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Abstract We consider semantic image segmentation.

Our method is inspired by Bayesian deep learning which

improves image segmentation accuracy by modeling

the uncertainty of the network output. In contrast

to uncertainty, our method directly learns to predict

the erroneous pixels of a segmentation network, which

is modeled as a binary classification problem. It can

speed up training comparing to the Monte Carlo

integration often used in Bayesian deep learning. It

also allows us to train a branch to correct the labels

of erroneous pixels. Our method consists of three

stages: (i) predict pixel-wise error probability of the

initial result, (ii) redetermine new labels for pixels

with high error probability, and (iii) fuse the initial

result and the redetermined result with respect to

the error probability. We formulate the error-pixel

prediction problem as a classification task and employ

an error-prediction branch in the network to predict

pixel-wise error probabilities. We also introduce a

detail branch to focus the training process on the

erroneous pixels. We have experimentally validated

our method on the Cityscapes and ADE20K datasets.

Our model can be easily added to various advanced

segmentation networks to improve their performance.

Taking DeepLabv3+ as an example, our network can

achieve 82.88% of mIoU on Cityscapes testing dataset

and 45.73% on ADE20K validation dataset, improving

corresponding DeepLabv3+ results by 0.74% and 0.13%

respectively.
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1 Introduction

The goal of semantic image segmentation is to

obtain a high-level representation of an image by

assigning each pixel a semantic class label. Semantic

image segmentation can be used in video surveillance,

medical imaging, autonomous driving, etc. Recently,

deep convolutional neural networks (DCNN) trained

on large scale image segmentation datasets such

as PASCAL VOC 2012 [1], Cityscapes [2], and

ADE20K [3] have significantly improved the accuracy

of image segmentation.

While end-to-end training a DCNN can effectively

learn multi-scale features for various vision tasks, the

down-sampling operations in the encoder designed

to enlarge the receptive field are likely to lose

detailed information required for pixel-level image

segmentation [4]. Thus, atrous convolution and

skip-connections are used to balance down-sampling

operations and learning of multi-scale features [5, 6].

It has also been shown that fusing global context

and multi-scale features can effectively improve the

accuracy of image segmentation [7–9]. However, even

with state-of-the-art image segmentation algorithms,

we can still see a large number of pixels with wrong

labels in regions with indistinct RGB information, at

object boundaries and in small-scale objects. We

call these erroneous pixels. While hard-mining

methods exist that train the network using gradient

information back-propagated from the erroneous

pixels, these methods rely on ground-truth data to

detect erroneous pixels, which is not available during

inferencing. The difficulty-aware method in Ref. [10]

is a layer-cascading method (LC) that focuses on

those pixels whose largest label probabilities are less

than a threshold in a layer-by-layer manner. However,

the erroneous pixels whose largest label probabilities

in one layer are greater than the threshold, which we
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refer to as hard erroneous pixels, are simply accepted

as part of the result and overlooked in subsequent

layers.

In this paper, we study how to learn to predict

the erroneous pixels for a segmentation network, so

that a cascaded detailed branch can be used to handle

erroneous pixels to improve segmentation accuracy. It

runs as a model cascading strategy during inferencing:

using an existing image segmentation network as

a front-end semantic branch, we first predict error

pixels in its segmentation result, then redetermine

semantic labels for those error pixels, and finally fuse

them to obtain the final segmentation result. The

difference of our strategy to that of Ref. [10] is that

we add an error-prediction branch to the network

to improve the accuracy of error pixel prediction.

Thus, it is possible, in our method, to predict the

overlooked hard erroneous pixels as erroneous pixels

to be corrected. The error-pixel prediction is similar

to uncertainty modeling in Bayesian deep learning

for computer vision. Our method can speed up

training by modeling error-pixel prediction as a binary

classification problem, as an alternative to Monte

Carlo integration used to evaluate the objective

function in Ref. [11]. It implicitly assumes that

the aleatoric uncertainty can be learned through

the difference between the segmentation result and

the ground-truth labeling in training. To correct

the detected erroneous pixels, we employ another

independent sub-network, the detail branch, trained

to focus on the segmentation of such pixels.

