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ERROR ANALYSIS FOR POD APPROXIMATIONS OF
INFINITE HORIZON PROBLEMS VIA THE
DYNAMIC PROGRAMMING APPROACH

A. ALLA∗, M. FALCONE† , AND S. VOLKWEIN‡

Abstract. In this paper infinite horizon optimal control problems for nonlinear high-dimensional
dynamical systems are studied. Nonlinear feedback laws can be computed via the value function
characterized as the unique viscosity solution to the corresponding Hamilton-Jacobi-Bellman (HJB)
equation which stems from the dynamic programming approach. However, the bottleneck is mainly
due to the curse of dimensionality and HJB equations are only solvable in a relatively small dimen-
sion. Therefore, a reduced-order model is derived for the dynamical system and for this purpose
the method of proper orthogonal decomposition (POD) is used. The resulting errors in the HJB
equations are estimated by an a-priori error analysis, which suggests a new sampling strategy for the
POD method. Numerical experiments illustrates the theoretical findings.

Key words. Optimal control, nonlinear dynamical systems, Hamilton-Jacobi Bellman equation,
proper orthogonal decomposition, error analysis

AMS subject classifications. 35K20, 49L20, 49L25, 49J20, 65N99

1. Introduction. The Dynamic Programming approach to the solution of op-
timal control problems driven by dynamical systems in R

n offers a nice framework
for the approximation of feedback laws and optimal trajectories. It suffers from the
bottleneck of the computation of the value function since this requires the approx-
imation of a nonlinear partial differential equation in dimension n. This is a very
challenging problem in high dimension due to the huge amount of memory allocations
necessary to work on a grid and to the low regularity properties of the value function
(which is typically only Lipschitz continuous even for regular dynamics and running
costs). Despite the number of theoretical results established for many classical con-
trol problems via the dynamic programming approach (see e.g. the monographies by
Bardi and Capuzzo-Dolcetta [8] on deterministic control problems and by Fleming
and Soner [19] on stochastic control problems) this has always been the main obstacle
to apply this nowadays rather complete theory to real applications. The ”curse of
dimensionality” has been mitigated via domain decomposition techniques and the de-
velopment of rather efficient numerical methods but it is still a big obstacle. Although
a detailed description of these contributions goes beyond the scopes of this paper, we
want to mention [18] for a domain decomposition method with overlapping between
the subdomains and [11] for similar results without overlapping. It is important to
note that in these papers the method is applied to subdomains with a rather simple
geometry (see the book by Quarteroni and Valli [32] for a general introduction to this
technique) in order to apply transmission conditions at the boundaries. More recently
another way to decompose the problem has been proposed by Krener and Navasca
[31] who have used a patchy decomposition based on Al’brekht method. Later in
the paper [10] the patchy idea has been implemented taking into account an approx-
imation of the underlying optimal dynamics to obtain subdomains which are almost
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invariant with respect to the optimal dynamics, clearly in this case the geometry of
the subdomains can be rather complex but the transmission conditions at the internal
boundaries can be eliminated saving on the overall complexity of the algorithm. In
general, domain decomposition methods reduce a huge problem into subproblems of
manageable size and allows to mitigate the storage limitation distributing the com-
putation over several processors. However, the approximation schemes used in every
subdomain are rather standard. Another improvement can be obtained using efficient
acceleration methods for the computation of the value function in every subdomain.
To this end one can use Fast Marching methods [34, 35] and Fast Sweeping methods
[37] for specific classes of Hamilton-Jacobi equations. In the framework of optimal
control problems an efficient acceleration technique based on the coupling between
value and policy iterations has been recently proposed and studied by Alla, Falcone
and Kalise in [3, 4]. Finally, we should mention that the interested reader can find
in [17] a number of successful applications to optimal control problems and games in
rather low dimension.

In parallel to these results several model reduction techniques have been developed
to deal with high dimensional dynamics in a rather economic way. These techniques
are really necessary when dealing with optimal control problems governed by partial
differential equations. Despite the vast literature concerning the analysis and numeri-
cal approximation of optimal control problems for PDEs, the amount of works devoted
to the synthesis of feedback controllers is rather small. In this direction, the applica-
tion of the dynamic programming principle (DPP) is a powerful technique which has
been applied mainly to linear dynamics, quadratic cost functions and unbounded con-
trol space, the so-called linear quadratic regulator (LQR) control problem. For this
problem an explicit feedback controller can be computed by means of the solution
of an algebraic Riccati equation. However if the underlying structural assumptions
are removed, the feedback control has to be obtained via the approximation of a
Hamilton-Jacobi-Bellman equation defined over the state space of the system dynam-
ics. As we mentioned, this is a major bottleneck for the application of DPP-based
techniques in the optimal control of PDEs, as the natural approach for this class of
control problems is to consider a semi-discretization (in space) via finite elements or
finite differences of the abstract governing equations, leading to an inherently high-
dimensional state space. However, in the last years several steps have been made
to obtain reduced-order models for complicated dynamics and by the application of
these techniques it is now possible to have a reasonable approximation of large-scale
dynamics using a rather small number of basis functions. This can open the way to
the DPP approach in high-dimensional systems.

Reduced-order models are used in PDE-constrained optimization in various ways;
see, e.g., [21, 24, 33] for a survey. However, the main stream for the optimal control
of PDEs is still related to open-loop controls based on the Pontryagin Maximum
Principle (an extensive presentation of this classical approach can be found in the
monograph [23, 38]). Let us refer to [5, 7, 27, 28, 29], where it has been observed
that models of reduced order can play an important and very useful role in the im-
plementation of feedback laws. More recently, the Proper Orthogonal Decomposition
(POD) has been proposed for PDE control problems in order to reduce the dynamics
to a small number of state variable via a careful selection of the snapshots. This tech-
nique, coupled with the Dynamic Programming approach, has been developed mainly
for linear equations starting from the heat equation where one can take advantage of
the regularity of the solutions to reduce the dimension [7] and then attacking more
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difficult problems as the advection-diffusion equation [1, 2, 6, 25], Burgers’s equation
[27, 28] and Navier-Stokes [5].

The aim of this paper is to study the interplay between reduced-order dynamics,
the associated dynamic programming equation, the resulting feedback controller and
its performance over the high-dimensional system. In our analysis we will derive some
a-priori error estimates which take into account the time and space discretization
parameter ∆t and ∆x as well as the dimension ℓ of the POD basis functions used for
the reduced model.

The paper is organized as follows: in Section 2 we recall some basic facts about
the approximation of the infinite horizon problem via the dynamic programming ap-
proach. Section 3 is devoted to present in short the POD technique and the basic
ideas behind the construction of the reduced model. In Section 4 we present the main
results and our a-priori estimates for the numerical approximation of the reduced
model. These a-priori estimates have been also used in the construction of the algo-
rithm which is described in detail in Section 5. Some numerical tests are presented
and analyzed in Section 6 and finally we draw some conclusions in Section 7.

2. Optimal control problem. In this section we will recall the Dynamic Pro-
gramming approach and its numerical approximation for the solution of infinite hori-
zon control problem.

2.1. The infinite horizon problem. For given nonlinear mapping f : Rn ×
R

m → R
n and initial condition y◦ ∈ R

n let us consider the following controlled
nonlinear dynamical systems

(2.1) ẏ(t) = f
(
y(t), u(t)

)
∈ R

n for t > 0, y(0) = y◦ ∈ R
n

together with the infinite horizon cost functional

(2.2) J(y, u) =

∫ ∞

0

g
(
y(t), u(t)

)
e−λt dt

In (2.2) we assume that λ > 0 is a given weighting parameter and g maps Rn×R
m to

R. We call y the state and u the control. The set of admissible controls has the form

Uad =
{
u ∈ U

∣∣u(t) ∈ Uad for almost all t ≥ 0
}
,

where we set U = L2(0,∞;Rm) and Uad ⊂ R
m denotes a compact, convex subset.

