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Abstract—In this paper, we derive the theoretical error Prob-
ability Density Function (PDF) and Region of Confidence (RoC)
conditioned on the on-line signal parameter vector, for a gener-
alized fingerprint-based localization system. As the computations
of these terms require the exact expression of the joint PDF
for both the device location and the on-line signal parameter
vector, which is often not available practically, we propose to
approximate this joint PDF by Nonparametric Kernel Density
Estimation techniques using the training fingerprints.

Index Terms—Fingerprint-based localization, error analysis,
nonparametric density estimation, Region of Confidence.

I. I NTRODUCTION

Because of easy implementation and cost-effectiveness,
fingerprint-based methods have gained more popularity
among practical indoor localization systems, compared to
trilateration-based methods, which cost more in terms of RF
bandwidth, hardware needs, and computational overhead [1].

In a typical fingerprint-based localization system, several
Access Points (APs) are broadcasting beacon frames periodi-
cally. During an off-line “training phase”, vectors of location-
dependent signal parameter, most commonly Received Sig-
nal Strength (RSS), are collected at a number of “training
locations” as location fingerprints. Various algorithms can be
used to estimate user location when an on-line RSS vector is
captured. The K-Nearest-Neighbor (KNN) scheme [2] returns
the location estimate as the average of the coordinates of theK
training locations whose fingerprint vectors have the shortest
Euclidean distances to the on-line RSS vector. A special case
of KNN is the Nearest Neighbor in Signal Space (NNSS) [2],
in which K = 1. The probabilistic approach, [3], [4], uses
the training data to construct the Probability Density Function
(PDF) for the device location conditioned on the observed on-
line RSS vector. The conditional expectation of the location is
returned as the estimate. It has been reported that KNN and
the probabilistic approach have similar performance [3], [4].

In practice, error PDF and Region of Confidence (RoC)
conditioned on the on-line RSS vector not only conveniently
indicate the reliability of the current location estimate, but also
facilitate the fusion of multiple sensors [5]. Due to the pres-
ence of multipath propagation, noise, and interference, there
can be significant temporal and spatial variations in the on-
line RSS vectors. As illustrated in Fig. 1, different samples of
on-line RSS vectors can result in different estimated locations
and radii of RoCs, even if they were collected at the same
actual location.

There are very few works which study the theoretical error
analysis of fingerprint-based localization systems, while taking
the current on-line RSS vector into account. The analyses in
[6] and [7] are only applicable to NNSS. On-line error analysis
for more advanced schemes such as KNN and probabilistic

Fig. 1. Estimated locations and RoCs based on two different on-line RSS
vectors collected at the same actual location.

approach have not been explored. [8] formulates RoC geo-
metrically to filter outliers in localization results. However,
the formulation is only validated empirically, without any
theoretical justifications. On the other hand, [9] proposed to
use the covariance of the estimates as a confidence measure.

In this paper, we will derive the exact theoretical expression
of both the error PDF and RoC, conditioned on the observed
on-line RSS vector, for a fingerprint-based localization system.
As the computations of the relevant terms require exact
knowledge of the joint PDF for the location and the on-line
RSS vector, which is practically not available, we approximate
this joint PDF by Nonparametric Kernel Density Estimation
(NKDE) techniques using the training fingerprints.

Theoretically, our proposed scheme is also applicable to
different location fingerprints other than RSS. However, in
order to easily verify our proposed scheme experimentally,
we focus our discussion on the RSS fingerprint in this paper.

II. N ONPARAMETRIC KERNEL DENSITY ESTIMATION

Assume that we have collectedN data samples as the
training data set,(cn, sn), n = 1, 2, ..., N , where sn =
[sn,1, sn,2, ..., sn,M ]T is theM -dimensional fingerprint vector
of the nth training sample, andcn = [xn, yn]T is the 2-D
coordinates of the training location at which thenth sample
is taken. Note that, different RSS vectors taken at the same
training location are treated as different training samples.
Also, let the vectors,s = [s1, s2, ..., sM ]T and c = [x, y]T ,
denote the on-line RSS vector and the actual device location
coordinates, respectively. For the convenience of discussions,
let the column vectoru = [x, y, s1, s2, ..., sM ]T , and un =
[xn, yn, sn,1, sn,2, ..., sn,M ]T . The dimension of the vectorsu
andun is thereforeD = M + 2.

