particularly in those showing X-ray flares.

Our conclusions about the late jet–cocoon interaction are not
affected by this correction.
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