Since using an independent branch to learn to

predict the erroneous pixels does not affect the

pixels that the front-end segmentation network can

handle well, the error-prediction branch and detail

branch can be used to improve the accuracy of a

variety of segmentation networks due to its cascading

design. Our network trained on Cityscapes can

achieve mIoU at 82.88% on the testing dataset when

using DeepLabv3+ as the semantic branch [12], which

is 0.74% higher than the original network.

2 Related work

In the following, we mainly review image

segmentation methods using deep neural networks,

which are mostly related to our work. Please see

Ref. [13] for a comprehensive survey.

The encoder–decoder is the fully convolutional

neural network structure most used for pixel-wise

segmentation for high-resolution images [4, 14]. A

common technique in DNN-based image segmentation

algorithms is to fuse multi-scale features to improve

segmentation accuracy. U-Net [5] exploits skip

connections to augment high-level features with low-

level features in the decoder so as to improve the

accuracy of localization, and is widely used in many

works [9, 15–17]. ParseNet [18] adopts a simple global

branch to add global context, while Refs. [8, 19] use

the global feature to guide feature fusion. PSP-Net [7]

proposes a pyramid pooling module to aggregate

representative context features. Atrous spatial

pyramid pooling (ASPP) in Ref. [20] uses atrous

convolution filters [6, 21] at multiple dilation rates to

capture multi-scale image contexts. In order to handle

small objects in the image, EncNet [22] utilizes a

context encoding module to explicitly enforce learning

of global scene context. A recent contribution [23]

proposed HRNet to improve segmentation accuracy;

it gradually adds high-to-low resolution subnetworks

and fuses the learned multi-scale features in parallel.

Neural architecture search (NAS) is a new method

which aims to find the optimal neural architecture

and weights simultaneously. Ref. [24] explores the

construction of meta-learning techniques for recurrently

searching. Ref. [25] introduces auxiliary cells that

provide an intermediate supervisory signal for

architecture parameterization. Auto-DeepLab [26]

proposes a hierarchical architecture search, searching

at cell level and network level.

Our work is also related to the popular cascading

structure used in computer vision. In object detection,

successive classifiers are combined in a cascading

structure, which allows the background regions of

an image to be quickly discarded while spending

more computation on promising regions [27–30].

The cascading structure can also be applied to

segmentation. A layer-cascading (LC) method is

introduced in Ref. [10], but our network can capture

hard erroneous pixels overlooked in LC to further

improve the segmentation accuracy.

3 Approach

In the following, we first introduce the overall

framework of our method, and then provide details

of the error-prediction branch and the detail branch

of our network. Training strategy is also described.
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3.1 Overview

Figure 1 provides an overview of our method,

which consists of three modules: (i) a pre-trained

segmentation network, the semantic branch, which

is used to obtain initial segmentation results and

semantic features (see Section 3.2), (ii) error-

prediction and detail branches to find erroneous

pixels and predict new labels for them respectively

(see Sections 3.3 and 3.4), and (iii) a module to

combine the initial segmentation result and the

newly predicted labels, providing a more accurate

segmentation result (see Section 3.5).

More concretely, given an input image I and a

segmentation network fsb(·), we obtain the initial

segmentation probability map Psb = fsb(I). For the

i-th pixel, P
i
sb ∈ R

C×1 gives the probabilities of this

pixel belonging to each of C categories. The error-

prediction branch fep(·) yields a probability map

Pep = fep(·) with the same size as the initial result

Psb. A pixel with a high probability in Pep is likely

to be wrongly labelled in the initial segmentation.

After error prediction, those erroneous pixels should

be relabelled. The detail branch, denoted fdb(·), is

responsible for predicting new labels for erroneous

pixels and predicts a new probability map Pdb =

fdb(·). Finally, labels of erroneous pixels in the initial

label map are replaced by the new labels generated

by the detail branch, giving a more reliable semantic

segmentation result.

