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ERRATUM TO: “SPARSE-GRID POLYNOMIAL INTERPOLATION
APPROXIMATION AND INTEGRATION FOR PARAMETRIC AND

STOCHASTIC ELLIPTIC PDES WITH LOGNORMAL INPUTS”
[ERRATUM TO ESAIM: M2AN 55 (2021) 1163-1198]

Ðinh Dũng*

We correct some errors in [1] which are mostly related to the integration results. For more details, see [2].
For convenience, we keep the same numbering as in [1] of equations and of the theorems and corollaries to be
corrected.

1. In the proof Lemma 3.5 in Section 3 from [1], the paragraph lying between the begining of the page ([1],
1175) and the end of this proof is corrected as follows.

For the norm ‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1), with 𝛼* := 𝛼 + 1/2 and 𝑁 = 𝑁(𝜉, 𝑠) := 2
⌊︁
log2

(︁
𝜎
−1/𝛼*
2;𝑠 𝜉𝜗/𝛼*

)︁⌋︁

we have

⃦⃦
𝑣𝜉 − 𝒮𝐺(𝜉)𝑣

⃦⃦
ℒ2(𝑋1)

≤
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

⃦⃦⃦⃦
⃦⃦⃦𝑣𝑠 −

∑︁
2𝑘≤𝜎

−1/𝛼*
2;𝑠 𝜉𝜗/𝛼*

𝛿𝑘(𝑣𝑠)

⃦⃦⃦⃦
⃦⃦⃦

𝑋1

‖𝐻𝑠‖𝐿2(R∞,𝛾)

= 𝐶
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

‖𝑣𝑠 − 𝑃𝑁 (𝑣𝑠)‖𝑋1 ≤ 𝐶
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝑁−𝛼‖𝑣𝑠‖𝑋2

≤ 𝐶
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

(︁
𝜎
−1/𝛼*

2;𝑠 𝜉𝜗/𝛼*
)︁−𝛼

‖𝑣𝑠‖𝑋2 ≤ 𝐶 𝜉−𝜗𝛼/𝛼*
∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝜎
𝛼/𝛼*

2;𝑠 ‖𝑣𝑠‖𝑋2

≤ 𝐶 𝜉−𝜗𝛼/𝛼*

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

(𝜎2;𝑠‖𝑣𝑠‖𝑋2)2
⎞⎠1/2⎛⎝ ∑︁

𝜎
𝑞1
1;𝑠≤𝜉

𝜎
2(𝛼/𝛼*−1)
2;𝑠

⎞⎠1/2

≤ 𝐶 𝜉−𝜗𝛼/𝛼*

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎
−1/𝛼*

2;𝑠

⎞⎠1/2

.

With 𝑞 := 𝑞2𝛼
* > 1 and 1/𝑞 + 1/𝑞′ = 1, by the Hölder inequality we obtain

∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎
−1/𝛼*

2;𝑠 ≤

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎−𝑞2
2;𝑠

⎞⎠1/𝑞⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

1

⎞⎠1/𝑞′

≤ 𝐶

⎛⎝ ∑︁
𝜎

𝑞1
1;𝑠≤𝜉

𝜎−𝑞1
1;𝑠 𝜉

⎞⎠1/𝑞′

≤ 𝐶 𝜉−1/𝑞′ .
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Summing up, we find

‖𝑣𝜉 − 𝒮𝐺(𝜉)𝑣‖ℒ2(𝑋1) ≤ 𝐶 𝜉−𝜗𝛼/𝛼*+1/2𝑞′ = 𝐶 𝜉−(1/𝑞1−1/2)

due to the equality −𝜗𝛼/𝛼* + 1/2𝑞′ = −(1/𝑞1 − 1/2). This, equations (3.8) and (3.9) prove the lemma for the
case 𝛼 > 1/𝑞2 − 1/2. �

2. Theorem 3.10 and Corollary 3.12 in [1] are incorrect. Therefore, the results on integration based on them, in
particular, Theorems 4.1, 5.10 and Corollaries 4.2, 5.11 in [1] are also incorrect. Below we give an illumination
of this incorrectness and corrections of these results and their proofs which are just slight modifications of them.