In order to approximate the joint PDF ofc ands, fc,s(u),
which is now the multivariate PDF ofu, a kernel function,
KHn

(u − un) = 1
|Hn|K(H−1

n · (u − un)), can be placed at
each training sampleun, where the choice ofK(z) determines
the functional form of the kernel, and the “bandwidth matrix”,
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Hn, controls the spread and orientation of the kernel function.
Therefore, the multivariate density estimation offc,s(u) is,

f̂c,s(u) =
1
N

N∑
n=1

KHn
(u− un). (1)

In this paper, we have adopted the popular Gaussian kernel,

K(z) =
1

(2π)D/2
exp (−1

2
zT · z). (2)

The choice of the bandwidth matrix,Hn, is critical to the
density estimation. In this paper, we have adopted the local
adaptive bandwidth selection method introduced in [10], which
is briefly described below.

First, we compute a fixed “pilot bandwidth matrix”,H′ = b·
R1/2. The scalar,b = ( 4

2D+1 )1/(D+4) ·N−1/(D+4), is the optimal
plug-in bandwidth when the distribution of the underlyingD-
dimensional vector elements are independent and Normal [10].
The matrix,R, is the sample covariance matrix of the vectors,
un, n = 1, 2, ..., N . It is used to reduce the inter-dependence
between elements in the vectoru. UsingH′ and (1), a “pilot
density” value,f̂ ′(un), for each training data pointun can be

computed. Letg =N

√∏N
n=1 f̂ ′(un) be the geometric mean of

the pilot density values. The local adaptive bandwidth for the
training data sample,un, is then,Hn = ( f̂ ′(un)

g )−1/2 ·H′ [10].
Similar to (1),fs(s) can be estimated as,

f̂s(s) =
1
N

N∑
n=1

KHs
n
(s− sn). (3)

ObtainingHs
n is easy given thatHn is already computed. This

is because, theoretically,

f̂s(s) =
∫

f̂c,s(u) dc

=
1
N

N∑
n=1

∫
KHn

(u− un) dc, (4)

where eachKHn
(u−un) is equivalently a multivariate Gaus-

sian PDF characterized by mean vectorun and covariance
matrix HnHT

n . Therefore, each integration in (4) results in a
marginal Gaussian PDF characterized by mean vectorsn, and
the M ×M covariance matrixΦss

n , which is a sub-matrix of
HnHT

n corresponding to the auto-covariance ofs, i.e.,

HnHT
n =

[
Φcc

n Φcs
n

Φsc
n Φss

n

]
. (5)

Therefore,Hs
n = [Φss

n ]1/2.

III. T HEORETICAL ERRORPERFORMANCEANALYSIS

Recall thatc = [x, y]T is the actual on-line device location,
which is unknown. Let̃c = [x̃, ỹ]T be the location estimate
provided by any one of the aforementioned fingerprint-based
algorithms. The error vector from the location estimate to the
actual device location is defined as,

e = [x− x̃, y − ỹ]T . (6)

Let ρ and θ be the length and angle of the error vectore,
respectively. We have,

[ρ cos θ, ρ sin θ]T = [x− x̃, y − ỹ]T . (7)
And hence,

[x, y]T = [x̃ + ρ cos θ, ỹ + ρ sin θ]T . (8)
The Jacobian matrixJ is,

J =
[ ∂x

∂ρ
∂x
∂θ

∂y
∂ρ

∂y
∂θ

]
=

[
cos θ −ρ sin θ

sin θ ρ cos θ

]
. (9)

Therefore, the determinant ofJ is simply ρ.
If fc,s(c, s) is the joint PDF of the on-line RSS vectors and

the actual device locationc, we can perform the transformation
from [x, y]T to [ρ, θ]T as follows.

f[ρ, θ]T ,s([ρ, θ]T , s) = fc,s([x̃ + ρ cos θ, ỹ + ρ sin θ]T , s) · ρ.
(10)

Integrating overθ, we have,

fρ,s(ρ, s) =
∫ 2π

0

f[ρ, θ]T ,s([ρ, θ]T , s) dθ. (11)

Once the joint PDF ofρ and s is obtained, the PDF of
localization errorρ conditioned on the on-line RSS vectors
is simply,

fρ|s(ρ|s) =
fρ,s(ρ, s)

fs(s)

=

∫ 2π

0
fc,s([x̃ + ρ cos θ, ỹ + ρ sin θ]T , s) · ρ dθ

fs(s)
.

(12)

Substituting (1) and (3) into (12), we have,

f̂ρ|s(ρ|s) =
[∑N

n=1 KHs
n
(s− sn)

]−1

·

[
∫ 2π

0

∑N
n=1 KHn(




x̃ + ρ cos θ
ỹ + ρ sin θ

s


− un) · ρ dθ]. (13)

The conditional probability that the localization error is less
than a given distance,r0, can then be estimated as,

P0 = P̂ (ρ ≤ r0|s) =
∫ r0

ρ=0

f̂ρ|s(ρ|s) dρ. (14)

For a givenP0, (14) could be used to obtain the radius of
the corresponding RoC (e.g.90% RoC), which is commonly
shown as a circle centering the estimated location on a map.