3.2 Semantic branch

We directly use a pre-trained segmentation network

as the semantic branch. More concretely, we mainly

used DeepLabv3+ [12], PSP-Net [7], and the DPC

network [24] as our semantic branch in the following

experiments. The pre-trained segmentation network

gives the initial segmentation probability map Psb

and corresponding low-level and high-level features

that are used in the training of the error-prediction

branch and the detail branch.

3.3 Error-prediction branch

The error-prediction branch aims to predict whether

the initial labels given by the semantic branch

are erroneous. Specifically, this branch predicts

a probability map Pep in which each pixel value

represents the probability that the semantic branch

prediction is mislabeled. The inputs of this branch

consist of (i) the probability map Psb generated by the

semantic branch, (ii) the feature maps from the direct

convolution of the input RGB image, and (iii) the

feature maps from the semantic branch. We exploit

the global attention upsampling (GAU) module from

Ref. [8], as illustrated in Fig. 2, to provide channel-

wise attention in this branch.

In detail, we firstly apply convolutions to Psb, the

probability map output by the semantic branch, and

the input RGB image I separately. The obtained

features are then concatenated as the input low-level

features. Afterwards, we use the high-level features

from the semantic branch as the input to GAU.

For example, the features generated by ASPP in

DeepLabv3+ and the pyramid pooling module in

PSP-Net are used as the high-level features input to

the error-prediction branch.

The loss function for this branch is formulated as

Fig. 1 Architecture of our network. We use a pre-trained segmentation network (for example, DeepLabv3+ [12]) as the semantic branch. We

add two branches: the error-prediction branch predicts an error probability map to find error pixels, and the the detail branch predicts the

correct labels for the mislabeled pixels.
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Fig. 2 Detail branch decoder with GAU. “L” and “H” represent

low- and high-level features respectively. “Repeat × 2” indicates 2

convolution layers.

a pixel-wise cross-entropy loss to classify each pixel

as mislabelled or not, which is a binary classification

problem. The ground-truth error map Merr for

training is obtained by checking whether the initial

segmentation from the semantic branch is inconsistent

with ground-truth or not. We use 1 to denote a

mislabelled pixel and 0 otherwise. Specifically, the

loss function is

M
i
err =

⎧

⎨

⎩

1, S
i
sb �= S

i
gt

0, otherwise
(1)

where S
i
sb and S

i
gt are the predicted semantic label

and the ground-truth label of pixel i, respectively.

Since the number of the erroneous pixels is usually

much smaller than the number of correct pixels, we

adopt a balanced version cross-entropy to deal with

the imbalance in training data. In addition, the

erroneous pixels are categorized into two types with

different weights counted into the cross-entropy loss:

(1) “easy” erroneous pixels. Inspired by Ref. [10], we

define the erroneous pixels with classification scores

smaller than a threshold ρ as the “easy” erroneous

pixels (i.e., max(P i
sb) � ρ). These “easy” erroneous

pixels are easy to detect from the input of the initial

prediction Psb; (2) “hard” erroneous pixels. The

rest erroneous pixels with classification scores larger

than ρ are defined as “hard” erroneous pixels (i.e.,

max(P i
sb) > ρ). These pixels are misclassified with

high confidence which are hard to detect. Hence

we add a larger loss weight to the “hard” erroneous

pixels. In summary, the balanced cross-entropy loss

is formulated as

Lep = −w1

∑

i∈M
+e

err

log P
i
ep − w2

∑

i∈M
+h
err

log P
i
ep

−w3

∑

i∈M
−

err

log(1 − P
i
ep) (2)

where M
+e
err and M

+h
err are the “easy” erroneous pixels

and “hard” erroneous pixels respectively. M
−

err are

the negatively labelled pixels. We set w1 = 1.0 and

w2 = 1.5. The value of weight w3 is 0.04 on average,

which can be computed according to the proportion

of the erroneous pixels for an image.

3.4 Detail branch

Once we know which pixels are likely to be mislabeled

by the semantic branch, we wish to correct the errors

with the detail branch. Thus, the detail branch is

trained to predict the correct labels for the mislabeled

pixels. This branch is designed to be a decoder branch

to obtain a pixel-wise segmentation result using

features from the semantic branch as input, where

the low-level features are fed into the corresponding

decoder stages using skip connections. Specifically,

we use 3 successive decoder blocks as shown in Fig. 2

to build the decoder with GAU.