2.1. Let us analyze a main error in the proof of Theorem 3.10 from [1], for example, for the case 𝛼 ≤ 1/𝑞2−1/2
which leads to its incorrectness. This very short proof ([1], page 1183) says that it is similar to the proof of
Theorem 3.8 from [1] with some modifications. For example, all the indices sets are taken from the sets Fev and
N0×Fev instead of F and N0×F. Notice that in the proof of Theorem 3.8 from [1], we used the crucial equality
𝐼Λ𝐻𝑠 = 𝐻𝑠 for every 𝑠 ∈ Λ which holds for the interpolation operator 𝐼Λ defined in [1], page 1177, if Λ is a
downward closed set in F. More precisely, this equality then is applied to the downward closed sets Λ𝑘 defined
in [1], page 1178. For details, see [1], pages 1178–1180. However, the sets

Λev,𝑘 := {𝑠 ∈ Fev : (𝑘, 𝑠) ∈ 𝐺ev(𝜉)} =
{︀
𝑠 ∈ Fev : 𝜎𝑞2

2,𝑠 ≤ 2−𝑘𝜉
}︀
,

to be used in a similar way in the proof of Theorem 3.10 from [1], are not downward closed sets in F, where
𝐺ev(𝜉) is defined in (3.11) of [1]. Hence the proof of Theorem 3.10 from [1] is faulted. There is the same error
in the proof of Corollary 3.12 from [1].

2.2. To have a correct formulation and proof of Theorem 3.10 and Corollary 3.12 in Section 3 from [1] we need
some modifications of the definitions of 𝐼Λ and ℐ𝐺 for finite sets Λ ⊂ Fev and 𝐺 ⊂ N0 × Fev, and an extension
of concept of downward closed set in Fev. Recall that the definitions of 𝐼Λ and ℐ𝐺 for finite sets Λ ⊂ F and
𝐺 ⊂ N0 × F are given in [1], page 1177.

For a given sequence (𝑌𝑚)∞𝑚=0, we define the univariate operator ∆I*
𝑚 for even 𝑚 ∈ N0 by

∆I*
𝑚 := 𝐼𝑚 − 𝐼𝑚−2,

with the convention 𝐼−2 = 0.
The operators ∆I*

𝑠 for 𝑠 ∈ Fev, 𝐼*Λ for a finite set Λ ⊂ Fev and ℐ*𝐺 for a finite set 𝐺 ⊂ N0 × Fev, are defined
in similar way as ∆I

𝑠, 𝐼Λ and ℐ𝐺 in Section 3 from [1] by replacing ∆I
𝑠𝑗

with ∆I*
𝑠𝑗

, 𝑗 ∈ N.
A set Λ is called downward closed in Fev if Λ ⊂ Fev and the inclusion 𝑠 ∈ Λ yields the inclusion 𝑠′ ∈ Λ for

every 𝑠′ ∈ Fev such that 𝑠′ ≤ 𝑠. A sequence (𝜎𝑠)𝑠∈Fev is called increasing in Fev if 𝜎𝑠′ ≤ 𝜎𝑠 for every 𝑠, 𝑠′ ∈ Fev

such that 𝑠′ ≤ 𝑠. Put 𝑅ev;𝑠 := {𝑠′ ∈ Fev : 𝑠′ ≤ 𝑠}. Here, recall that the inequality 𝑠′ ≤ 𝑠 means 𝑠′𝑗 ≤ 𝑠𝑗 for
every 𝑗 ∈ N.

One can verify that 𝐼*Λ𝐻𝑠 = 𝐻𝑠 for every 𝑠 ∈ Λ if Λ is a downward closed set in Fev, and that the sets
Λev,𝑘 defined in 2.1 are indeed downward closed in Fev. These properties are actually used in the proofs of the
corrections of Theorem 3.10 and Corollary 3.12 from [1] below.

2.3. Theorem 3.10 and Corollary 3.12 in Section 3 from [1] and their proofs are corrected by replacing the
interpolation operators ℐ𝐺ev(𝜉𝑛) and 𝐼Λev(𝜉𝑛) with ℐ*𝐺ev(𝜉𝑛) and 𝐼*Λev(𝜉𝑛), respectively. They are as follows.

