ERRATUM

Erratum to: A note on deformations of regular embeddings

C. Ciliberto¹ · F. Flamini¹ · C. Galati² · A. L. Knutsen³

Published online: 3 April 2017 © Springer-Verlag Italia 2017

Erratum to: Rend. Circ. Mat. Palermo, II. Ser DOI 10.1007/s12215-016-0276-4

The main result of the paper Proposition 1.3 is wrongly stated. Nevertheless, the proof of Proposition 1.3 and Proposition 1.5 provides a complete description of $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$ and the paper needs only the corrections below.

Corrections

• The statement of Proposition 1.3 has to be replaced by the following, which is exactly what is proved.

Proposition 1.3 Let $v: X \hookrightarrow Y$ be a regular closed embedding of reduced algebraic schemes and let $\operatorname{Def}_{X/v/Y}$ be the deformation functor of v preserving X and Y (cf. [3, §3.4.1]). Then,

The online version of the original article can be found under doi:10.1007/s12215-016-0276-4.

C. Ciliberto cilibert@mat.uniroma2.it

F. Flamini flamini@mat.uniroma2.it

A. L. Knutsen andreas.knutsen@math.uib.no

- Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00173 Rome, Italy
- Dipartimento di Matematica, Università della Calabria, via P. Bucci, cubo 31B, 87036 Arcavacata di Rende, CS, Italy
- Department of Mathematics, University of Bergen, Postboks 7800, 5020 Bergen, Norway

66 C. Ciliberto et al.

there exists a surjective morphism Φ from $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$ to the fiber product

$$\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$$

$$\downarrow^{\Phi}$$

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\Omega_{X}^{1}, \mathcal{O}_{X}) \times_{\operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\Omega_{Y}^{1}|_{X}, \mathcal{O}_{X})} \operatorname{Ext}_{\mathcal{O}_{Y}}^{1}(\Omega_{Y}^{1}, \mathcal{O}_{Y}) \xrightarrow{p_{Y}} \operatorname{Ext}_{\mathcal{O}_{Y}}^{1}(\Omega_{Y}^{1}, \mathcal{O}_{Y})$$

$$\downarrow^{p_{X}} \qquad \qquad \downarrow^{\mu}$$

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\Omega_{X}^{1}, \mathcal{O}_{X}) \xrightarrow{\lambda} \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\Omega_{Y}^{1}|_{X}, \mathcal{O}_{X})$$

$$(4)$$

whose kernel is the image of the natural map $\Delta : \operatorname{Def}_{X/\nu/Y}(\mathbf{k}[\epsilon]) \longrightarrow \operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$.

Recalling that

$$\operatorname{Def}_{X/\nu/Y}(\mathbf{k}[\epsilon]) \cong \operatorname{Hom}_{\mathcal{O}_X} \left(\nu^* \Omega_Y^1, \mathcal{O}_X \right) = \operatorname{Hom}_{\mathcal{O}_X} \left(\Omega_Y^1 |_X, \mathcal{O}_X \right), \tag{\dagger}$$

by Proposition 1.5, we obtain the following result describing $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$, which is now to be considered the main result of the paper. (In the statement, the map $\beta: \Omega^1_Y|_X \longrightarrow \Omega^1_X$ is the one in the conormal sequence.)

Theorem Let $v: X \hookrightarrow Y$ be a regular closed embedding of reduced algebraic schemes. Then, there exists a long exact sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{X}^{1}, \mathcal{O}_{X}) \times_{\operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X})} \operatorname{Hom}_{\mathcal{O}_{Y}}(\Omega_{Y}^{1}, \mathcal{O}_{Y}) \longrightarrow \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{X}^{1}, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{Y}}(\Omega_{Y}^{1}, \mathcal{O}_{Y}) \stackrel{\Theta}{\longrightarrow} \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{X}^{1}, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{Y}}(\Omega_{Y}^{1}, \mathcal{O}_{Y}) \times \operatorname{Hom}_{\mathcal{O}_{Y}}(\Omega_{Y}^{1}, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X}) \stackrel{\Theta}{\longrightarrow} \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{Y}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{Y}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{Y}^{1}|X, \mathcal{O}_{X}) \times \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega_{$$

where the map Θ is given by $\Theta(\xi, \eta) = \xi \circ \beta - \eta|_X$.

Proof The second row of the above exact sequence follows from (the above version of) Proposition 1.3 and (†).

By the definition of $\operatorname{Hom}_{\mathcal{O}_X}(\nu^*\Omega^1_Y, \mathcal{O}_X)$ and $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$ (cf. [3, p. 158 and p. 177]), an element mapped to zero by Δ corresponds to a first order deformation

$$\tilde{v}: X \times \operatorname{Spec}(\mathbf{k}[\epsilon]) \to Y \times \operatorname{Spec}(\mathbf{k}[\epsilon])$$

of ν that is trivializable. More precisely, denoting by $H_X \subset \operatorname{Aut}(X \times \operatorname{Spec}(\mathbf{k}[\epsilon]))$ the space of automorphisms restricting to the identity on the closed fiber and similarly for $H_Y \subset \operatorname{Aut}(Y \times \operatorname{Spec}(\mathbf{k}[\epsilon]))$, there exist $\alpha \in H_X$ and $\beta \in H_Y$, such that

$$\alpha \circ (\nu \times \mathrm{Id}_{\mathrm{Spec}(\mathbf{k}[\epsilon])}) \circ \beta = \tilde{\nu}.$$