During training, we require the detail branch to

achieve higher accuracy for the erroneous pixels so

that it can correct errors in the initial segmentation

results from the semantic branch. To this end, we

design the loss function to enforce the training to

focus on the erroneous pixels captured by the error-

prediction branch. Specifically, a pixel-wise weight

Eep derived from Pep is used in the loss function:

Ldb = −
∑

i

E
i
ep

C
∑

c

S
i,c
gt log P

i,c
db (3)

where P
i,c
db is the probability of the i-th pixel

belonging to the c-th category, and S
i,c
gt equals to

1 if the i-th pixel belongs to the c-th category, and 0

otherwise. The pixel-wise loss weight Eep is a binary

map generated from the probability map Pep which

is predicted by the error-prediction branch using a

binarization threshold t:

E
i
ep =

{

1, P
i
ep > t

0, otherwise
(4)

With this binary loss weight, the pixels that are

classified as mislabeled, i.e., with probabilities larger

than t in Pep, will contribute to the loss. Thus, our

network is also designed as a cascading architecture:

the semantic branch is able to classify most of
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the easy erroneous pixels correctly, and the other

hard erroneous pixels which are highly likely to be

mislabeled are passed to the detail branch.

3.5 Fusion

During the fusion stage, we combine the segmentation

results from the semantic branch and the detail

branch. The final segmentation result is computed

as a pixel-wise linear combination according to the

binary error mask Eep:

Pf = Eep · Pdb + (1 − Eep) · Psb (5)

Since the hard erroneous pixels are also trained as

erroneous pixels in the error-prediction branch, they

can also be corrected in the detail branch if they

are correctly classified as erroneous pixels during

inferencing after the fusion step. This is superior to

the LC method [10] in which hard erroneous pixels

are simply ignored.

4 Training strategy

4.1 Branch training

Because our method aims to improve a given

segmentation network, we keep the semantic

branch fixed during the whole training procedure,

i.e., the parameters are frozen and both batch

normalization [31] layers and dropout [32] layers in

the semantic branch are always in inferencing mode.

We first train the error-prediction branch with the

loss function defined in Eq. (2) for 60k iterations.

After the error-prediction branch has converged, we

fix it and update the detail branch using Eq. (3) for

90k iterations.

4.2 Optimizer and learning rate

We adopt a poly learning rate policy similar to Ref. [21]

where the initial learning rate is multiplied by

(1 − iter/max iter)power with power = 0.9. We then

employ Adam [33] as the optimizer during training.

4.3 Group normalization

In general, the performance of the batch normalization

layer is related to the batch size. However, in practice,

the batch size is constrained by the limited GPU

memory. To improve stability during optimization,

we adopt group normalization [34] in both error-

prediction and detail branches; the channels are

divided into 32 groups in our implementation.

4.4 Data augmentation

Following the training protocol of Refs. [7, 12],

we randomly crop patches from the image during

training, with a crop size of 769 (DeepLabv3+

based model) or 713 (PSP-Net based model) for

the Cityscapes dataset, and 513 for the ADE20K

dataset. For data augmentation, random scaling

(from 0.5 to 2 with a step size of 0.25), random left-

right flipping, and random rotation between −10◦

and 10◦ are applied.

5 Experiments

5.1 Datasets

We evaluated our network on an urban scene

dataset, Cityscapes [2], and a diverse scenes dataset,

ADE20K [3]. These two datasets provide densely

annotated images, which are important to recover

segmentation details when training our method.

The Cityscapes dataset contains high-quality dense

annotations with 19 object classes for 5000 images

(2975, 500, and 1525 for the training, validation,

and testing sets, respectively) and 20,000 coarsely

annotated images. ADE20K is a more challenging

dataset with 150 object classes, withe 20,210, 2000,

and 3000 images for the training, validation, and

testing sets, respectively.