IV. EXPERIMENTAL VERIFICATIONS AND DISCUSSIONS

A. Testbed Setup and Experimental Equipments

We have set up the experimental testbed in our lab, as
shown in Fig. 2. Three Linksys-WRT54G wireless routers are
deployed in the testbed as APs, broadcasting beacon frames
periodically in channel1, 6, and11. A Fujitsu S6410 notebook
equipped with an Intel WiFi 4965AGN adapter, is used for
RSS measurements. The Linux packet sniffer, tcpdump, is
used to monitor the beacon frames transmitted by the APs.
The MAC addresses of APs, timestamps, and the Received
Signal Strength Indicator (RSSI) values are retrieved from the
radiotap header of the captured packet. Note that, although
the beacon frames from the APs arrive asynchronously, we
can still use the timestamps of the arriving packets to align
the reported RSSI values and form RSS vectors.

The size of the testbed is approximately130 m2. Within the
accessible area of the testbed,125 training locations and126
testing locations are uniformly selected, such that the spacing
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Fig. 2. Layout of the experimental testbed.

between adjacent training locations is0.85 m and the spacing
between a training location and its nearest testing location is
0.6 m. At each training location,50 training RSS vectors are
collected. At each testing location,5 testing RSS vectors are
collected, resulting in630 testing cases in our experiment.

B. Statistical Verification

Let us denote thelth testing data sample as,(c(l), s(l)), and
the corresponding location estimate asĉ(l), for l = 1, 2, ..., L,
whereL = 630. From the testing samples, we can compute
the error PDF,f̂ρ|s(l)(ρ|s(l)), for each testing on-line RSS
vector,s(l). However, it is not possible to verify its correctness
individually, since the pair of estimated location and ground
truth corresponding tos(l) only gives us a single error distance
value for ρ. Therefore, rather than verifying each error PDF
individually, we derive the overall error PDF conditioned on
the entire testing set,Stest, i.e.,

f̂(ρ|Stest) =

∑L
l=1 f̂ρ|s(l)(ρ|s(l)) · f̂s(l)(s(l))

∑L
l=1 f̂s(l)(s(l))

, (15)

where f̂ρ|s(l)(ρ|s(l)) and f̂s(l)(s(l)) can be obtained from
(13) and (3). From here, we can estimate the overall error
Cumulative Density Function (CDF) and compare it with the
empirical error CDF to indirectly verify the correctness of
our approach. In order to predict the error CDF, we compute
f̂(ρ|Stest) for ρ ranging from0 m to 10.5 m (experimentally
determined), with a step size of0.5 m. Simple rectangle-rule-
based numerical integration is then applied to give the discrete
error CDF prediction. For the empirical error CDF, we apply
the Kaplan-Meier algorithm implemented in the MATLAB
“ecdf()” function, on the actual error distances.

We have chosen the two most widely adopted fingerprint-
based localization methods, namely, KNN and probabilistic
approach, for our study. As shown in Fig. 3, despite the
testbed difference, the experimental results are comparable
with that in [3] and [4]. In both cases, the predicted error
CDFs computed by our proposed scheme track the empirical
error CDFs closely. In particular, comparison of the mean error
distance, and error distances corresponding to0.25, 0.50, and
0.75 overall cumulative error probabilities (CEP) between the
predicted and the empirical data, are presented in Table I.
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Fig. 3. Comparison of predicted and empirical error CDFs.

TABLE I
COMPARISON BETWEEN EMPIRICAL AND PREDICTED ERROR(IN METERS)

KNN Probabilistic
Empirical Predicted Empirical Predicted

CEP= 0.25 1.51 1.81 1.74 1.73
CEP= 0.50 2.69 2.93 2.69 2.75
CEP= 0.75 4.02 4.37 3.79 3.97
Mean Error 2.94 3.24 2.88 2.99

V. CONCLUSION AND FUTURE WORK

In this paper, we have derived the theoretical error PDF and
RoC for a generalized fingerprint-based localization system
conditioned on the on-line RSS vector. We also propose to
utilize the multivariate NKDE techniques in order to facilitate
the computations in practical cases. The effectiveness of our
proposed scheme has been verified in a realistic experimental
testbed. We point out two future directions. First, we aim to
study the effect of training data size on the performance of
the proposed scheme. Second, the robustness of the proposed
method in testbeds with more extensive area and variations of
building structures should be verified.
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