## Erratum: Ultraviolet Absorption Spectrum of Hydrogen Peroxide

Cite as: J. Chem. Phys. **16**, 638 (1948); https://doi.org/10.1063/1.1746965 Published Online: 22 December 2004

R. B. Holt, C. K. McLane and O. Oldenberg



## ARTICLES YOU MAY BE INTERESTED IN

Ultraviolet Absorption Spectrum of Hydrogen Peroxide The Journal of Chemical Physics **16**, 225 (1948); https://doi.org/10.1063/1.1746843

The Absorption Spectrum and the Dissociation of  $H_2O_2$ 

The Journal of Chemical Physics 18, 244 (1950); https://doi.org/10.1063/1.1747614

Studies of Hydrogen Peroxide: The Infrared Spectrum and the Internal Rotation Problem

The Journal of Chemical Physics 36, 1311 (1962); https://doi.org/10.1063/1.1732733



Zurich Instruments





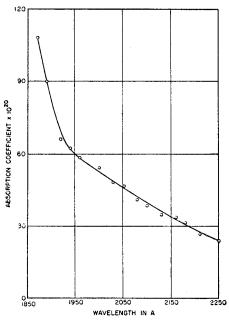
J. Chem. Phys. 16, 638 (1948); https://doi.org/10.1063/1.1746965

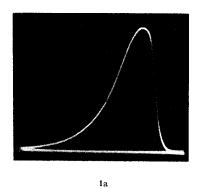
© 1948 American Institute of Physics.

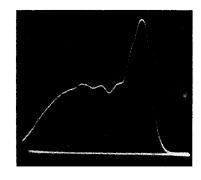
## Erratum: Ultraviolet Absorption Spectrum of Hydrogen Peroxide

 [J. Chem. Phys. 16, 225 (1948)]
R. B. HOLT, C. K. MCLANE, AND O. OLDENBERG Lyman Physical Laboratory, Harvard University, Cambridge, Massachusetts

T HROUGH an error a wrong cut was used for Fig. 1 in this article. The following figure should have appeared in place of the one used.





FIG. 1. Absorption coefficient for hydrogen peroxide vapor (average values).


## **Oscilloscope Scanning of Visible Spectra**

W. E. DEAL, WILLIAM BRADSHAW, AND F. A. MATSEN The University of Texas, Austin, Texas April 23, 1948

A <sup>N</sup> infra-red spectrograph with cathode-ray presentation has been developed by Daly and Sutherland and King, Temple, and Thompson.<sup>1</sup> On the vertical deflection system of a long-persistence tube was impressed the amplified output from a bolometer past which an infra-red spectrum was swept by means of a fourteensecond period rotation of the prism. A linear horizontal trace was employed.

In this laboratory the same principle has been applied in the visible region to obtain "instantaneous" spectra.<sup>2</sup> A





1Ь

FIG. 1. Oscilloscope Trace: a—Emission spectrum of tungsten bulb; b—Dilute potassium permanganate in path. Gain for b twice that for a.

glass prism was rotated at speeds from 1800 to 3600 r.p.m., the spectrum being detected by a photo-multiplier tube. A shutter attached to the prism table interrupts a beam of light producing a trigger pulse for a driven sweep circuit.

In Fig. 1a is reproduced the emission spectrum of a tungsten bulb; in Fig. 1b a cell containing dilute potassium permanganate solution has been placed in the optical path. These spectra were photographed from a P-11 phosphor tube with  $\frac{1}{10}$ -second exposure time on Eastman Super XX film. A movie camera will be used to study spectral sequences in rapid chemical reactions. A complete report will appear elsewhere.

Work is in progress extending the technique to the near infra-red region using photo-conductive detectors and to the ultraviolet using quartz optics.

<sup>&</sup>lt;sup>1</sup> E. B. Baker and C. D. Robb, Rev. Sci. Inst. **14**, 362 (1943). E. F. Daly and G. B. B. M. Sutherland, Proc. Phys. Soc. (London) **59**, 77 (1947). See also J. King, R. B. Temple, and H. W. Thompson, Nature **158**, 196 (1946). <sup>2</sup> See R. C. Herman and S. Silverman, J. Opt. Soc. Am. **38**, 209

<sup>&</sup>lt;sup>2</sup> See R. C. Herman and S. Silverman, J. Opt. Soc. Am. **38**, 209 (1948) for a photographic method involving translation of the spectrographic plate.