5.2 Evaluation of branches

In this section, we consider experiments to analyze

the performance of the proposed branches in our

network. We employed DeepLabv3+ as our semantic

branch and kept it fixed in the experiments for ease

of interpretation. The network was trained using the

Cityscapes training set and all outcomes are reported

for the validation set.

5.2.1 Error-prediction branch

The error-prediction branch is just a classifier to

predict the pixel-wise error probability. We illustrate

a predicted error probability map and ground-truth

error map in Fig. 3. The ground-truth error map

is computed as the difference between the semantic

label map output by the semantic branch and the

ground-truth.

Given the error probability map, we consider pixels

with error probability larger than the threshold t

to be erroneous pixels, from Eep in Eq. (3). Thus,

the mean intersection over union (mIoU) between
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Fig. 3 (a) Input images. (b) Ground-truth semantic label maps provided by the Cityscapes dataset. (c) Semantic segmentation results output

by the semantic branch (DeepLabv3+ here). (d) Ground-truth error maps. (e) Error probability maps generated by our error-prediction branch.

Red: error probability = 1. Black: error probability = 0. White: unlabeled pixels in the dataset.

the predicted error mask Eep and ground-truth error

mask Merr, defined as error-pixels mIoU, can be

computed, as reported in the 2nd column in Table 1

for different values of the threshold t. In order to

show how many hard erroneous pixels are captured

by the error-prediction branch, we also compute the

recall values, the percentage of hard erroneous pixels

classified as erroneous pixels, and report them in

the 3rd column in Table 1 as hard recall. The hard

erroneous pixels are those mislabelled pixels whose

largest class probability is larger than ρ = 0.95, which

is consistent with the definition in the LC.

It can be seen that with increasing value of

binarization threshold t, the mIoU of the erroneous

pixels increases while the hard recall drops. Since a

small mIoU indicates that a large number of correct

pixels are classified as erroneous pixels, which will

distract the subsequent training of the detail branch,

we need to balance the mIoU and hard recall so

as to achieve high segmentation accuracy. The

influence of the choice of different threshold values

on the final segmentation accuracy on the Cityscapes

validation set is reported in Table 2. As a result of

the experiments, we set the binarization threshold to

0.7 for training the detail branch.

Table 1 Error-prediction evaluation

Threshold Error-pixel mIoU Hard recall

0.1 14.80% 79.16%

0.2 17.19% 70.21%

0.3 19.13% 61.72%

0.4 20.98% 52.70%

0.5 22.89% 42.67%

0.6 24.97% 31.41%

0.7 27.34% 19.78%

0.8 29.92% 9.09%

0.9 30.20% 3.32%

Table 2 Effect of binarization threshold t

t 0.5 0.6 0.7 0.8

mIoU 79.60% 79.61% 79.90% 79.66%

5.2.2 Detail branch

The detail branch is trained using the cross-entropy

loss for the erroneous pixels predicted by the error-

prediction branch. As reported in Table 3, fusion

of the segmentation results from the detail branch

and the semantic branch can improve the mIoU of

DeepLabv3+, used as the semantic branch, by 1.11%.

The designed detail branch has 3 decoder stages

requiring an additional 11.6 MB memory for its

parameters, and is more complex than the lightweight

decoder of DeepLabv3+. It is thus worthwhile to

verify whether the performance gains come from

the additional parameters or the cascading of the

error-prediction and the detail branch. We thus

conducted an experiment to directly replace the

original 1-stage decoder in DeepLabv3+ with our

detail branch. We trained this network variant, called

DeepLabv3+-GAU-Decoder, with the same training

strategy as DeepLabv3+, in which the cross-entropy

loss is equally weighted over all pixels. Its mIoU

(78.89%) is reported in the row for DeepLabv3+-

GAU-Decoder in Table 3: it is slightly higher than

Table 3 Quantitative results on Cityscapes validation set

Method mIoU

DeepLabv3+ [12] 78.79%

DeepLabv3+ [12]-GAU-Decoder 78.89%

DeepLabv3+-DUpsampling [35] 79.06%

LC [10]-GAU-Decoder 79.73%

DeepLabv3+ [12]-Hard-mining 79.37%

DeepLabv3+ [12]-Bagging 79.38%

Ours 79.90%
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the original DeepLabv3+ network, but still inferior

to our overall network.