Let M ∈ R
n×n denote a symmetric, positive definite (mass) matrix with smallest

and largest positive eigenvalues λmin and λmax, respectively. Then, we introduce the
following weighted inner product in R

n:

〈y, ỹ〉M = y⊤Mỹ for y, ỹ ∈ R
n,

where ‘⊤’ stands for the transpose of a given vector or matrix. By ‖ · ‖M = 〈· , ·〉
1/2
M

we define the associated induced norm. Recall that we have

λmin ‖y‖
2
2 ≤ ‖y‖

2
M ≤ λmax ‖y‖

2
2 for all y ∈ R

n.

Then, y solves (2.1) if

(2.3)
〈ẏ(t)− f(y(t), u(t)), ϕ〉M = 0 for all ϕ ∈ R

n and for almost all t > 0,

〈y(0)− y◦, ϕ〉M = 0 for all ϕ ∈ R
n
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We call (2.3) the variational formulation of the dynamical system. Let us suppose
that (2.1) has a unique solution y = y(u; y◦) ∈ Y = H1(0,∞;Rn) for every admissible
control u ∈ Uad and for every initial condition y◦ ∈ R

n; see, e.g., [8, Chapter III].
Thus, we can define the reduced cost functional as follows:

Ĵ(u; y◦) = J(y(u; y◦), u) for u ∈ Uad and y◦ ∈ R
n,

where y(u; y◦) solves (2.1) for given control u and initial condition y◦. Then, our
optimal control can be formulated as follows: for given y◦ ∈ R

n we consider

(P̂) min
u∈Uad

Ĵ(u; y◦).

2.2. The Hamilton-Jacobi-Bellman equation and its time discretiza-
tion. We define the value function of the problem v : Rn → R as follows:

v(y) = inf
{
Ĵ(u; y)

∣∣u ∈ Uad

}
for y ∈ R

n.

This function gives the best value for every initial condition, given the set of admissible
controls Uad. It is characterized as the unique viscosity solution of the Hamilton-
Jacobi-Bellman (HJB) equation corresponding the infinite horizon

(2.4) λv(y) + sup
u∈Uad

{
− f(y, u) · ∇v(y)− g(y, u)

}
= 0 for y ∈ R

n.

In order to construct the approximation scheme (as in [15]) let us consider first a
time discretization where h is a strictly positive step size. A dynamic programming
principle for the discrete time problem holds true giving the following semi-discrete
scheme for (2.4)

(2.5) vh(y) = min
u∈Uad

{
(1− λh)vh(y + hf(y, u)) + hg(y, u)

}
for y ∈ R

n.

Throughout our paper we suppose the following hypotheses.
Assumption 1.

1) The right-hand side f : Rn × R
m → R

n is continuous and globally Lipschitz-
continuous in the first argument, i.e., there exists an Lf > 0 satisfying

‖f(y, u)− f(ỹ, u)‖2 ≤ Lf ‖y − ỹ‖2 for all y, ỹ ∈ R
n and u ∈ Uad

Furthermore, ‖f(y, u)‖∞ = max1≤i≤n

∣∣fi(y, u)
∣∣ is bounded by a constant Mf

for all y ∈ Ω and u ∈ Uad.
2) The running cost g : Rn × R

m → R
n is continuous and globally Lipschitz-

continuous in the first argument with a Lipschitz constant Lg > 0. Moreover,
‖g(y, u)‖∞ ≤Mg for all (y, u) ∈ Ω× Uad with Mg > 0.

If Assumption 1 and λ > Lf hold, the function vh is Lipschitz-continuous satis-
fying

(2.6)
∣∣vh(y)− vh(ỹ)

∣∣ ≤ Lg

λ− Lf
‖y − ỹ‖2 for all y, ỹ ∈ Ω and h ∈ [0, 1/λ);

see [16, p. 473]. Let us recall the following result [15, Theorem 2.3]:
Theorem 2.1. Let Assumption 1 and λ > max{Lg, Lf} hold. Let v and vh be

the solutions of (2.4) and (2.5), respectively. Suppose the semiconcavity assumptions

(2.7)
‖f(y + ỹ, u)− 2f(y, u) + f(y − ỹ, u)‖2 ≤ Cf ‖ỹ‖

2
2,∣∣g(y + ỹ, u)− 2g(y, u) + g(y − ỹ, u)

∣∣ ≤ Cg ‖ỹ‖
2
2
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for all (y, ỹ, u) ∈ R
n × R

n × Uad. Then, there is a constant C ≥ 0 satisfying

sup
y∈Rn

∣∣v(y)− vh(y)
∣∣ ≤ Ch for any h ∈ [0, 1/λ).

Remark 2.2. The constant C in Theorem 2.1 can be bounded by

C ≤ max

{
Lg

λ
,
2M2

f

λ
,
Lf

λ
,Mf

}(
2 +

Lg

λ− Lf

)2

;

see [15, Remark 1]. ♦

2.3. The large-scale approximation of the HJB equations. For the nu-
merical realization we have to restrict ourselves to a bounded subset of Rn. Suppose
that there exists a (bounded) polyhedron Ω ⊂ R

n such that for sufficiently small
h > 0

(2.8) y + hf(y, u) ∈ Ω, for all y ∈ Ω and u ∈ Uad.

We want to point out that the above invariance condition is used here to simplify
the problem and focus on the main issue of the a-priori error estimate. If (2.8)
is not satisfied one can apply state constraints to the problem and use appropriate
boundary conditions provided at avery point of the boundary there exists at least
one control point inside Ω (for this and even more general state constraints boundary
conditions the interested reader can find in [17] some hints and additional references).
Let {Sj}

mS

j=1 be a family of simplices which defines a regular triangulation of the
polyhedron Ω (see, e.g., [20]) such that

Ω =

mS⋃

j=1

Sj and k = max
1≤j≤mS

(
diam Sj

)
.

Throughout this paper we assume that we have nS vertices/nodes y1, . . . , ynS
in the

triangulation. Let V k be the space of piecewise affine functions from Ω to R which
are continuous in Ω having constant gradients in the interior of any simplex Sj of the
triangulation. Then, a fully discrete scheme for the HJB equations is given by

(2.9) vhk(yi) = min
u∈Uad

{
(1− λh)vhk

(
yi + hf(yi, u)

)
+ hg(yi, u)

}

for any vertex yi ∈ Ω. Clearly, a solution to (2.5) satisfies (2.9).
Let us recall the following result [15, Corollary 2.4] and [16, Theorem 1.3]:

Theorem 2.3. Assume that Assumption 1, (2.7) and (2.8) hold. Let v, vh and
vhk be the solutions of (2.4), (2.5) and (2.9), respectively. For λ > Lf we obtain

(2.10) sup
y∈Ω

∣∣vh(y)− vhk(y)
∣∣ ≤ Lf

λ(λ− Lf )

k

h
for any h ∈ [0, 1/λ).

For λ > max{Lf , 2Lg} we have

(2.11) sup
y∈Ω

∣∣v(y)− vhk(y)
∣∣ ≤ Ch+

Lg

λ− Lf

k

h
for any h ∈ [0, 1/λ).
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Corollary 2.4. Assume that Assumption 1, (2.7) and λ > Lf hold. Let vhk be
the solution of (2.9). Then, we have for h ∈ [0, 1/λ)

∣∣vhk(y)− vhk(ỹ)
∣∣ ≤ C1

k

h
+ C2 ‖y − ỹ‖2 for all y, ỹ ∈ Ω,

where C1 = 2Lf/(λ(λ− Lf )) and C2 = Lg/(λ− Lf ).
Proof. Suppose that vh is the solution to (2.5). Then, we derive from (2.6) and

(2.10) that

∣∣vhk(y)− vhk(ỹ)
∣∣ ≤

∣∣vhk(y)− vh(y)
∣∣+

∣∣vh(y)− vh(ỹ)
∣∣+

∣∣vh(ỹ)− vhk(ỹ)
∣∣

≤
2Lf

λ(λ− Lf )

k

h
+

Lg

λ− Lf
‖y − ỹ‖2,

which gives the claim.

