The Polynomial Time Hierarchy Collapses
if the
Boolean Hierarchy Collapses

Jim Kadin=l=

87-843
June 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

*Supported in part by NSF research grant DCR-8520597.

The Polynomial Time Hierarchy Collapses
if the Boolean Hierarchy Collapses

Jim Kadin*
Cornell University

June 12, 1987

Abstract

The structure of the Boolean hierarchy (BH) is related to the
polynomial time hierarchy (PH) by showing that if the BH col-
lapses, then PH C Af.

1 Introduction

It was recently shown in [Kad87] that if DP = co-DF, then there exists
a sparse set S such that SAT € NP5, there exist small NP machines for
initial segments of SAT, and the polynomial time hierarchy (PH) [Sto77]
collapses to PNP™" (AP).

This paper generalizes that result to any level of the Boolean hierarchy
(BH) [CH86,Wec85]. Thus if the BH is finite, the PH collapses to PN

The BH is intertwined with the constant query bounded hierarchy,
PSATI] pSATR] ... where PSATHl is the class of languages recognized by
deterministic polynomial time machines that make at most k queries to an
oracle for SAT on all inputs. Thus this same result holds for this hierarchy

too.

*Supported in part by NSF research grant DCR-8520597.

2 PRELIMINARIES 2

The key idea of the proof is that if the kth level of the BH collapses,
then there is a polynomial time reduction g mapping co-NP(k) to NP(k).
The function g induces reductions relative to sparse oracles for all the levels
of the BH below k. Thus there exists a sparse set S and a polynomial time
function f such that f5 reduces SAT to SAT. This implies co-NP C NP%,
and thus the PH collapses.

2 Preliminaries

We use capital letter N, possibly subscripted, to represent nondeterministic
polynomial time machines.

For any machine N, | N| is the size of the state transition table of N.

For any string z, || is the length of z.

For any set of strings C, C=" is the set of strings in C of length n. csn
is the set of strings in C of length less then or equal to n.

We write || C|| for the cardinality of any set C'.

For any two sets of strings B and C, the disjoint union of B and C is

B@Cdg{lﬂzeB}U{OﬂmEC}.

The BH is defined in [CH86,Wec85] as:

NP(1) % NP,

NP(2) % {LinIs|L: € NP} (= DP),

NP(3) % {(L,nTI;)ULs|L; € NP},
(

NP(4) % {((L;nI;)U Ls) N I4|L; € NP},

The class of languages whose complements are in NP(7), co-NP(z), is
defined similarly:

co-NP(1) ' co-NP,

co-NP(2) % {I,U L,|L; € NP} (= co-DP),
co-NP(3) % {(I,U L,)NTs|L; € NP},

2 PRELIMINARIES

co-NP(4) % {((T,U Ly)NI3) U L4|L; € NP},

def

Finally, BH = U, NP(k).

Many results about the BH are proved in [CH86,Wec85]. For instance,
— BH. To see that the structure of the BH
is related to the structure of the PH, we need to understand the structure
of the <P -complete sets defined in [CH86 Wec85]. For each k, a complete

NP(k) = co-NP(k) < NP(k)

language, Lnp(x), can be defined in terms of SAT and SAT.

Lapay = SAT.
Lape) = SAT &SAT

' {(F1, F,) | Fy € SAT and F, € SAT}.

Lypy & (SAT & SAT) |SAT

Y ((F1, F, F3)| (Fi € SAT and F, € SAT)
or Fa € SAT}

Lypay & ((SAT & SAT)|SAT) & SAT

& ((Fy, Fy, Fs, Fy) | ((Fy € SAT and F; € SAT)
or F3 € SAT) and F4 € SAT}

Lco.Np(k), @ complete language for co-NP(k), can be defined similarly.

Lco-NP(l)
L o.np(2)

Lco—NP(3)

Lco—NP(4)

& GAT.
4f SAT|SAT

& ((F,,F,)| F, € SAT or F; € SAT}.
f (SAT|SAT)& SAT

= {(F1,F;, F3)| (Fy1 € SAT or F3 € SAT)
and F3 € SAT}.

& ((SAT|SAT) & SAT) | SAT
o ((F1, Fy, Fs, Fy)| ((Fy € SAT or F; € SAT)
and F3 € SAT) or F, € SAT}.