We also report the mIoU of the network proposed

by Tian et al. [35], which improves the decoder

of DeepLabv3+ by data-dependent upsampling and

improves the mIoU by 0.27% (the 3rd row in Table 3).

Thus, increasing the complexity of the decoder is not

as effective as our method of allocating resources to

erroneous pixels.

5.2.3 Running time

The average running time of our full network is 0.71 s for

an input image with resolution 1025×2049 (the output

segmentation result is 1/4 of the input resolution), the

semantic branch taking 0.38 s, the error-prediction

branch 0.05 s, and the detail branch 0.28 s.

5.3 Comparisons to layer-cascading and hard-

mining

5.3.1 Layer-cascading

To compare with LC [10], we adopt layer-wise

cascading in the decoder of the DeepLabv3+-GAU-

Decoder network discussed above; we denote this

variant model as LC-GAU-Decoder and illustrate it

in Fig. 4. As in LC, stage 1 predicts a segmentation

result, and pixels with classification score smaller than

a threshold ρ are propagated to stage 2. Stage 2 follows

the same propagation procedure. We set ρ = 0.95 to

be consistent with the definition of the hard erroneous

pixels to test how simply discarding hard erroneous

pixels in LC influences the segmentation results. As

reported in Table 3, our method can outperform the

LC-GAU-Decoder by a 0.17% gain.

5.3.2 Hard-mining

For a fair comparison, we employed loss-rank mining

from Ref. [36] as a hard-mining method to train

the DeepLabv3+-GAU-Decoder network, where the

decoder of DeepLabv3+ is replaced by our proposed

decoder in the detail branch. In this method, the

cross-entropy loss is calculated for each pixel and

then all pixels are ranked in order of descending loss.

Only a proportion of pixels with the highest loss

Fig. 4 Layer cascading adapted from GAU decoder.

(20% in our experiment) contribute to the training

process. Although the hard-mining method enhances

the training of hard examples, it is still inferior to our

network in terms of mIoU: see the 5th row of Table 3.

5.3.3 Error-pixel based fusion vs. bagging

A bagging result was obtained by training the detail

branch by setting every pixel as erroneous and then

averaging its result with the result from the initial

DeepLabv3+ network, which leads to an mIoU of

79.38% (the 6th row in Table 3). Instead of directly

averaging the results of the semantic branch and the

detail branch, we combine the two branch results

guided by error probability, which gives a 0.52% gain

with respect to average bagging.

Additional visual comparisons using the methods

introduced above are shown in the Electronic

Supplementary material (ESM).

5.4 Integration with other segmentation

networks

In this section, we report how the error-prediction

and detail branch can be cascaded with PSP-Net [7]

and the DPC network [24] to improve segmentation

accuracy. Specifically, for PSP-Net, we concatenate

features generated by pyramid pooling as high-level

features to provide global attention for the error-

prediction branch. For DPC, we use the features

generated by the dense prediction cell as the input

to GAU. The error-pixel mIoU, hard recall, and the

final mIoU of segmentation results are reported in

Table 4. The binarization threshold is again set to

t = 0.7, and the threshold for hard erroneous pixels

is set to 0.95.

The results suggest that our approach can

correct errors and boost mIoU for various advanced

segmentation models. Various visual results are

shown in Fig. 5. Our method achieves more detailed

segmentation results for some difficult classes like

“pole”.

Table 4 Quantitative results of error-prediction and segmentation

using different semantic branches on the Cityscapes validation dataset

DeepLabv3+ PSP [7] DPC

Our error-pixel mIoU 27.34% 27.10% 27.84%

Hard erroneous pixel ratio 19.14% 19.64% 22.80%

Our hard recall 19.79% 31.04% 21.36%

Original mIoU 78.79% 79.70% 80.31%

Our mIoU 79.90% 80.35% 81.22%
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Fig. 5 Visual improvements of our method using different semantic

branches on Cityscapes validation dataset. The dashed rectangles

highlight the regions where our method can effectively correct the

errors in the front end model results.