Then, one obtains a natural map $H_X \times H_Y \to \operatorname{Def}_{X/v/Y}(\mathbf{k}[\epsilon])$ whose image is the kernel of Δ . By (\dagger) and the well-known isomorphisms $H_X \simeq \operatorname{Hom}_{\mathcal{O}_X}(\Omega^1_X, \mathcal{O}_X)$ and $H_Y \simeq \operatorname{Hom}_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y)$ (cf. [3, Lemma 1.2.6]), this map may be identified with Θ . The kernel of Θ is by definition as in the statement.

• In the first column of diagram (11), the vector space $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$ must be replaced by the quotient $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])/\operatorname{Im}(\Delta)$.

• The paragraph "We remark that $\operatorname{Ext}^1(\delta_1, \delta_0)$... not isomorphic to it." in §1.4 has to be replaced by the following:

"We remark that $\operatorname{Ext}^1(\delta_1, \delta_0)$ coincides with $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$ in the case when $f: X \to Y$ is a regular embedding. By (11), with $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])$ replaced by $\operatorname{Def}_{\nu}(\mathbf{k}[\epsilon])/\operatorname{Im}(\Delta)$, one has $\varphi_1 = \lambda - \mu$. Therefore,

$$\operatorname{Ext}^1_{\mathcal{O}_X}(\Omega^1_X,\mathcal{O}_X) \times_{\operatorname{Ext}^1_{\mathcal{O}_X}(\Omega^1_Y|_X,\mathcal{O}_X)} \operatorname{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y,\mathcal{O}_Y) \simeq \operatorname{Ker}(\varphi_1),$$

 Δ coincides with ∂ and Θ with φ_0 . Example 1.7 below gives an instance where $\partial = \Delta$ is nonzero."

- In the proof of Lemma 2.1, the exact sequence (13) is not exact on the left, but this does not affect the proof.
- Replace the statement of Corollary 2.2 by the following:

Corollary 2.2 There is a natural surjective map

$$\tau: \mathrm{T}_{(S,C)}\mathcal{V}_{m,\delta} \longrightarrow \mathrm{Def}_{\phi}(\mathbf{k}[\epsilon]) \simeq \mathrm{Def}_{\nu}(\mathbf{k}[\epsilon]).$$

Moreover, if X is stable, then the differential of the moduli map of $\psi_{m,\delta}$ at (S,C) factors as

$$d_{(S,C)}\psi_{m,\delta}: \mathbf{T}_{(S,C)}\mathcal{V}_{m,\delta} \xrightarrow{\tau} \mathbf{Def}_{\nu}(\mathbf{k}[\epsilon])$$

$$\longrightarrow \mathbf{Def}_{\nu}(\mathbf{k}[\epsilon])/\mathbf{Im}(\Delta) \xrightarrow{p_X} \mathbf{Ext}_{\mathcal{O}_X}^1(\Omega_X, \mathcal{O}_X) \simeq T_{[X]}\overline{\mathcal{M}}_g,$$

where p_X is the map appearing in the correct version of (11).

In particular, if $\operatorname{Ext}_{\mathcal{O}_Y}^2(\Omega_Y^1(X), \mathcal{O}_Y) = 0$, then $d_{(S,C)}\psi_{m,\delta}$ is surjective; if

$$\operatorname{Ext}^1_{\mathcal{O}_Y}\left(\Omega^1_Y(X),\mathcal{O}_Y\right) = \operatorname{Hom}_{\mathcal{O}_X}\left(\Omega^1_Y|_X,\mathcal{O}_X\right) = \operatorname{Hom}_{\mathcal{O}_Y}\left(\Omega^1_Y,\mathcal{O}_Y\right) = 0$$

then $d_{(S,C)}\psi_{m,\delta}$ is injective.

• At the end of Remark 2.3, add "In this case, using the above notation, one has $\operatorname{Hom}_{\mathcal{O}_Y}(\Omega_Y^1, \mathcal{O}_Y) = H^0(Y, T_Y) = 0$, and moreover, by [2, (4) in proof of Prop. 1.2], $\operatorname{Hom}_{\mathcal{O}_X}(\Omega_Y^1|_X, \mathcal{O}_X) = H^0(X, T_{Y|_X}) = 0$."

Acknowledgements We wish to thank Marco Manetti for having kindly pointed out to us that the statement of Proposition 1.3 in [1] was wrong and provided precious informations on related topics.

References

- Ciliberto, C., Flamini, F., Galati, C., Knutsen, A.L.: A note on deformations of regular embeddings. Rend. Circ. Mat. Palermo, II. Ser (2016). doi:10.1007/s12215-016-0276-4
- Ciliberto, C., Knutsen, A.L.: On k-gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkähler manifolds. J. Math. Pures Appl. 101, 473–494 (2014)
- Sernesi, E.: Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften, vol. 334. Springer, Berlin (2006)