-9

2 PRELIMINARIES 4

Note the structure of k-tuples in Lyp(r) and Lo np(k)- For all k, Lxp(r)
has the structure “(---) & SAT”, and Lco.np(k) has the structure “(---)| SAT”
or vice versa. It will become clear that this is the key that relates the col-
lapse of the BH to the collapse of the PH

We will make the technical restriction that for each k-tuple in Lyp()
and L,.np(k), all k formulas have the same length. This restricted version is
still <P -complete since the shorter formulas in any k-tuple can be padded
up to the length of the longest formula in time that is polynomial in the
length of the original k-tuple.

Definition Vk, Vn, Lyp(k)n is the subset of Lnp(x) where each k-tuple only
contains formulas of length n.

For all k, Lnp(k) and Lco.Np(k) are complements. Thus any function f
that reduces Lnp(k) t0 Leo.NP(k) also reduces L,.np(k) t0 Lnp(k)- Such an f
also reduces LNP(k),n to Lco-NP(k) and Lco-NP(k),n to LNP(k)-

Definition A set of strings S is sparse if there ezists a polynomial p
such that VYn the number of strings in S of length n is less than p(n), i.e.

15="[|< p(n)-

There is a standard technique of using the prefixes of strings in a sparse
set to find the strings in the set. For any sparse set S, let

prefix(S) o {y#'|3z € S,|z|=|y| +1, and y is a prefix of z}.

For every length n, prefix(S) contains n times as many strings of length n
as S does. Therefore prefix(S) is sparse if S is. A deterministic polynomial
time machine with an oracle for prefix(S) can generate all the strings in
S<" on input 1*. The machine builds up each string one character at a
time by asking the oracle about longer and longer prefixes. A machine can
actually generate all the strings in prefix(S) up to a given length this way.
We use the phrase closing S under prefizes to mean adding all the strings
in prefix(S) to S.

Definition A set S is PB-printable for an oracle B if there ezists a pB
machine that on input 1™ prints all the strings in S<".

Thus if a sparse set S is closed under prefixes, then § is PS-printable.

3 MAIN RESULT 5

3 Main Result

The basic idea is that if for some k, Lyp(k) is polynomial time reducible to
Lco-NpP(k), then NP can be reduced to co-NP by a polynomial time function
that accesses a sparse oracle.

Theorem 1 Vk > 1 if ISk, gx where Sk is sparse and g,f” is a polynomaial
time reduction of Lnp(k) t0 Leonp(k), then 3Sk_1,9k—1 where Si_1 ts sparse
and g,f:‘ is a polynomial time reduction of Lnp(k—1) 0 Leo.NP(k-1)-

Proof: Suppose g,‘f" reduces Lnpk) t0 Lco.NP(k)- Assume without loss of
generality that S, is closed under prefixes so that Si is PS*-printable.

For each length n, there are two cases to distinguish. In each case we
will show how gi_; works for strings of length n and what strings need to
be put into S;.7.

To understand the first case, consider a formula F of length n. Suppose
there exist formulas Fy,---, Fr_; of length n such that

g]fh(Fh"',Fk—l,F) = (G17"'7Gk—-1’G)7 and
G € SAT.

Then because of the structure of Lyp(k) and Leo.Np(k), £ must be in SAT.
If k is even,

G € SAT — (G1, . ',Gk—hG) € Lco—NP(k)'

Thus since g,f" is a reduction, (F,---, Fk_1,F) € Lxp(k), but this implies
F € SAT. If k is odd, the same reasoning holds with NP(k) and co-NP(k)
reversed. Therefore if there exists such Fy,-- -, Fj_1, there is an NP5+ algo-
rithm for recognizing F' as unsatisfiable. On input F', guess Fy,--- s Fr_1,
compute g,f"(Fl, .+, F,_1, F), and accept if the last component of the out-

put of g is satisfiable.
Call the machine that executes this N pSk algorithm Negsy k- Since g,f"

reduces Lnpr) t0 LeoNP(k),

L(N3x) C SAT.

easy,k

The unsatisfiable formulas accepted by N i",y,k are “easy”, or more precisely,

Sk
g " -easy.

3 MAIN RESULT 6

Definition A formula F 1s g,f"-easy if 3Fy,---,Fyx_1 of length | F'| such
that
gff"(Fl, oy Fie1, F) = (Gry -+ G-, G)

where G € SAT.

Since Si is PS:-printable, there exists a polynomial time reduction r
such that r5* reduces L(Ni“,y,k) to SAT. On input F, r5* first generates
the subset S. of strings in Sk up to the length Nea.yx can ask on input F.
Then since it is an NP question whether or not Ne,x(F) accepts using

oracle S}, r can map (Neasyk, F, S},) to a formula that is satisfiable if and
only if Neqsyr accepts.

Case 1: Suppose all the unsatisfiable formulas of length n are g,f"-easy.