3. The POD method and reduced-order modeling. The focus of this sec-
tion is the construction of surrogate models by means of the Proper Orthogonal De-
composition (POD). Here we recall the basics of the method and apply the POD
method to optimal control problems.

3.1. POD for parametrized nonlinear dynamical systems. For p ∈ N let
us choose different pairs controls {(uν , yν◦ )}

p
ν=1 in Uad × Ω. By yν = y(uν ; yν◦ ) ∈ Y,

ν = 1, . . . , p, we denote the solution to (2.1). We introduce the snapshot subspace as

V = span
{
yν(t)

∣∣ t ∈ [0,∞) and 1 ≤ ν ≤ p
}
⊂ R

n.

For every ℓ ∈ {1, . . . , d}, with dimension d ≤ n, a POD basis of rank ℓ is defined as a
solution to the minimization problem (see, e.g., [22])

(Pℓ)





min

p∑

ν=1

∫ ∞

0

∥∥∥yν(t)−
ℓ∑

i=1

〈yν(t), ψi〉M ψi

∥∥∥
2

M
dt

such that {ψi}
ℓ
i=1 ⊂ R

n and 〈ψi, ψj〉M = δij , 1 ≤ i, j ≤ ℓ,

where δij is the Kronecker symbol satisfying δii = 0 and δij = 0 for i 6= j. It is
well-known that a solution to (Pℓ) is given by a solution to the eigenvalues problem

Rψi = λiψi for λ1 ≥ λ2 ≥ . . . ≥ λℓ ≥ λd > 0

with the linear, bounded, symmetric integral operator R : Rn → V

Rψ =

p∑

ν=1

∫ ∞

0

〈yν(t), ψ〉M yν(t) dt for ψ ∈ R
n

(compare, e.g., [12, 21, 36]). If {ψi}
ℓ
i=1 is a solution to (Pℓ), we have the approxima-

tion error

(3.1)

p∑

ν=1

∫ ∞

0

∥∥∥yν(t)−
ℓ∑

i=1

〈yν(t), ψi〉M ψi

∥∥∥
2

M
dt =

d∑

i=ℓ+1

λi.

In real computations, we do not have the whole trajectory y(t) for all t ∈ [0,∞).
For that purpose we choose T ≫ 0 sufficiently large and define a grid in [0, te], where
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te ≥ T , by 0 = t1 < t2 < . . . < tnT
= te. Let y

ν
j ≈ yν(tj) ∈ R

n denote approximations
for the introduced trajectories {yνj }

p
ν=1 at the time instance tj for j = 1, . . . , nT . We

set V
nT = span {yνj | 1 ≤ j ≤ nT , 1 ≤ ν ≤ p} with dnT = dimV

nT ≤ min(n, nT p).
Then, for every ℓ ∈ {1, . . . , dnT } we consider the minimization problem

(Pℓ
nT

)





min

p∑

ν=1

nT∑

j=1

αnT

j

∥∥∥yνj −
ℓ∑

i=1

〈yνj , ψ
nT

i 〉
M
ψnT

i

∥∥∥
2

M

such that {ψnT

i }ℓi=1 ⊂ R
n and 〈ψnT

i , ψnT

j 〉
M

= δij , 1 ≤ i, j ≤ ℓ,

instead of (Pℓ). In (Pℓ
nT

) the αj ’s stand for the trapezoidal weights

αnT

1 =
t2 − t1

2
, αnT

j =
tj − tj−1

2
for 2 ≤ j ≤ nT − 1, αnT

nT
=
tnT

− tnT−1

2

The solution to (Pℓ
nT

) is given by the solution to the eigenvalue problem [21, 22]

RnTψnT

i = λnT

i ψnT

i for λnT

1 ≥ λnT

2 ≥ . . . ≥ λnT

ℓ ≥ λdnT
> 0

with the linear, bounded, symmetric and nonnegative operator

RnTψ =

nT∑

ν=1

nT∑

j=1

αnT

j 〈yνj , ψ〉M yνj for ψ ∈ R
n.

Analogous to (3.1) a solution to (Pℓ
nT

) satisfies

p∑

ν=1

nT∑

j=1

αnT

j

∥∥∥yνj −

ℓ∑

i=1

〈yνj , ψ
nT

i 〉
M
ψnT

i

∥∥∥
2

M
=

dnT∑

i=ℓ+1

λnT

i .

The relationship between (Pℓ) and (Pℓ
nT

) is investigated in [21, 26].

3.2. Reduced-order modelling for the state equation. We introduce the
POD coefficient matrix

Ψ =
[
ψ1 | . . . |ψℓ

]
∈ R

n×ℓ

and the subspace V ℓ = span {ψ1, . . . , ψℓ} ⊂ R
n. In particular, the matrix Mℓ =

Ψ⊤MΨ ∈ R
ℓ×ℓ is the identity matrix. The reduced-order model for (2.3) is derived as

follows: we replace the vector y(t) ∈ R
n by its POD approximation Ψyℓ(t) ∈ R

n with
the unknown time dependent coefficients yℓ(t) ∈ R

ℓ and choose ϕ = ψi for i = 1, . . . , ℓ.
It follows that

(3.2) ẏℓ(t) = f ℓ
(
yℓ(t), u(t)

)
∈ R

ℓ for t > 0, yℓ(0) = yℓ◦ ∈ R
ℓ,

where we have set yℓ◦ = Ψ⊤My◦ ∈ R
ℓ and f ℓ(yℓ, u) = Ψ⊤Mf(Ψyℓ, u) ∈ R

ℓ for
(yℓ, u) ∈ R

ℓ × Uad, i.e. no discrete interpolation method is used at the moment
(compare, e.g., [9, 13]).

Suppose that (3.2) possesses a unique solution yℓ = yℓ(u; y◦) ∈ Y
ℓ = H1(0,∞;Rℓ)

for any admissible control u ∈ Uad. Let us introduce the linear, orthogonal projection
Pℓ : Rn → V ℓ as

Pℓy = ΨΨ⊤My =
ℓ∑

i=1

〈y, ψi〉M ψi for y ∈ R
n.
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We note that the error of a solution to (2.1) and (3.2) on a finite time horizon can be
estimated; see [39, Theorem 2.1 and Remark 2.2].

Proposition 3.1. For given y◦ ∈ Ω, u ∈ Uad and te > 0 let y = y(u; y◦) ∈
H1(0, te;R

n) be the unique solution to (2.1) on the finite time interval [0, te]. In (Pℓ)
we choose p = 2, y1 = y and y2 = ẏ. Suppose that yℓ ∈ H1(0, te;R

n) is the unique
solution to (3.2) for ℓ ∈ {1, . . . , d}. Then, it follows that

∫ te

0

‖y(t)− yℓ(t)‖
2

M dt ≤ Ĉ

d∑

i=ℓ+1

λi

for a constant Ĉ > 0.

