

Erratum to the Paper "Some Classes of Kenmotsu Manifolds with Respect to Semi-Symmetric Metric Connection"

D.G. PRAKASHA¹, A. TURGUT VANLI^{2,•}, C.S. BAGEWADI³, D.A. PATIL⁴

 ¹Department of Mathematics, Faculty of Sciences, Karnatak University, Dharwad - 580 003, India.
²Department of Mathematics, Faculty of Sciences, Gazi University, 06500 Ankara, Turkey.
³Department of Mathematics, Faculty of Science and Technology, Kuvempu University, Shankaraghatta -577 451, India.
⁴Department of Mathematics, Faculty of Basic Sciences, B.V.B. College of Engineering & Technology,

Department of Mathematics, Faculty of Basic Sciences, B.V.B. College of Engineering & Technology, Hubli-580 002, India.

Received:14/08/2014 Accepted:27/02/2015

ABSTRACT

In this paper, we correct the example in the paper "Some classes of Kenmotsu manifolds with respect to semisymmetric metric connection" Acta Mathematica Sinica, English Series, Vol.29 ,No.7, 1311-1322, July 2013.

MSC(2010): 53C15, 53C25, 53D10. Keywords: Kenmotsu manifolds, Conharmonic curvature tensor, Semi-symmetric metric connection.

1. INTRODUCTION

Let $\tilde{\nabla}$ be a linear connection in an n--dimensional differentiable manifold M. The torsion tensor \tilde{T} is given by $\tilde{T}(X,Y) = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X,Y].$

The connection $\tilde{\nabla}$ is symmetric if its torsion tensor vanishes, otherwise it is non-symmetric. If there is a Riemannian metric g in M such that $\tilde{\nabla}$ g=0, then the connection $\tilde{\nabla}$ is a metric connection, otherwise it is nonmetric. It is known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection. In a Kenmotsu manifold $M(\phi, \xi, \eta, g)$, a semisymmetric metric connection is defined by

 $\tilde{T}(X,Y) = \eta(Y)X - \eta(X)Y$

A relation between the semi-symmetric metric connection $\tilde{\nabla}$ and the Levi-Civita connection ∇ of M is given by $\tilde{\nabla}_X Y = \nabla_X Y + \eta(Y)X - g(X,Y)\xi$. In a Kenmotsu manifold M of dimension $n \ge 3$, the

conharmonic curvature tensor \tilde{K} with respect to semisymmetric metric connection $\tilde{\nabla}$ is given by

$$\tilde{K}(X,Y)Z = \tilde{R}(X,Y)Z - \frac{1}{n-2} \left\{ \tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y + g(Y,Z)\tilde{Q}X - g(X,Z)\tilde{Q}Y \right\}$$

with ξ is the associated vector field (that is, $g(X,\xi) = \eta(X)$).

^{*}Corresponding author, e-mail:ayselvanli@gmail.com

for $X, Y, Z \in \Gamma(TM)$ where \tilde{R} , \tilde{S} and \tilde{Q} are the Riemannian curvature tensor, Ricci tensor and the Ricci operator with respect to the connection $\tilde{\nabla}$, respectively.

Theorem. A conharmonically flat Kenmotsu manifold with respect to semi-symmetric metric connection is an η -Einstein manifold with respect to semi-symmetric metric connection.

We give an example which is not true opposite of the Theorem; that is, $M(\phi, \xi, \eta, g)$ is an η – Einstein manifold but isn't a conharmonically flat Kenmotsu manifold with respect to semi-symmetric metric connection.

Example. We consider 5-dimensional manifold $M = \{ (x_1, x_2, y_1, y_2, z) \in \square^5 : z \neq 0 \},$

where (X_1, X_2, y_1, y_2, z) are the standard coordinates in \mathbb{R}^5 . We choose the vector fields

$$e_{1} = -e^{-z} \frac{\partial}{\partial x_{1}}, \qquad e_{2} = -e^{-z} \frac{\partial}{\partial x_{2}},$$
$$e_{3} = e^{-z} \frac{\partial}{\partial y_{1}} \qquad e_{4} = e^{-z} \frac{\partial}{\partial y_{2}} \qquad e_{5} = \frac{\partial}{\partial z}$$

which are linearly indepent at each point of M. Let g be the Riemannian metric defined by

$$g = \sum_{i=1}^{2} e^{2z} (dx_i \otimes dx_i + dy_i \otimes dy_i) + \eta \otimes \eta$$

where η is the 1-form defined by η (X)=g(X,e_5) for any vector field X on M. Hence, {e₁,e₂,e₃,e₄,e₅} is an orthonormal basis of M. We defined the (1,1) tensor field ϕ as

$$\phi \left(\sum_{i=1}^{2} \left(X_i \frac{\partial}{\partial x_i} + Y_i \frac{\partial}{\partial y_i} \right) + Z_i \frac{\partial}{\partial z} \right)$$
$$= \sum_{i=1}^{2} \left(Y_i \frac{\partial}{\partial x_i} - X_i \frac{\partial}{\partial y_i} \right)$$

Thus, we have

$$\phi(e_1)=e_3, \phi(e_2)=e_4, \phi(e_3)=-e_1, \phi(e_4)=-e_2$$

and $\phi(e_5)=0$.

The linearity property of ϕ and g yields that

$$\eta(e_5) = 1, \quad \phi^2 X = -X + \eta(X)e_5,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any vector fields X, Y on M. Thus for $e_5 = \xi$,

 $M(\phi,\xi,\eta,g)$ defines an almost contact metric manifold. The 1-forms η is closed. In addition, we have

$$\Phi = -\sum_{i=1}^{2} e^{2z} dx_i \Lambda dy_i.$$

Hence,
$$d\Phi = -\sum_{i=1}^{2} 2e^{2z} dz \Lambda dx_i \Lambda dy_i = 2\eta \Lambda \Phi$$
.

Therefore $M(\phi, \xi, \eta, g)$ is an almost Kenmotsu manifold. It can be seen that $M(\phi, \xi, \eta, g)$ is normal. So, it is Kenmotsu manifold. Moreover, we get

$$\begin{bmatrix} e_i, \xi \end{bmatrix} = e_i, \quad \begin{bmatrix} e_i, e_j \end{bmatrix} = 0, \quad i, j = 1, 2, 3, 4.$$

The Riemannian connection ∇ of the metric g is given

$$\begin{split} &2g(\nabla_X Y,Z){=}Xg(Y,Z){+}Yg(Z,X){-}Zg(X,Y) \\ &+g([X,Y],Z){-}g([Y,Z],X){+}g([Z,X],Y). \end{split}$$

Using the Koszul's formula, we obtain

$$\nabla_{e_i} e_i = -\xi, \quad \nabla_{e_i} e_j = 0, \quad \nabla_{e_i} \xi = \nabla_{\xi} e_i = -e_i \quad i = 1, 2, 3, 4.$$

Therefore, the semi-symmetric metric connection on M is given

0

$$\begin{split} \tilde{\nabla}_{e_i} e_i &= -2\xi, \quad \tilde{\nabla}_{e_i} e_j = 0, \quad \tilde{\nabla}_{e_i} \xi = e_i \\ \tilde{\nabla}_{\xi} e_i &= -e_i \quad i = 1, 2, 3, 4. \end{split}$$

With the help of the above results. It can be easily verified that

$$\begin{split} R(e_i, e_j)e_k &= 0 \qquad R(e_i, e_j)e_i = 2e_j \\ \tilde{R}(e_i, e_j)e_j &= -2e_i \qquad \tilde{R}(e_i, \xi)e_j = 0 \\ \tilde{R}(\xi, e_j)\xi &= 2e_i \qquad \tilde{R}(e_i, \xi)e_i = 2\xi \\ \tilde{R}(\xi, e_j)e_j &= -4\xi \qquad \tilde{R}(e_i, \xi)\xi = 0 \\ i, j &= 1, 2, 3, 4. \end{split}$$

From the above expressions of the curvature tensor we obtain

$$\tilde{S}(X,Y) = 10g(X,Y) - 2\eta(X)\eta(Y)$$

for any vector fields X and Y. Therefore, $M(\phi, \xi, \eta, g)$ is an η – Einstein manifold with respect to semi-symmetric metric connection. In addition, we have $\tilde{K}(\xi, e_i)\xi \neq 0$. Thus, $M(\phi, \xi, \eta, g)$ isn't a conharmonically flat Kenmotsu manifold with respect to semi-symmetric metric connection.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] D.G. Prakasha, A. Turgut Vanli, C.S. Bagewadi and D.A. Patil, "Some classes of Kenmotsu manifolds with respect to semi-symmetric metric connection", Acta Mathematica Sinica, English Series, Vol.29, No.7, 1311-1322, July 2013.