Then ~
L(N3x)™ =SAT ",

easy,k

and VF of length n
r5*(F) € SAT < F € SAT.

Thus for such n’s, 7% can be used to reduce Lco.Np(k-1)n to SAT and thus
to Lyp(k-1)- Call the reduction that uses r in this way g,f";a,y,
End of Case 1

If it is not the case that all formulas of length n are g,f"-easy, then at
least one formula must be “hard”.

Definition A formula F of lengthn is g,f"-hard if F € SAT and VFy,---, Fr_4

where | F;|= n,
g3 (Fy, -+ Feer, F) = (G, -, Grr, G)

where G € SAT.

Case 2: Suppose there exists a formula F' of length n such that F is g,f"-
hard. If k is even, then for all k-tuples of formulas of length n, Fy,- -, Fi_4,

(Fi,--+ 3 Fe-1) € Lnpe-1)n <= (F1,- -+, Fie1, F) € Lp(i)n

3 MAIN RESULT 7

since F € SAT. Since g,f * is a reduction,

(Fy, -y Fre1, F) € Lnpeyn <= (G1,- -+, Gi-1,G) € Leo.np(r)-
Since F is g;*-hard, G ¢ SAT, thus

(G1,-+,Gi-1,G) € Leonpr)y = (G1,- -+, Gr-1) € LeoNpP(k-1)-

If k is odd, the same reasoning holds with NP(¢) and co-NP(z) reversed.
Thus there is a polynomial time function which using S, can reduce Lnp(k-1),
to Lco-NP(k-—l) (and Lco-NP(k-l),n to LNp k—l))- Call this function gk[F]. On
input Fi,---,Fy_1, gk[F] computes g, *(Fi,---,Fr_1,F) and outputs the
first kK — 1 components.

End of Case 2

In summary, if all the strings of length n are g,f *_easy, then g,f, %asy Teduces
LeoNP(k=1)m t0 LNp(k-1)- If some formula F' of length n is g,f"-ha,rd, then
gk[F]S" reduces Lco—NP(k-—l),n to LNP(k—l)-

Thus Sk_; can be defined as S, with some extra strings added to indicate
which reduction works for each length n. For each n, put the lexicograph-
ically least g,f"-ha.rd string of length n into the set Sper4, and close Shard
under prefixes. Let

S ¥ G aU {0"| there are no g,f"-hard strings of length n}

we can assume that 0™ does not represent a valid Boolean formula). Let
P
S ¥ S. @8

S._1 is sparse since Si and S’ are both sparse.

Then g,ff;‘ on input Fy,---,Fe_;, (all of length n) works as follows.
First ask if 0 € S’. If the answer is yes, output g,f";a,y(Fl, -+, Fe_y). If the
answer is no, by prefixes generate F, the g,‘f"-hard string of length n, and
output gk[F]sh(Fl’ tc aFk—l)'

For each m, gksf;‘ reduces Lco.Np(k-1)m t© LNP(k-1) and thus reduces
Lco-NpP(k-1) to Lyp(k—1) and vice versa. a

Corollary 2 If 3k with NP(k) = co-NP(k), then 15, g such that S is sparse
and g° is a polynomial time reduction from SAT to SAT.

3 MAIN RESULT 8

Proof: If NP(k) = co-NP(k), then there exists a polynomial time reduction
(that needs no oracle) from Lnpk) t0 Leo-NP(k)- By k repetitions of the
theorem above, we can construct S and g. U

Lemma 3 If S is sparse and g° is a polynomial time reduction from a

language L to SAT, then L € NP%.

Proof: L = L(N?) where on input z, N computes g°(z) = y and accepts if
y € SAT. O

Thus we have:

Theorem 4 If Ik with NP(k) = co-NP(k), then 3 a sparse set S such that
SAT € NP%.

At this point we can conclude from results of Yap that PH C P
(NPNPNP) [Yap83). With a little more work, we can push it down to AP
(PNE™).

From the results in [Kad87], we know that if there exists a sparse set .S
that is PNPNP-printable and SAT € NP?, then PH C PNPY . We will show
that there exists such an §.

The S that we have in mind is basically the set built up by applications
of Theorem 1, but we can simplify that set a bit.