3.3. Reduced-order modelling for the optimal control problem. Next
we introduce the POD reduced-order model for (P̂). For given (u, y◦) ∈ Uad × Ω let
yℓ = yℓ(u; y◦) ∈ Y

ℓ denote the unique solution to (3.2). Then, the reduced POD cost
is given by

Ĵℓ(u; y◦) = J(yℓ(u; y◦), u) = J(yℓ, u)

=

∫ ∞

0

g
(
Ψyℓ(t), u(t)

)
e−λt dt =

∫ ∞

0

gℓ
(
yℓ(t), u(t)

)
e−λt dt,

where we have set gℓ(yℓ, u) = g(Ψyℓ, u) for (yℓ, u) ∈ R
ℓ × Uad. Then, the POD

approximation for (P̂) reads as follows: for given y◦ ∈ Ω we consider

(P̂ℓ) min Ĵℓ(u; y◦) such that u ∈ Uad.

4. A-priori error for the HJB-POD approximation. In this section we
present the a-priori error analysis for the coupling between the HJB equation and the
POD method. Our first a-priori error estimate is better from a theoretical point of
view, whereas for the numerical realization the second a-priori error estimate is much
more appropriate. In the first estimate we assume to work in R

ℓ on a number of
vertices which have been obtained mapping the yi nodes of Rn into R

ℓ. Even if the
maximum distance between the yi neighbouring nodes is bounded by k, this clearly
produces a non uniform grid where the distance between the neighbouring nodes can
not be predicted a-priori since it depends on Ψ. The second error estimate takes into
account a uniform grid of size K in R

ℓ.

4.1. First a-priori error estimate. We introduce two different POD approx-
imations for the HJB equation. The first one is based on (2.9), where we project all
vertices {yi}

nS

i=1 into R
ℓ by setting

yℓi = Ψ⊤Myi for i = 1, . . . , nS.

Here we assume that yℓi 6= yℓj holds for i, j ∈ {1, . . . , nS} with i 6= j. Then, a POD
discretization of (2.9) is given by

(4.1) vℓhk(y
ℓ
i ) = min

u∈Uad

{
(1− λh)vℓhk

(
yℓi + hf ℓ(yℓi , u)

)
+ hgℓ(yℓi , u)

}

for 1 ≤ i ≤ nS. We define the mapping ṽℓhk : Ω → R by

ṽℓhk(y) = vℓhk(Ψ
⊤My) for all y ∈ Ω with Ψ⊤My ∈ Ω.
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Using Pℓ = ΨΨ⊤M ∈ R
n×n we have

ṽℓhk(yi) = vℓhk(Ψ
⊤Myi) = vℓhk(y

ℓ
i )

= min
u∈Uad

{
(1− λh)vℓhk

(
yℓi + hf ℓ(yℓi , u)

)
+ hgℓ(yℓi , u)

}

= min
u∈Uad

{
(1− λh)vℓhk

(
Ψ⊤M(yi + hf(Pℓyi, u)

)
+ hg(Pℓyi, u)

}

= min
u∈Uad

{
(1− λh)ṽℓhk

(
yi + hf(Pℓyi, u)

)
+ hg(Pℓyi, u)

}

for 1 ≤ i ≤ nS. Thus, (4.1) can be equivalently expressed as

(4.2) ṽℓhk(yi) = min
u∈Uad

{
(1− λh)ṽℓhk

(
yi + hf(Pℓyi, u)

)
+ hg(Pℓyi, u)

}

for 1 ≤ i ≤ nS. The following result measures the error between a solution to (2.5)
and a solution to (4.2). The proof is similar to the proof of Theorem 1.3 in [16] and
requires an invariance condition which will be discussed later in Remark 4.2.

Proposition 4.1. Assume that Assumption 1, (2.8) and λ > Lf hold. Let vh and
ṽℓhk be the solutions of (2.5) and (4.2), respectively and let the invariance condition

(4.3) yi + hf(Pℓyi, u) ∈ Ω for i = 1, . . . , nS and for all u ∈ Uad

be satisfied. Then, there exist two constants Ĉ0, Ĉ1 such that

sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣ ≤ Ĉ0

k

h
+ Ĉ1

( nS∑

i=1

‖yi − Pℓyi‖
2

2

)1/2

for any h ∈ [0, 1/λ).

Proof. For any y ∈ Ω there are real coefficients µi = µi(y), 1 ≤ i ≤ nS, of the
convex combination representation of y satisfying

y =

nS∑

i=1

µiyi, 0 ≤ µi ≤ 1 and

nS∑

i=1

µi = 1.

Since ṽℓhk is piecewise affine, we obtain ṽℓhk(y) =
∑nS

i=1 µiṽ
ℓ
hk(yi). Thus, we have

(4.4)
∣∣vh(y)− ṽℓhk(y)

∣∣ ≤
∣∣∣∣

nS∑

i=1

µi

(
vh(y)− vh(yi)

)∣∣∣∣+
∣∣∣∣

nS∑

i=1

µi

(
vh(yi)− ṽℓhk(yi)

)∣∣∣∣.

From y ∈ Ω we infer that there exists an index j with y ∈ Sj ⊂ Ω. Let Ij =
{i1, . . . , ik} ⊂ {1, . . . , nS} denote the index subset such that yi ∈ Sj holds for i ∈ Ij .
Then, µi = 0 holds for all i 6∈ Ij . Moreover,

∑nS

i=1 µi =
∑

i∈Ij
µi = 1 and ‖y−yi‖2 ≤ k

for any i ∈ Ij . From (2.6) we have

(4.5)

nS∑

i=1

µi

∣∣vh(y)− vh(yi)
∣∣ =

∑

i∈Ij

µi

∣∣vh(y)− vh(yi)
∣∣ ≤ Lg

λ− Lf
k

for h ∈ [0, 1/λ). Using (4.2) and (2.5) we have

(4.6)

vh(yi)− ṽℓhk(yi)

≤ vh(yi)− (1− λh)ṽℓhk
(
yi + hf(Pℓyi, ū

ℓ,i
hk)

)
+ hg(Pℓyi, ū

ℓ,i
hk)

≤ (1− λh)
(
vh

(
(yi + hf(yi, ū

ℓ,i
hk)

)
− ṽℓhk

(
yi + hf(Pℓyi, ū

ℓ,i
hk)

))

+ h
(
g(yi, ū

ℓ,i
hk)− g(Pℓyi, ū

ℓ,i
hk)

)
,
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where ūℓ,ihk ∈ Uad is defined as

(4.7) ūℓ,ihk = argmin
u∈Uad

{
(1− λh)ṽℓhk

(
yi + hf(Pℓyi, u)

)
+ hg(Pℓyi, u)

}
.

Applying (2.6) again we deduce that

∣∣vh
(
(yi + hf(yi, ū

ℓ,i
hk)

)
− vh

(
yi + hf(Pℓyi, ū

ℓ,i
hk)

)∣∣ ≤ hLgLf

λ− Lf
‖yi − Pℓyi‖2

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ). Hence, from (4.3) it follows

vh
(
(yi + hf(yi, ū

ℓ,i
hk)

)
− ṽℓhk

(
yi + hf(Pℓyi, ū

ℓ,i
hk)

)

≤
(
vh

(
(yi + hf(yi, ū

ℓ,i
hk)

)
− vh

(
yi + hf(Pℓyi, ū

ℓ,i
hk)

))

+
(
vh

(
yi + hf(Pℓyi, ū

ℓ,i
hk)

)
− ṽℓhk

(
yi + hf(Pℓyi, ū

ℓ,i
hk)

))

≤
hLgLf

λ− Lf
‖yi − Pℓyi‖2 + sup

y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ). Using the inequality

h
(
g(yi, ū

ℓ,i
hk)− g(Pℓyi, ū

ℓ,i
hk)

)
≤ hLg ‖yi − Pℓyi‖2

we derive from (4.6)

vh(yi)− ṽℓhk(yi) ≤ C̃1h ‖yi − Pℓyi‖2 + (1− λh) sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ) with C̃1 = Lg(Lf/(λ − Lf ) + 1). By interchanging
the role of vh and ṽℓhk in (4.6) we derive

(4.8)
∣∣vh(yi)− ṽℓhk(yi)

∣∣ ≤ C̃1h ‖yi − Pℓyi‖2 + (1− λh) sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣

for 1 ≤ i ≤ nS and h ∈ [0, 1/λ). Note that 0 ≤
∑nS

i=1 µ
2
i ≤

∑nS

i=1 µi = 1 holds for the
coefficients in the convex combination representation. Inserting (4.5) and (4.8) into
(4.4) we find

∣∣vh(y)− ṽℓhk(y)
∣∣

≤ (1− λh) sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣+ C̃0 k + C̃1h

nS∑

i=1

µi ‖yi − Pℓyi‖2

≤ (1− λh) sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣+ C̃0 k + C̃1h

( nS∑

i=1

‖yi − Pℓyi‖
2

2

)1/2

for h ∈ [0, 1/λ) with C̃0 = Lg/(λ− Lf ), which implies

sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣ ≤ Ĉ0

k

h
+ Ĉ1

( nS∑

i=1

‖yi − Pℓyi‖
2

2

)1/2

for h ∈ [0, 1/λ) with Ĉi = C̃i/λ, i = 0, 1.
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Remark 4.2. Let us give sufficient conditions for (4.3). First, we observe that
for any i ∈ {1, . . . , nS} and u ∈ Uad we have

yi + hf(Pℓyi, u) = yi + hf(yi, u) + h
(
f(Pℓyi, u)− f(yi, u)

)
.

To ensure (4.3) we replace (2.8) by the stronger assumption

y + hf(y, u) ∈ intΩ for all y ∈ Ω and for all u ∈ Uad,

where intΩ stands for the (open) interior of the set Ω, we have yi + hf(yi, u) ∈ intΩ
for any i ∈ {1, . . . , nS}. Moreover, Assumption 1-1) implies that

‖f(Pℓyi, u)− f(yi, u)‖2 ≤ Lf ‖P
ℓyi − yi‖2

holds. Consequently, if the mesh size h or if ‖Pℓyi − yi‖2 are sufficiently small, the
norm of the vector h(f(Pℓyi, u) − f(yi, u)) can be made sufficiently small so that
yi + hf(Pℓyi, u) ∈ Ω. ♦

From Theorem 2.1 and Proposition 4.1 we derive the following a-priori error
estimate.

Theorem 4.3. Assume that Assumption 1, (2.8) and (4.3) hold. Suppose that
f, g satisfy the semiconcavity conditions (2.7). Let v and ṽℓhk be the solutions of (2.4)
and (4.2), respectively. If λ > max{Lf , Lg}, then there exists constants c0, c1, c2 ≥ 0
such that

(4.9) sup
y∈Ω

∣∣v(y)− ṽℓhk(y)
∣∣ ≤ c0h+ c1

k

h
+ c2

( nS∑

i=1

‖yi − Pℓyi‖
2

2

)1/2

for any h ∈ [0, 1/λ).
Remark 4.4. The a-priori error estimate presented in Theorem 4.3 is natural,

because it combines the discretization error between v and vhk (compare (2.11)) with
the POD approximation quality for the (finite many) vertices {yi}

nS

i=1. In particular,
if we determine the POD basis by solving





min

nS∑

i=1

∥∥∥yi −
ℓ∑

j=1

〈yi, ψj〉2 ψj

∥∥∥
2

2

such that {ψi}
ℓ
i=1 ⊂ R

n and 〈ψi, ψj〉2 = δij , 1 ≤ i, j ≤ ℓ,

we get the a-priori error estimate

sup
y∈Ω

∣∣v(y)− ṽℓhk(y)
∣∣ ≤ c0h+ c1

k

h
+ c2

( nS∑

i=ℓ+1

λi

)1/2

.

However, the POD grid points {yℓi}
nS

i= are not well distributed in general, which is
disadvantageous for the numerical realization. ♦

4.2. Second a-priori error estimate. From a numerical point of view (4.1)
is not appropriate, because in general the grid points {yℓi}

nS

i=1 are not uniformly dis-
tributed in R

ℓ and their distribution will strongly depend on Ψ. Therefore, we define
a second POD discretization of the HJB equations where we have an explicit bound
on the distance between the neighbouring nodes. Clearly in this case we will need
an interpolation operator defined on the grid (tipically, this will be a piecewise linear
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interpolation operator). With (2.8) holding we assume that there exists a bounded
polyhedron Ωℓ ⊂ R

ℓ satisfying

(4.10) Ψ⊤My ∈ intΩℓ for all y ∈ Ω.

Remark 4.5. Let y ∈ Ω, u ∈ Uad be arbitrarily chosen and set yℓ = Ψ⊤My ∈ R
ℓ.

Then,

yℓ + hf ℓ(yℓ, u) = Ψ⊤My + hΨ⊤Mf(ΨΨ⊤My, u)

= Ψ⊤M
(
y + hf(y, u)

)
+ hΨ⊤M

(
f(ΨΨ⊤My, u)− f(y, u)

)
.

We infer from (2.8) that z = y + hf(y, u) ∈ Ω holds. Hence, by (4.10), we have
Ψ⊤Mz ∈ intΩℓ. Furthermore, we derive from

∥∥hΨ⊤M
(
f(ΨΨ⊤My, u)− f(y, u)

)∥∥
2
≤ hLf‖Ψ

⊤M‖2 ‖ΨΨ⊤My − y‖2

and span {ψ1, . . . , ψn} = R
n that yℓ + hf ℓ(yℓ, u) ∈ Ω

ℓ
holds for step size h or

‖ΨΨ⊤My − y‖2 sufficiently small. If M = Id ∈ R
n×n holds, we have ‖Ψ⊤M‖2 = 1.♦

Let {Sℓj}
mS

j=1 be a family of simplices which defines a regular triangulation of the

polyhedron Ωℓ such that

Ω
ℓ
=

mS⋃

j=1

S
ℓ
j and K = max

1≤j≤mS

(
diam S

ℓ
j

)
.

Let V K be the space of piecewise affine functions from Ω
ℓ
to R which are continuous

in Ω
ℓ
having constant gradients in the interior of any simplex S

ℓ
j of the triangulation.

Then, we introduce the following POD scheme for the HJB equations

(4.11) vℓhK(yℓi) = min
u∈Uad

{
(1− λh)vℓhK

(
y
ℓ
i + hf ℓ(yℓi , u)

)
+ hgℓ(yℓi , u)

}

for any vertex y
ℓ
i ∈ Ω

ℓ
. Throughout this paper we assume that we have nS vertices

y
ℓ
1, . . . , y

ℓ
nS
. We set yi = Ψy

ℓ
i for 1 ≤ i ≤ nS and define

ṽℓhK(y) = vℓhK(Ψ⊤My) for all y ∈ Ω

Recall that (4.10) ensures Ψ⊤My ∈ intΩℓ for any y ∈ Ω. Moreover, yi = Ψy
ℓ
i and

Ψ⊤MΨ = Id ∈ R
ℓ×ℓ implies that

ṽℓhK(yi) = vℓhK(Ψ⊤Myi) = vℓhK(yℓi) for 1 ≤ i ≤ nS.

Using (4.11) we obtain

ṽℓhK(yi) = vℓhK(yℓi) = min
u∈Uad

{
(1− λh)vℓhK

(
y
ℓ
i + hf ℓ(yℓi , u)

)
+ hgℓ(yℓi , u)

}

= min
u∈Uad

{
(1− λh)vℓhK

(
Ψ⊤M(Ψy

ℓ
i + hf(Ψy

ℓ
i , u))

)
+ hg(Ψy

ℓ
i , u)

}

= min
u∈Uad

{
(1− λh)vℓhK

(
Ψ⊤M(yi + hf(yi, u))

)
+ hg(yi, u)

}

= min
u∈Uad

{
(1− λh)ṽℓhK

(
yi + hf(yi, u)

)
+ hg(yi, u)

}
for 1 ≤ i ≤ nS.
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Thus, (4.11) can be written as

(4.12) ṽℓhK(yi) = min
u∈Uad

{
(1− λh)ṽℓhK

(
yi + hf(yi, u)

)
+ hg(yi, u)

}

for 1 ≤ i ≤ nS.
Proposition 4.6. Assume that Assumption 1, (2.8) and (4.10) hold. Let vh and

ṽℓhK be the solutions of (2.5) and (4.12). Let

(4.13) Ψ⊤M
(
y + hf(Pℓy, u)

)
∈ Ω

ℓ
for all y ∈ Ω and for all u ∈ Uad.

be satisfied. For λ > Lf there exists constants c0, c1 such that

sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣ ≤ c0 ‖Ψ‖2

K

h
+ c1 sup

y∈Ω

‖y − Pℓy‖2
1

h

for any h ∈ [0, 1/λ).
Proof. Let y ∈ Ω be chosen arbitrarily. We set yℓ = Ψ⊤My. By (4.10) we have

yℓ ∈ inΩℓ. Then, there are real coefficients µℓ
i = µℓ

i(y
ℓ), 1 ≤ i ≤ nS, of the convex

combination representation of yℓ satisfying

yℓ =

nS∑

i=1

µℓ
iy

ℓ
i , 0 ≤ µℓ

i ≤ 1 and

nS∑

i=1

µℓ
i = 1.

Since vℓhK is piecewise affine we have vhK(yℓ) =
∑

nS

i=1 µ
ℓ
iv

ℓ
hK(yℓi). Using yi = Ψy

ℓ
i , we

have

(4.14)

∣∣vh(y)− ṽℓhk(y)
∣∣ ≤

∣∣vh(y)− vh(P
ℓy)

∣∣+
∣∣∣∣

nS∑

i=1

µℓ
i

(
vh(P

ℓy)− vh(yi)
)∣∣∣∣

+

∣∣∣∣
nS∑

i=1

µℓ
i

(
vh(yi)− vℓhk(y

ℓ
i)
)∣∣∣∣.

By (2.6) the first term on the right-hand side of (4.14) can be bounded as follows:

(4.15)
∣∣vh(y)− vh(P

ℓy)
∣∣ ≤ Lg

λ− Lf
‖y − Pℓy‖2 for all h ∈ [0, 1/λ).

Furthermore, there exists an index j with y ∈ Sj ⊂ Ω
ℓ
. Let Ij = {i1, . . . , ik} ⊂

{1, . . . , nS} denote the index subset such that yℓ ∈ Sj holds for i ∈ Ij . Then, µℓ
i = 0

holds for all i 6∈ Ij . Moreover,
∑

nS

i=1 µ
ℓ
i =

∑
i∈Ij

µℓ
i = 1 and ‖yℓ − y

ℓ
i‖2 ≤ K for any

i ∈ Ij . Recall that P
ℓy = ΨΨ⊤My = Ψyℓ holds. Again using (2.6) we find

(4.16)

nS∑

i=1

µℓ
i

∣∣vh(Pℓy)− vh(yi)
∣∣ =

∑

i∈Ij

µℓ
i

∣∣vh(Ψyℓ)− vh(Ψy
ℓ
i)
∣∣ ≤ Lg ‖Ψ‖2

λ− Lf
K

for h ∈ [0, 1/λ). Using (4.12) and (2.5) we have

vh(yi)− vℓhk(y
ℓ
i) = vh(yi)− ṽℓhk(yi)

≤ vh(yi)− (1− λh)ṽℓhK
(
yi + hf(yi, ū

ℓ,i
hK)

)
+ hg(yi, ū

ℓ,i
hK)

}

≤ (1− λh)
(
vh

(
(yi + hf(yi, ū

ℓ,i
hK)

)
− ṽℓhK

(
yi + hf(yi, ū

ℓ,i
hK)

))

≤ (1− λh) sup
ỹ∈Ω

∣∣vh(ỹ)− ṽℓhK(ỹ)
∣∣,
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where ūℓ,ihK ∈ Uad is defined as

ūℓ,ihK = argmin
u∈Uad

{
(1− λh)ṽℓhK

(
yi + hf(yi, u)

)
+ hg(yi, u)

}
.

By interchanging the role of vh and vℓhK we find

(4.17)
∣∣vh(yi)− vℓhk(y

ℓ
i)
∣∣ ≤ (1− λh) sup

ỹ∈Ω

∣∣vh(ỹ)− ṽℓhK(ỹ)
∣∣.

Inserting (4.15), (4.16) and (4.17) into (4.14) we find

(4.18) sup
y∈Ω

∣∣vh(y)− ṽℓhk(y)
∣∣ ≤ c̃1

(
1

h
sup
y∈Ω

‖y − Pℓy‖2 + ‖Ψ‖2
K

h

)

with c̃1 = Lg/(λ(λ− Lf )).
Remark 4.7.

1) In Remark 4.5 we have showed that (4.13) can be ensured provided (4.10)
holds and the step size h or ‖y − Pℓy‖2 are sufficiently small.

2) We should balance

K ∼ sup
y∈Ω

‖y − Pℓy‖2

in order to get a rate K/h for the convergence. ♦

Combining Theorem 2.1 and Proposition 4.6 we obtain the following result.
Theorem 4.8. Assume that Assumption 1, (2.8), (4.10) and (4.13) hold. Suppose

that f, g satisfy the semiconcavity conditions (2.7). Let v and ṽℓhK be the solutions
of (2.4) and (4.12), respectively. If λ > max{Lf , Lg}, then there exists constants
c0, c1, c2 ≥ 0 such that

(4.19) sup
y∈Ω

∣∣v(y)− ṽℓhK(y)
∣∣ ≤ c0h+ c1 ‖Ψ‖2

K

h
+ c2 sup

y∈Ω

‖y − Pℓy‖2
1

h

for any h ∈ [0, 1/λ).
Remark 4.9. Let us comment on the differences between the a-priori error

estimates (4.9) and (4.19). First of all, both estimates involve the terms depending
on h and on k/h or K/h. Note that ‖Ψ‖2 = 1 if we choose M = Id in the computation
of the POD basis. However, the POD approximation errors have different impacts.
In (4.9) there is no factor 1/h. Moreover, in (4.19) the term ‖y − Pℓy‖2 has to be
small for all y ∈ Ω, whereas in (4.9) this is need only for the vertices y1, . . . , ynS

∈ Ω.
In order to get convergence from (4.19) one has to guarantee that K = o(h) and
supy∈Ω ‖y − Pℓy‖2 = o(h) but, as we will see in our numerical examples, the method
seems to be rather efficient also for larger K. ♦

5. Practical implementation of the algorithm. In this section we present
an algorithm for the HJB equation based on the POD a-priori analysis presented in
Section4.2. Estimate in Theorem 4.8 suggests the following steps.

(1) Time discretization. First the infinite time horizon [0,∞) has to be re-
placed by a finite one. Thus, we choose te ≫ 0 sufficiently large and define a (possibly
non equidistant) grid in [0, te] by 0 = t1 < t2 < . . . < tnT

= te.
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(2) Snapshots computation. Let us suppose that the set of admissible controls
Uad is given by choosing a discrete set Uad = {u1, . . . , up} ⊂ U = R. To solve (2.1)
we apply the implicit Euler method on the time grid {tj}

nT

j=1. By yνj ≈ yν(tj) ∈ R
n,

1 ≤ j ≤ nT and 1 ≤ ν ≤ p, we denote the computed implicit Euler approximation of
the solution to (2.1) at time instance tj for the controls uν(t) = uν for all t ∈ [0, te]
and 1 ≤ ν ≤ p.

(3) Rank ℓ of the POD basis. In (Pℓ
nT

) we choose M as the identity matrix
and αnT

j = 1 for j = 1, . . . , nT . The rank ℓ of the POD basis {ψnT

i }ℓi=1 is chosen such
that we can show the decay of the error when we increase ℓ. In this paper we choose
ℓ ∈ {2, 3, 4}.

(4) Reduction of the polyhedron Ω. We first define all the POD grid points
yℓi = Ψ⊤yi ∈ R

ℓ and choose the hypercube Ωℓ = [a1, b1] × · · · × [aℓ, bℓ] ⊂ R
ℓ, where

we set

aj = min
{
(yℓ1)j , . . . , (y

ℓ
my

)j
}
, bj = max

{
(yℓ1)j , . . . , (y

ℓ
my

)j
}

for 1 ≤ j ≤ ℓ and (yℓi )j stands for the j-th component of the vector yℓi ∈ R
ℓ. It follows

that yℓi ∈ Ωℓ for 1 ≤ i ≤ my. Then, when the domain Ωℓ is obtained, we build an
equidistant grid with step size computed as explained in Remark 4.7. We note that
Ωℓ should be large enough in order to contain all possible trajectories, this is also the
reason we compute several snapshots in order to have a sufficiently accurate overview
of the problem.

(5) Computation of the value function v
ℓ

hK
. The piecewise linear value

function vℓhK is determined on the vertices yi for 1 ≤ i ≤ nS of the domain Ωℓ. Since
the reduced-order approach yields a small ℓ < 10, we are able to perform a standard
fixed point iteration method, e.g. the value iteration method. We refer the reader
also to the faster algorithm introduced in [4] and the references therein.

(6) Feedback law and closed-loop control. We compute the value function
ṽℓhK(y) = vhK(Ψ⊤y) satisfying (4.1) at each grid point y = yi for 1 ≤ i ≤ my. At any

grid point yi we store the associated optimal control ūℓ,ihK ∈ Uad solving

uℓ,ihK := argmin
u∈Uad

{
(1− λh)ṽℓhK(yi + hf(Pℓyi, u)) + hg(Pℓyi, u)

}
.

Then, the (suboptimal) feedback operator Φℓ : Ω → Uad is defined as

Φℓ(y) =

my∑

i=1

µiū
ℓ,i
hK for y ∈ Ω,

where the coefficients {µi}
my

i=1 are given by the convex combination

y =

my∑

i=1

µiyi, 0 ≤ µi ≤ 1,

my∑

i=1

µi = 1.

Now the closed-loop system for (2.1) is

(5.1) ẏ(t) = f
(
y(t),Φℓ(y(t))

)
∈ R

n for t > 0 y(0) = y◦ ∈ R
n.

Equation (5.1) is solved by a semi implicit Euler scheme, where the second argument
Φℓ(y(t)) is evaluated at the previous time step. We note that every time step ti we
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plug the suboptimal control uℓ,ih,K into (5.1) and then project into the POD space in
order to have the next initial condition. The algorithm is summarized below.

Algorithm 5.1 HJB-POD feedback control

Require: distance K, step size h, final time te, time grid {tj}
nT

j=1, discrete control
set Uad = {u1, . . . , up} ⊂ R;

1: Set Y = [] and ∆ = K;
2: for ν = 1, . . . , p do
3: Compute approximation {yνj }

nT

j=1 for the solution to (2.1) with u ≡ uν ;

4: Set Y = [Y | yν1 , . . . , y
ν
nT

] ∈ R
n×(νnT );

5: end for
6: Set my = pnT and Y = [y1, . . . , ymy

] ∈ R
n×my ;

7: Determine a POD basis of rank ℓ by solving (Pℓ
nT

);
8: Compute Ωℓ and the reduced value function ṽℓhK ;
9: Compute the suboptimal control and the optimal trajectory;

6. Numerical Tests. In this section we present our numerical tests. First let
us describe the optimal control problem in detail. The governing equation is given by

(6.1)

wt − εwxx + γwx + µ(w − w3) = bu in ω × (0, te),

w(·, 0) = w◦ in ω,

w(·, t) = 0 in ∂ω × (0, te),

where ω = (a, b) ⊂ R is an open interval, w : ω × [0, te] → R denotes the state, and
the parameters ε, γ and µ are real positive constants. The controls are elements of
the closed, convex, bounded set Uad = {u ∈ L2(0, te;R) |u(t) ∈ Uad for t ≥ 0} with
Uad = {u ∈ R |ua ≤ u ≤ ub} with given ua, ub ∈ R. Later, we will consider Uad as
a discrete set in the approximation of the HJB equation. The initial value and the
shape function are denoted, respectively, by w◦ and b. Note that we deal with zero
Dirichlet boundary conditions. Equation (6.1) includes, e.g., the linear heat equation
(µ = 0, γ = 0), linear advection diffusion equation (µ = 0) and a semi-linear parabolic
problem with a reaction term (µ 6= 0). As explained in the previous section we need
to choose te big enough to have an accurate approximation of the infinite horizon
problem.

The cost functional we want to minimize is given by

(6.2) Ĵ(u;w◦) =

∫ te

0

(
‖w(·, t;u)− w̄‖2L2(ω) + α |u(t)|2

)
e−λt dt,

where w(·, t;u) is the solution to (6.1) at time t, w̄ is the desired state, α ∈ R
+ holds

and λ > 0 is the discount factor. The optimal control problem can be formulated as

(6.3) min Ĵ(u;w◦) such that u ∈ Uad.

Existence and uniqueness results for (6.3) can be found in [30] for finite time hori-
zons. We spatially discretize the state equation (6.1) by the standard finite difference
method. This approximation leads to the following semi-discrete system of ordinary
differential equations:

(6.4)
Myt − εAy + γHy + µF(y) = Bu in (0, te],

y(0) = y◦,
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where y : [0, te] → R
n is an approximation for the solution w(· , t) to (6.1) at n spatial

grid points, A, H ∈ R
n×n, B, y◦ ∈ R

n and F : Rn → R
n is given by

F(y) =




y1 − y31
...

yn − y3n


 for y = (y1, . . . , yn) ∈ R

n.

In general, the dimension n of the dynamical system (6.4) is rather large (i.e., n > 10)
so that we can not solve the HJB equations numerically. Therefore, we apply the
POD method in order to reduce the dimension of optimal control problem and solve
it by HJB equations. This problem fits into our problem (P̂) and therefore we can
apply Algorithm 5.1 to solve our optimal control problem.

Next subsections will present our numerical tests, in particular we draw our at-
tention on the estimate presented in Theorem 4.8. In order to check the quality of
the computed suboptimal control uℓ we will plug it into the full model y(uℓ) and into
the surrogate model yℓ(uℓ). Moreover we evaluate the cost functional and compute
the error with respect the true solution where is known.

6.1. Test 1: Advection-diffusion equation. Our first test concerns the linear
advection-diffusion equation, we set in (6.1): te = 3, ε = 10−1, γ = 1, µ = 0,
ω = (0, 2) and w◦(x) = 0.5 sin(πx). The shape function b is the characteristic function
over the subset (0.5, 1) ⊂ ω. In (6.2) we choose λ = 1, and w̄ = 0. To compute
the POD basis we determine solutions to the state equation for controls in the set
Usnap = {−2.2, 1.1, 0}. In (4.11) we consider K ∈ {0.1, 0.05}, h = 0.1K and the
optimal trajectory is obtained with a time stepsize of 0.05 for the implicit Euler
method. The set Uad of admissible controls is, then, given by 23 controls equally
distributed from -2.2 to 0.

In the left plot of Figure 6.1 we show the solution of the uncontrolled equation
(6.1), i.e. for u ≡ 0. Since our problem is linear-quadratic, the solution of the
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Fig. 6.1. Test 1: Uncontrolled solution (left), LQR optimal solution (middle), LQR optimal
control (right).

HJB equation can be computed by solving the well-known Riccati’s equation (for
LQR approach see [14]). Then, the optimal LQR state is presented in the middle of
Figure 6.1, whereas the optimal LQR control is plotted on the right of Figure 6.1.
Then, we show the controlled solution computed by means of Algorithm 5.1 on the left
of Figure 6.2. Since it is hard to visualize differences from the optimal solutions we
plot the difference between the optimal solution obtained with 4 POD basis functions
and 2 POD basis in the middle of Figure 6.2 and with 3 POD basis on the right
side. Nevertheless, one can even have a look at the error analysis in Figure 6.3. In
order to analyze our numerical approximation we consider the evaluation of the cost
functional Ĵ(uℓ; y◦), the distance between y(u

ℓ) and yℓ(uℓ) and the error between the
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Fig. 6.2. Test 1: Optimal HJB states computed with Algorithm 5.1 with ℓ = 4 POD basis
functions (top-left), difference between optimal solution with 4 POD basis and 2 POD basis (top-
middle), difference between optimal solution with 4 POD basis and 3 POD basis (top-right), optimal
HJB controls with ℓ = 2, 3, 4 (bottom).

2 3 4
0.021

0.0211

0.0212

0.0213

0.0214

0.0215

0.0216

Number of POD basis

 

 

K=0.1

K=0.05

2 3 4
0

0.01

0.02

0.03

0.04

0.05

Number of POD basis

 

 

k=0.1

k=0.05

2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of POD basis

 

 

K=0.1

K=0.05

Fig. 6.3. Test 1: Evaluation of the cost functional (left), L2−error for y(uℓ) and yℓ(uℓ)
(middle) and L2-error between LQR solution and y(uℓ). The blue line refers to the approximation
with K = 0.1 in HJB, whereas the red one to K = 0.05.

truth solution and the suboptimal y(uℓ). The error analysis is shown in Figure 6.3.
On the left we show the decay of the cost functional when we increase the number of
POD basis functions. In the middle we compute the L2−error between the optimal
reduced solution yℓ(uℓ) and the suboptimal solution y(uℓ). Even in this case the
error decays when ℓ increases and K decreases. This error measures the quality of
the surrogate model, since we want to check whether the suboptimal control fits into
the non-reduced problem. Finally, on the right, we compute the error between the
optimal solution and the suboptimal y(uℓ). As expected, increasing the number of
basis function and decreasing the step size K (remember h and K are linked) for the
approximation of the value function the optimal solution is improved.

The decay of the singular values is presented in Figure 6.4. As we can see they do
not decay really fast with respect to the right plot which refers to the next example
where the convection term is not dominated.
Finally, we want to give an idea of the term supy∈Ω ‖y − Pℓy‖2/h in the error estimate
(4.19). It is clear we do not know Ω, but we chose several randomly control sequences
in the set of admissible controls. in order to have an approximation of the set. Now,
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we can compute the aforementioned error term. The decay is shown on the right of
Figure 6.4.
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Fig. 6.4. Decay of the singular values for the snapshots set associated with Test 1 (left) and
Test 2 (right).

6.2. Test 2: Semi-linear equation. The second test concerns the semi-linear
equation. In (6.1) we set te = 3, ε = 10−1, γ = 0.1, µ = 1, ω = (0, 1) and w◦(x) =
2(x − x2). The shape function b is equal to the initial condition w◦. In (6.2) we
choose λ = 1, and w̄ = 0. To compute the POD basis we determine solutions to the
state equation for controls in the set Usnap = {−1, 0, 1} with a semi-implicit finite
difference scheme with time step of 0.05 and space step of 0.01. In (4.11) we consider
K ∈ {0.1, 0.05}, h = 0.1K. The optimal trajectory is obtained with a time step size
of 0.05. The control set is given by 21 controls equally distributed from -1 to 1. The
shape function b is equal to the initial condition w◦.

The uncontrolled solution is shown on the left of Figure 6.5. As we can see the
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Fig. 6.5. Test 2: Uncontrolled solution (left), evaluation of the cost functional (middle) and
distance between y(uℓ), yℓ(uℓ) (right).

semi-linear part does not allow to stabilize to zero the solution. Our goal is to steer the
solution to the origin. The optimal solutions and its correspondent optimal controls
are shown in Figure 6.6. Moreover we plot the differences between the computed
solutions (please note the different scaling of the pictures). As we can see the difference
decreases when the number of POD basis functions increase. The quality of our
approximation is confirmed by Figure 6.5 where we can see from the evaluation of
the cost functional and consistency of the suboptimal control. In this case the error
decays much faster than in the previous example. This depends on the decay of the
singular value of the snapshots set as shown in Figure 6.4.

6.3. Test 3: Semi-linear equation with uniform noise. In this test we deal
with the semi-linear equation discussed in the previous example but we neglect the
convection term (γ = 0) and we add noise to the optimal trajectory. The uncontrolled
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Fig. 6.6. Test 2: Optimal HJB states computed with Algorithm 5.1 with ℓ = 4 POD basis
functions (top-left), difference between optimal solution with 4 POD basis and 2 POD basis (top-
middle), difference between optimal solution with 4 POD basis and 3 POD basis (top-right), optimal
HJB controls with ℓ = 2, 3, 4 (bottom).

solution is shown on the left of Figure 6.7, the optimal trajectory and control computed
by means of Algorithm 5.1 are in the middle and the right side of Figure 6.7.
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Fig. 6.7. Test 3: Uncontrolled solution (left), Optimal state (middle) and corresponding optimal
HJB control (right).

The goal is to show the stabilization of the feedback control under strong perturbations
of the system. We note that in this case the value function is stored from the system
without perturbation, but the reconstruction of the feedback control is affected by
uniform noise η(x) between [−1, 1] in every time step: y(x, ·) = (1 + η(x))y(x, ·).
Figure 6.8 shows optimal solution and control corresponding to different noise levels
(|η(x)| ≤ 50% (top) and |η(x) ≤ 90|% (bottom)). In this example we can see the
power of the feedback control, and in particular, the importance of the knowledge of
the value function. In both examples, the trajectory is stabilized close to the origin.
If we have a look at the optimal control input we can observe a strong chattering. In
both cases the optimal control jumps often from -1 to 0. In particular, in the second
case, it is possible to observe a stronger chattering due to the high disturbances.
Nevertheless, the feedback control is able to stabilize the perturbed system.
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Fig. 6.8. Test 3: Optimal HJB-POD state (left) and corresponding optimal control (right) with
|η(x)| ≤ 50% (top) and |η(x)| ≤ 90% noise (bottom).

7. Conclusion and Remarks. In this paper we present a new a-priori error
analysis for the coupling between the HJB equation and the POD method. The
proposed estimate is presented for the infinite horizon control problems with linear and
nonlinear dynamical systems but this approach could be also applied to other optimal
control problems provided one has a priori estimates on the approximation based on
the HJB equation. The convergence of the method is guaranteed under rather general
assumptions on the optimal control problem and some technical assumptions on the
dynamics and on the POD approximation. For the latter, it is clear that a clever
choice of the snapshots set can play a crucial role in the estimate in order to reduce
the contribution of the POD approximation in the a-priori estimate. Several choices
are possible based on greedy techniques or on a previous open-loop approximation,
these choices will be investigated in a future paper. At present, the numerical tests
illustrated in the last section confirms our theoretical findings and show the robustness
of the Bellman’s approach also under strong disturbances of the dynamical system.
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