Erratum to "Topology of Hopf surfaces"

[This JOURNAL, Vol. 27 (1975), 222-238]

By Masahide Kato

(Received March 25, 1988)

The author was kindly informed by M. Ue that the statement of Theorem 9 was incomplete and a certain subcase was missing. As was pointed out by Ue, this error had its origin in Lemma 4 of the paper which claimed that $N_{S L(2, C)}\left(B_{n}\right)=B_{2 n}$ for $n \geqq 2$. In fact, this equality holds for $n \geqq 3$, but for $n=2$, we have $N_{S L(2, C)}\left(B_{2}\right)=D$. By this mistake, we must correct Lemmas 4, 5, 6, 7, Proposition 8, and Theorem 9, though they hold true under the condition that $K \neq B_{2}$. The other results are OK without change. We correct these errors as follows. In Lemma 4, $N_{S L(2, C)}\left(B_{n}\right)=B_{2 n}(n \geqq 3), N_{S L(2, C)}\left(B_{2}\right)=D$. In Lemma 5, $N_{G L(2, C)}\left(B_{n}\right)=C^{*} I \cdot B_{2 n}(n \geqq 3), N_{G L(2, c)}\left(B_{2}\right)=\boldsymbol{C}^{*} I \cdot D$. In Lemma 6, Case 2, for $K=B_{n}(n \geqq 3), u=\left(\begin{array}{cc}\rho_{2 n} & 0 \\ 0 & \rho_{2 n}^{-1}\end{array}\right)$, and for $K=B_{2}, u=u_{1}:=\left(\begin{array}{cc}\rho_{4} & 0 \\ 0 & \rho_{4}^{-1}\end{array}\right)$ or $u=u_{2}:=$ $\frac{1}{\sqrt{2}}\left(\begin{array}{rr}\rho_{4}^{3} & \rho_{4}^{3} \\ \rho_{4} & -\rho_{4}\end{array}\right)$. In case $K=B_{2}$, Lemma 7 should be replaced by

Lemma 7'. If ($K=B_{2}$ and if) G is indecomposable, then G can be expressed as either
(a) $G=G_{0} \cup g G_{0}$,
where $G_{0}=\left\{c^{2} I\right\} \times H, c \in \boldsymbol{C}^{*},|c|<1, g=c u_{1}$, or
(b) $G=G_{0} \cup g G_{0} \cup g^{2} G_{0}$,
where $G_{0}=\left\{c^{3} I\right\} \times H, c \in \boldsymbol{C}^{*},|c|<1, g=c u_{2}$.
In case $K=B_{2}$, Proposition 8 should be replaced also by
Proposition 8'. If $K=B_{2}$, then G is conjugate to one of the following three groups;
(a) $G=\left\{c^{2} I\right\} \times H \cup\left(c u_{1}\right)\left(\left\{c^{2} I\right\} \times H\right)$,
(b) $G=\left\{c^{3} I\right\} \times H \cup\left(c u_{2}\right)\left(\left\{c^{3} I\right\} \times H\right) \cup\left(c u_{2}\right)^{2}\left(\left\{c^{3} I\right\} \times H\right)$,
(c) $G=\{c I\} \times H$,
where $c \in C^{*},|c|<1$.
The statement (2) in Theorem 9 should read as follows;
(2)' ($\left.S^{3} / H\right)$-bundle over S^{1} whose transition function $u: S^{3} / H \rightarrow S^{3} / H$ is of order 2 or 3 as an element of the diffeomorphism group of S^{3} / H.

The correction of Lemma 6 is essential, and can be done by elementary group theoretic calculations. Here we use the fact that $S_{3}:=N_{S L(2, c)}\left(B_{2}\right) / B_{2}$ is the symmetric group of order 6 and that S_{3} has only three conjugacy classes represented by the identity and the images of u_{1} and u_{2}. The proof of Theorem 10 works also in the case $K=B_{2}$ though u is not determined uniquely, since any two groups belonging to distinct cases of (a), (b) and (c) in Proposition 8 are not isomorphic to one another.

We note that, in case $K=B_{2}, G$ is indecomposable if and only if G is conjugate in $G L(2, \boldsymbol{C})$ to one of the following three groups $\{H, g\}$; (1) $H=\{\lambda I, K\}$ and $g=c u_{1}$, (2) $H=\{\lambda I, K\}$ and $g=c u_{2}$, (3) $H=\left\{\lambda u_{2}, K\right\}$ and $g=c u_{1}$, where $c \in \boldsymbol{C}^{*}$, $|c|<1$, and λ is a root of unity. The corresponding transition functions of the $\left(S^{3} / H\right)$-bundle structures are of order 2 in cases (1) and (3), and of order 3 in case (2).

Masahide Kato
Department of Mathematics
Sophia University
Kioi-cho, Chiyoda-ku
102 Tokyo
Japan