Suppose NP(k) = co-NP(k). Then by applying the theorem, we can
back down the BH from NP(k) to NP building up a sparse set S and a
polynomial time function g such that g5 reduces SAT to SAT. In the proof,
we define the set Sharq consisting of the lexicographically least hard string
of each length. We close Sj,.q4 under prefixes so that the deterministic re-
duction functions can generate the hard strings. Once we put the reduction
functions into an NP machine as in Lemma 3, the prefixes are not neces-
sary. The NP machine can guess a string and verify with the oracle that

the string is hard. Thus if NP(k) = co-NP(k), define

Sk déf ¢3
Sioi ¥Sio ({0] all formulas in SAT " are g *-easy } U
{z | z is the lexicographically least g5-hard
string of length |z |}).

3 MAIN RESULT 9

Then S & Si_1®--- D S, is a sparse set such that SAT € NP5. Since
each S; for 1 < 1 < k — 1 contains exactly one string of each length, S
contains k — 1 strings of each length.

Lemma 5 Yk, if NP(k) = co-NP(k), then the set S defined above is PNPYE
printable.

Proof: We will show that S_; is PNF" -printable, and thus inductively, $
will be too.

Let g, be the polynomial time reduction of Lnp(k) to Lconp(k)- The set
of gi-hard strings is in co-NP since it is the complement of the union of
SAT and the set of ge-easy strings. This implies that the set of prefixes of
hard strings,

{y#*|3F of length |y| +4 with y a prefix of F, and F is hard},

is in NPSAT.

Therefore a PP machine on input 1" can determine whether or not
there are any hard strings of length n by asking whether there are any
strings of length n in this prefix set. If there are strings, it can generate
the lexicographically least one by the standard prefix technique. O

Theorem 6 Vk, if NP(k) = co-NP(k), there ezists a PNPY _printable,
sparse set S containing ezactly k —1 strings of each length such that SAT €
NP®.

Corollary 7 If the BH collapses, then PH C PNP'™" (= Af).

Corollary 8 If the constant query bounded hierarchy collapses, then PH C
PN,

This work can be viewed as a study of oracle access mechanisms within
the PH. The results given above generalize for every AY in the PH. Recall

AP & pEly,

A Boolean hierarchy and a constant query bounded hierarchy, PEF—I["], can
be defined within each AF. If these hierarchies collapse, there exists a

3 MAIN RESULT 10

sparse set S such that ¥, C v5¥ and this collapses the PH to A},,. In
other words, for any AF and k, if k queries are as powerful as k +1 queries,
the PH collapses.

In contrast, for each X¥ in the PH, one query is enough. Recall

=P 4 NPE-.

Lane Hemachandra has recently shown that for all 7, NPE = NP
[Hem87]. This is a generalization of the result in [FSS84] that NPNF =
NPNPI Thus for all the NP levels of the PH, one query is enough, yet if
one query is enough at any of the P levels, then the PH collapses.

This work can also be viewed as a downward structural result. If the
BH collapses or if the PH collapses to the BH, then the languages in co-NP
are forced to have a certain structure.

A language L has small NP machines if there exists a sequence of NP
machines {N;} such that:

1. L(N;) = L=,

2. there is a polynomial p,;,. such that for all 1, | N; |< Psize(?),

3. there is a single polynomial that bounds the running time of all the
N;.

If L has small NP machines, then nondeterminism is somehow useful in
recognizing L. In [Kad87] it was shown that L has small NP machines
if and only if there exists a sparse set S such that L € NP®. Thus the

following corollary is true.

Corollary 9 Vk, if NP(k) = co-NP(k), then every language in co-NP has

small NP machines.

Acknowledgements

I am grateful to Professor Hartmanis for his support and guidance. It was
partly through discussions with him that the formulation of the collapse
in terms of sparse sets evolved. I am also grateful to Stuart Allen, Lane
Hemachandra, Steve Mitchell, and Geoff Smith for helpful discussions.

REFERENCES 11

References

[CHS6]

[FSS84]

[Hem87]
[Kad87]

[StoTT]

[Wec85]

[Yap83]

J. Cai and L. Hemachandra. The Boolean hierarchy: hardware
over NP. In Structure in Complezity Theory, pages 105-124,
Springer-Verlag Lecture Notes in Computer Science #223, 1986.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the
Polynomial-time hierarchy. Mathematical Systems Theory, 17:13-
27, 1984.

L. Hemachandra. 1987. Private communication.

J. Kadin. Is One NP Question as Powerful as Two? Techni-
cal Report TR 87-842, Cornell Department of Computer Science,
June 1987.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Com-
puter Science, 3:1-22, 1977.

G. Wechsung. On the Boolean closure of NP. In Proc. of the 1985
International Conference on Fundamentals of Computation The-
ory, pages 485-493, Springer-Verlag Lecture Notes in Computer
Science , 1985.

C. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26:287-300, 1983.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif

