Lutz Nasdala · Marita Wenzel · Gerhard Vavra Gert Irmer · Thomas Wenzel · Bernd Kober

Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage

Published online: 19 July 2002 © Springer-Verlag 2002

Contrib Mineral Petrol (2001) 141:125–144

Due to unfortunate mistakes when looking up α -energies from the literature, parts of the calculations in Table 2 were done with incorrect values. The simulations were redone. The corrected table is given below: Firestone RB, Shirley VS (1996) Table of isotopes 2. Wiley, New York

Reference

The online version of the original article can be found at http:// dx.doi.org/10.1007/s004100000235

L. Nasdala (⊠) · T. Wenzel Institut für Geowissenschaften – Mineralogie, Johannes Gutenberg-Universität, 55099 Mainz, Germany E-mail: nasdala@mail.uni-mainz.de Tel.: +49-6131-3924781 Fax: +49-6131-3923070

M. Wenzel Institut für Festkörperphysik, Technische Universität, 64289 Darmstadt, Germany

G. Vavra Institut für Mineralogie, Eberhard Karls-Universität, Wilhelmstraße 56, 72074 Tübingen, Germany

G. Irmer Institut für Theoretische Physik, TU Bergakademie Freiberg, Bernhard-von-Cotta-Straße 4, 09596 Freiberg/Sa., Germany

B. Kober Institut für Mineralogie, Ruprecht-Karls-Universität, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany

Present address: M. Wenzel Schott, Postfach 2480, 55014 Mainz, Germany

No.	α-decay event	Emitted ⁴ He core (α -particle)			Recoiled daughter nucleus			Total
		α -energy [MeV] (rel. probability in the decay event) ^a	Range [µm]	Displacements	Nucleus energy [keV]	Range [Å]	Displacements	per α-event
²³⁸ U	decay series:							
1	$^{238}U \rightarrow ^{234}Th$	4.198 (79 %)	10.7	118	71.8	208	593	711
		4.151 (21 %)	10.5	119	71.0	206	587	706
2	$^{234}\text{U} \rightarrow ^{230}\text{Th}$	4.775 (71 %)	12.8	122	83.0	225	674	796
		4.722 (28 %)	12.6	122	82.2	223	668	790
3	230 Th $\rightarrow ^{226}$ Ra	4.688 (76 %)	12.5	121	83.0	225	673	794
		4.621 (23 %)	12.2	121	81.8	222	658	779
4	226 Ra $\rightarrow ^{222}$ Rn	4.784 (99 %)	12.8	123	86.2	231	693	816
5	222 Rn $\rightarrow ^{218}$ Po	5.490 (100 %)	15.6	123	100.7	258	792	915
6	$^{218}Po \rightarrow ^{214}Pb$	6.002 (100 %)	17.8	125	112.2	281	871	996
7	$^{214}Po \rightarrow ^{210}Pb$	7.687 (100 %)	25.8	134	146.5	329	1100	1234
8	$^{210}\text{Po} \rightarrow ^{206}\text{Pb}$	5.304 (100 %)	14.9	122	103.0	261	805	927
²³⁵ U	decay series:							
1	$^{235}U \rightarrow ^{231}Th$	4.398 (55 %)	11.4	119	76.2	214	624	743
		4.366 (17 %)	11.3	119	75.5	214	620	739
2	231 Pa $\rightarrow ^{227}$ Ac	5.014 (25 %)	13.7	122	88.4	234	712	834
	14 / 110	4.951 (23 %)	13.5	122	87.3	232	704	826
		5.028 (20 %)	13.8	123	88.7	234	715	838
		5.059 (11 %)	13.9	124	89.2	234	718	842
3	227 Th $\rightarrow ^{223}$ Ra	6.038 (24 %)	18.0	125	108.4	267	855	980
	111 / 114	5.978 (24 %)	17.7	125	107.3	267	841	966
		5,757 (20 %)	16.8	125	103.3	258	814	939
4	223 Ra $\rightarrow ^{219}$ Rn	5.716 (53 %)	16.6	126	104.5	261	820	946
	itu / itu	5.607 (26 %)	16.1	124	102.5	258	806	930
5	219 Rn $\rightarrow ^{215}$ Po	6.819 (79 %)	21.5	129	126.9	300	979	1108
	100 / 10	6.553 (13 %)	20.3	129	122.0	291	936	1065
6	$^{215}Po \rightarrow ^{211}Pb$	7.386 (100 %)	24.3	130	140.1	323	1067	1197
7	$^{211}\text{Bi} \rightarrow ^{207}\text{Tl}$	6.623 (84 %)	20.6	127	128.0	305	983	1110
		6.278 (16 %)	19.0	126	121.4	293	930	1056
²³² Th	decay series:							
1	232 Th $\rightarrow ^{228}$ Ra	4.013 (78 %)	10.0	118	70.4	206	587	705
		3.954 (22 %)	9.9	117	69.6	205	581	698
2	228 Th $\rightarrow ^{224}$ Ra	5.423 (71 %)	15.4	124	96.9	250	777	901
		5.340 (28 %)	15.0	123	95.4	246	760	883
3	224 Ra $\rightarrow ^{220}$ Rn	5.685 (95 %)	16.5	125	103.4	260	819	944
4	220 Rn $\rightarrow ^{216}$ Po	6.288 (100 %)	19.1	130	116.5	284	907	1037
5	$^{216}Po \rightarrow ^{212}Pb$	6.778 (100 %)	21.3	130	127.9	306	983	1113
6a	$^{212}Po \rightarrow ^{208}Pb$	8.784 (100 %)	31.7	136	169.0	367	1242	1378
	(64 %)	× · · · · /						
6b	$^{212}\text{Bi} \rightarrow ^{208}\text{Tl}$	6.051 (70 %)	18.0	124	116.4	287	897	1011
	(36 %)	6.090 (27 %)	18.2	125	117.2	287	902	1027

Table 2. Results of Monte Carlo simulations: Average ranges of ⁴He cores and recoiled heavy daughter nuclei and average numbers of atomic vacancies created per α -decay event

^a Data from Firestone and Shirley (1996), rounded values. Simulations were only done for α -energies with relative probabilities of >10% in the branching paths