5.5 Comparison with other state-of-the-art

methods

In this section, we further evaluate our method

on the Cityscapes benchmark testing dataset

(1525 images) and the ADE20K validation dataset

(2000 images), which have more images than the

Cityscapes validation dataset (500 images) used in

the experiments reported so far. The binarization

threshold is set to 0.7 below.

5.5.1 Cityscapes benchmark testing dataset

We used the state-of-the-art method Xception71-DPC

as the semantic branch, and trained the detail branch

on the trainval fine set because the finely annotated

images in this set can provide valid training data for

segmentation details. Our proposed method achieves

an mIoU of 82.88% on the test set, as reported in

Table 5. It improves upon DeepLabv3+ by 1.69%

and the original DPC network by 0.22%. More visual

results are illustrated in Fig. 6.

5.5.2 ADE20K

We selected Xception65-DeepLabv3+ as the semantic

branch and trained our network using the ADE20K

training set. Our network improves the accuracy of

Xception65-DeepLabv3+ as reported in Table 6. A

qualitative comparison of the segmentation results is

shown in Fig. 7.

Table 5 Per-class results on the Cityscapes testing set (%)

road sidewalk build. wall fence pole t.light t.sigh veg. terrain sky person rider car truck bus train m.bike bicycle mIoU

PSPNet 98.68 86.92 93.47 58.39 63.68 67.67 76.12 80.47 93.64 72.20 95.30 86.83 71.91 96.21 77.70 91.51 83.64 70.80 77.54 81.19

DeepLabv3+ 98.69 87.04 93.91 59.47 63.73 71.39 78.16 82.15 93.96 73.04 95.84 87.95 73.26 96.41 78.02 90.91 83.91 73.84 78.88 82.14

GFF-Net 98.74 87.20 93.91 59.64 64.32 71.52 78.31 82.23 94.00 72.59 95.94 88.20 73.94 96.45 79.83 92.16 84.70 71.53 78.84 82.32

SSMA 98.67 86.88 93.61 57.85 63.43 68.94 77.15 81.14 93.86 73.06 95.32 87.43 73.78 96.36 81.14 93.49 89.95 73.54 78.34 82.31

DPC 98.69 87.12 93.78 57.72 63.53 71.04 78.04 82.09 94.00 73.31 95.44 88.22 74.46 96.47 81.17 93.30 89.03 74.13 78.99 82.66

DRN 98.83 87.72 93.97 65.08 64.20 70.08 77.39 81.59 93.92 73.45 95.81 88.00 74.90 96.46 80.84 92.14 88.47 72.05 78.76 82.83

Ours 98.71 87.27 93.81 57.91 64.78 72.06 78.83 82.29 94.07 73.82 95.45 88.54 74.83 96.41 81.36 92.85 88.34 74.69 79.46 82.88

Fig. 6 Visual results selected from the Cityscapes testing dataset. Semantic branch: DPC network [24].
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Table 6 Quantitative results on ADE20K validation set. “MS”

means multi-scale inference

Method mIoU

DeepLabv3+ [12] 43.06%

DeepLabv3+ [12]-MS 45.65%

PSP-ResNet50 [7] 41.68%

PSP-ResNet50-MS 42.78%

DilatedNet [37] 32.31%

CascadeNet [38] 34.90%

Ours(DeepLabv3+) 43.51%

Ours(DeepLabv3+)-MS 45.73%

Fig. 7 Visual improvements on the ADE20K validation set.

6 Conclusions

We have proposed a method to improve semantic

image segmentation results by predicting erroneous

pixels and re-estimating the semantic label for these

pixels. Our method can improve the segmentation

mIoU for state-of-the-art segmentation networks.

The experimental results have demonstrated that

cascading error-prediction and detail branches can

improve segmentation results. In future, we would

like to investigate how to improve the mIoU of

the erroneous pixels with attention techniques and

layer-wise cascading of error-prediction and image

segmentation.
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