Theorem 3.10. Let 0 < 𝑝 ≤ 2. Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2. Let 𝑣 ∈ ℒℰ2 (𝑋2) be
represented by the series (3.10). Assume that (𝑌𝑚)𝑚∈N0 is a sequence satisfying the condition (3.15) for some
positive numbers 𝜏 and 𝐶. Assume that for 𝑟 = 1, 2 there exist increasing sequences (𝜎𝑟;𝑠)𝑠∈Fev of numbers
strictly larger than 1 such that ∑︁

𝑠∈Fev

(𝜎𝑟;𝑠‖𝑣𝑠‖𝑋𝑟 )2 < ∞
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and (𝑝𝑠(2𝜃, 𝜆)𝜎−1
𝑟;𝑠)𝑠∈Fev ∈ ℓ𝑞𝑟

(Fev) for some 0 < 𝑞1 ≤ 𝑞2 < ∞ with 𝑞1 < 2, where 𝜃 and 𝜆 are as in (3.18). For
𝜉 > 0, let 𝐺ev(𝜉) be the set defined as in (3.11). Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that for the
operator ℐ*𝐺ev(𝜉𝑛) : ℒℰ2 (𝑋2) → 𝒱(𝐺(𝜉𝑛)), we have that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and⃦⃦⃦

𝑣 − ℐ*𝐺ev(𝜉𝑛)𝑣
⃦⃦⃦
ℒ𝑝(𝑋1)

≤ 𝐶𝑛−min(𝛼,𝛽). (3.37)

The rate 𝛼 corresponds to the approximation of a single function in 𝑋2 as given by (2.3) The rate 𝛽 is given by
(3.20). The constant 𝐶 in (3.37) is independent of 𝑣 and 𝑛.

Proof. The proof of this theorem is similar to the proof of Theorem 3.8 with some modifications. For example,
the sets F and N0 × F are replaced by Fev and N0 × Fev, the sets 𝐺(𝜉) by 𝐺ev(𝜉) and the sets 𝑅𝑠 by 𝑅ev;𝑠; the
operators ℐ𝐺ev(𝜉) are replaced by ℐ*𝐺ev(𝜉); the sets Λ ⊂ Fev and Λev,𝑘 ⊂ Fev are downward closed in Fev; the
equality 𝐼Λ𝐻𝑠 = 𝐻𝑠 for every 𝑠 ∈ Λ and downward closed set Λ in F, is replaced by the equality 𝐼*Λ𝐻𝑠 = 𝐻𝑠

for every 𝑠 ∈ Λ and downward closed set Λ in Fev; estimates similar to (3.24) and (3.32) are given by Lemma
3.6 instead of Lemma 3.5. �

In a similar way we prove the following

Corollary 3.12. Let 𝑣 ∈ ℒℰ2 (𝑋) be represented by the series (3.10) for a Hilbert space 𝑋. Assume that (𝑌𝑚)𝑚∈N0

is a sequence satisfying the condition (3.15) for some positive numbers 𝜏 and 𝐶. Assume that there exists an
increasing sequence (𝜎𝑠)𝑠∈Fev of numbers strictly larger than 1 such that∑︁

𝑠∈Fev

(𝜎𝑠‖𝑣𝑠‖𝑋)2 < ∞

and (𝑝𝑠(2𝜃, max(2, 𝜆))𝜎−1
𝑠 )𝑠∈Fev ∈ ℓ𝑞(Fev) for some 0 < 𝑞 < 2, where 𝜃 and 𝜆 are as in (3.18). For 𝜉 > 0, define

Λev(𝜉) := {𝑠 ∈ Fev : 𝜎𝑞
𝑠 ≤ 𝜉}. (3.41)

Then for each 𝑚 ∈ N there exists a number 𝜉𝑛 such that |Γ(Λev(𝜉𝑛))| ≤ 𝑛 and⃦⃦⃦
𝑣 − 𝐼*Λev(𝜉𝑛)𝑣

⃦⃦⃦
ℒ𝑝(𝑋)

≤ 𝐶𝑛−(1/𝑞−1/2). (3.42)

The constant 𝐶 in (3.42) is independent of 𝑣 and 𝑛.

2.4. The equality 𝑦𝑚;𝑚−𝑘 = 𝑦𝑚;𝑘 in the line ([1], page 1185, line 7) is corrected as 𝑦𝑚;𝑚−𝑘 = −𝑦𝑚;𝑘.

2.5. The definitions of integration operators in Section 4 from [1] are corrected as follows.
For a given sequence (𝑌𝑚)∞𝑚=0, we define the univariate operator ∆Q

𝑚 for even 𝑚 ∈ N0 by

∆Q
𝑚 := 𝑄𝑚 −𝑄𝑚−2,

with the convention 𝑄−2 := 0.
For a function 𝑣 ∈ ℒℰ2 (𝑋), we introduce the operator ∆Q

𝑠 defined for 𝑠 ∈ Fev by

∆Q
𝑠 (𝑣) :=

⨂︁
𝑗∈N

∆Q
𝑠𝑗

(𝑣),

where the univariate operator ∆Q
𝑠𝑗

is applied to the univariate function 𝑣 by considering 𝑣 as a function of
variable 𝑦𝑖 with the other variables held fixed. For a finite set Λ ⊂ Fev, we introduce the quadrature operator
𝑄Λ which is generated by the interpolation operator 𝐼*Λ as follows

𝑄Λ𝑣 :=
∑︁
𝑠∈Λ

∆Q
𝑠 (𝑣) =

∫︁
R∞

𝐼*Λ𝑣(𝑦) d𝛾(𝑦).
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Further, if 𝜑 ∈ 𝑋 ′ is a bounded linear functional on 𝑋, denote by ⟨𝜑, 𝑣⟩ the value of 𝜑 in 𝑣. For a finite set
Λ ⊂ Fev, the quadrature formula 𝑄Λ𝑣 generates the quadrature formula 𝑄Λ⟨𝜑, 𝑣⟩ for integration of ⟨𝜑, 𝑣⟩ by

𝑄Λ⟨𝜑, 𝑣⟩ := ⟨𝜑, 𝑄Λ⟩ =
∫︁

R∞
⟨𝜑, 𝐼*Λ𝑣(𝑦)⟩d𝛾(𝑦).

Let Assumption 2.1 hold for Hilbert spaces 𝑋1 and 𝑋2, and 𝑣 ∈ ℒℰ2 (𝑋2). For a finite set 𝐺 ⊂ N0 × Fev, we
introduce the quadrature operator 𝒬𝐺 which is generated by the interpolation operator ℐ*𝐺 : ℒℰ2 (𝑋2) → 𝒱(𝐺),
and which is defined for 𝑣 by

𝒬𝐺𝑣 :=
∑︁

(𝑘,𝑠)∈𝐺

𝛿𝑘∆Q
𝑠 (𝑣) =

∫︁
R∞

ℐ*𝐺𝑣(𝑦) d𝛾(𝑦). (4.1)

Further, if 𝜑 ∈ (𝑋1)′ is a bounded linear functional on 𝑋1, for a finite set 𝐺 ⊂ N0×Fev, the quadrature formula
𝒬𝐺𝑣 generates the quadrature formula 𝒬𝐺⟨𝜑, 𝑣⟩ for integration of ⟨𝜑, 𝑣⟩ by

𝒬𝐺⟨𝜑, 𝑣⟩ := ⟨𝜑,𝒬𝐺𝑣⟩ =
∫︁

R∞
⟨𝜑, ℐ*𝐺𝑣(𝑦)⟩d𝛾(𝑦).

2.6. Theorems 4.1 in Section 4 of [1] and its proof are corrected by replacing the interpolation operators ℐ𝐺ev(𝜉𝑛)

with ℐ*𝐺ev(𝜉𝑛). They are as follows.

Theorem 4.1. Under the hypothesis of Theorem 3.8, assume additionally that the sequences 𝑌𝑚, 𝑚 ∈ N0, are
symmetric. For 𝜉 > 0, let 𝐺ev(𝜉) be the set defined as in (3.11). Then for the quadrature operator 𝒬𝐺ev(𝜉)

generated by the interpolation operator ℐ*𝐺ev(𝜉) : ℒℰ2 (𝑋2) → 𝒱(𝐺ev(𝜉)), we have the following

(i) For each 𝑛 ∈ N there exists a number 𝜉𝑛 such that dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and⃦⃦⃦⃦∫︁
R∞

𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣

⃦⃦⃦⃦
𝑋1

≤ 𝐶𝑛−min(𝛼,𝛽). (4.4)

(ii) Let 𝜑 ∈ (𝑋1)′ be a bounded linear functional on 𝑋1. Then for each 𝑛 ∈ N there exists a number 𝜉𝑛 such that
dim𝒱(𝐺ev(𝜉𝑛)) ≤ 𝑛 and ⃒⃒⃒⃒∫︁

R∞
⟨𝜑, 𝑣(𝑦)⟩d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣⟩

⃒⃒⃒⃒
≤ 𝐶𝑛−min(𝛼,𝛽). (4.5)

The rate 𝛼 corresponds to the approximation of a single function in 𝑋2 as given by (2.3). The rate 𝛽 is given
by (3.20). The constants 𝐶 in (4.4) and (4.5) are independent of 𝑣 and 𝑛.

Proof. For a given 𝑛 ∈ N, we approximate the integral
∫︀

R∞ 𝑣(𝑦) d𝛾(𝑦) by 𝒬𝐺ev(𝜉𝑛) where 𝜉𝑛 is as in Theo-
rem 3.10. By Lemmata 3.3 and 3.4 the series (2.5) and (3.4) converge absolutely, and therefore, unconditionally
in the Hilbert space ℒ2(𝑋1) to 𝑣. Hence, by (4.3) we derive that 𝒬𝐺ev(𝜉𝑛)𝑣 = 𝒬𝐺ev(𝜉𝑛)𝑣ev. Due to (4.1) and
(4.2) there holds the equality∫︁

R∞
𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣 =

∫︁
R∞

(︁
𝑣ev(𝑦)− ℐ*𝐺ev(𝜉𝑛)𝑣ev(𝑦)

)︁
d𝛾(𝑦). (4.6)

Hence, applying (3.37) in Theorem 3.10 for 𝑝 = 1, we obtain (i):⃦⃦⃦⃦∫︁
R∞

𝑣(𝑦) d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)𝑣

⃦⃦⃦⃦
𝑋1

≤
⃦⃦⃦
𝑣ev − ℐ*𝐺ev(𝜉𝑛)𝑣ev

⃦⃦⃦
ℒ1(𝑋1)

≤ 𝐶𝑛−min(𝛼,𝛽).



ERRATUM TO: SPARSE-GRID POLYNOMIAL INTERPOLATION APPROXIMATION AND INTEGRATION 897

For a given 𝑛 ∈ N, we approximate the integral
∫︀

R∞⟨𝜑, 𝑣(𝑦)⟩ d𝛾(𝑦) by 𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣⟩ where 𝜉𝑛 is as in
Corollary 3.12. Similarly to (4.6), there holds the equality∫︁

R∞
⟨𝜑, 𝑣(𝑦)⟩ d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣(𝑦)⟩ =

∫︁
R∞
⟨𝜑, 𝑣ev(𝑦)− ℐ*𝐺ev(𝜉𝑛)𝑣ev(𝑦)⟩d𝛾(𝑦).

Hence, applying (3.37) in Theorem 3.10 for 𝑝 = 1, we prove (ii):⃒⃒⃒⃒∫︁
R∞
⟨𝜑, 𝑣(𝑦)⟩ d𝛾(𝑦)−𝒬𝐺ev(𝜉𝑛)⟨𝜑, 𝑣⟩

⃒⃒⃒⃒
≤

∫︁
R∞

⃒⃒⃒
⟨𝜑, 𝑣ev(𝑦)− ℐ*𝐺ev(𝜉𝑛)𝑣ev(𝑦)⟩

⃒⃒⃒
d𝛾(𝑦)

≤
∫︁

R∞
‖𝜑‖(𝑋1)′‖𝑣ev(𝑦)− ℐ*𝐺ev(𝜉𝑛)𝑣ev(𝑦)‖𝑋1 d𝛾(𝑦)

≤ 𝐶
⃦⃦⃦
𝑣ev − ℐ*𝐺ev(𝜉𝑛)𝑣ev

⃦⃦⃦
ℒ1(𝑋1)

≤ 𝐶𝑛−min(𝛼,𝛽).

�

2.7. With the new corrected definition of 𝑄Λev(𝜉𝑛), the formulation of Corollaries 4.2 and 5.11 in Sections 4
and 5 of [1] is correct. But in the proofs the interpolation operator 𝐼Λev(𝜉𝑛) is corrected as 𝐼*Λev(𝜉𝑛).

2.8. The interpolation operator ℐ𝐺ev(𝜉) in the formulation of Theorem 5.10 in Section 5 of [1] is corrected as
ℐ*𝐺ev(𝜉).

3. By the same argument, the interpolation operator ℐ𝐺ev(𝜉) in the formulation of Theorems 6.8 in Section 6
from [1] is corrected as ℐ*𝐺ev(𝜉), and the formulation of Corollary 6.8 in Section 6 from [1] is correct.

4. The author would like to thank Jacob Zech for pointing out incorrectness of the integral approximation by
the quadrature operator 𝑄Λev(𝜉) based on the old definition of operator ∆𝑄

𝑚 in [1], page 1185, which leads in
particular, to incorrectness of the proof of Corollary 4.2 from [1].
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