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Abstract Accurate calculation of the moment of inertia
of an irregular body is made difficult by the large num-
ber of quantities which must be measured. A popular
method is to use a trifilar suspension system to measure
the period of oscillation of the body in the horizontal
plane. In this paper, some sources of error are discussed
with particular attention given to the alignment of the
test object’s center of mass on the trifilar platform.
The procedure is described, the necessary calculations
are derived and the relative importance of accuracy in
different measurements is assesed. It is determined that
the accurate alignment of the centre of mass of the
body being tested with the centre of the trifilar plate
is insignificant compared to the accuracy of the other
measurements required in the calculations.
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Nomenclature

D displacement of body centre of mass from
trifilar plate centre of mass along a line
between the trifilar plate’s centre of mass
and a suspension wire attachment point at
a corner
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d horizontal displacement of corners of trifilar
plate

F horizontal force applied to the corners of
the trifilar plate by each suspension wire

FS,FL force on corners nearest and furthest from
the system centre of mass, respectively

g gravitational constant
Izz moment of inertia of the entire system
IPzz,IBzz moment of inertia of the triangular plate

and of the body, respectively
L length of the suspension wires
m mass of the triangular trifilar plate and the

body combined
mP mass of the triangular trifilar plate
mB mass of the body being measured
R distance from the centre of a trifilar plate to

the wire attachment point in the corner
RS,RL shortest and longest distances from system

centre of mass to a plate corner, respectively
Tz torsional force acting in horizontal plane
W weight supported by each of the three sus-

pension wires
WS,WL weight carried by wires nearest and furthest

from the system centre of mass, respectively
α angle made between displaced suspension

wire and its equilibrium position
αS,αL angle between displaced suspension wire

and its equilibrium position for the wires
nearest and furthest from the system centre
of mass, respectively

γ ratio of �R to R
�h horizontal displacement of the trifilar plate
�R change in centre of mass of entire system

caused by displacement of the centre of
mass of the body
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θ rotation in horizontal plane
θ̈ angular acceleration in horizontal plane
τ period of oscillation of the entire system
ω frequency of oscillation

Introduction

In dynamic analyses of solid components it is essential
to know the moment of inertia. For simple geometry
this can be calculated, but if the geometry is compli-
cated or the exact specification unknown it is necessary
to measure the inertia experimentally. With the advent
of modern sensors and equipment a variety of dedi-
cated machinery has been developed to address this
purpose. For example, Witter et al [1] describe tech-
niques using six degree of freedom (DOF) load cells
and linear accelerometer arrays. With such machinery
the majority of measurement error is accounted for
as part of a regular calibration schedule, reducing the
scope for measurement error in normal use. For one
off applications and low budget operations, however,
the use of these machines may be less appropriate and
difficult to justify in comparison to more traditional
methods. Genta and Delprete [2] analyse the different
methods available and divide them into two broad cate-
gories: oscillatory and accelleratory. They conclude that
the results from oscillatory methods are less affected
by the presence of damping than those obtained using
acceleration-based methods, and that torsional multi-
filar pendula are generally considered to be the most
accurate. These are reported to be capable of producing
results with errors of less than 1% [2, 3].

In the same paper they derive accurate expressions
for the linear motion of a coupled three DOF pendulum
(rotation, x- and y- translation), as well as non-linear
motion of a one DOF pendulum (rotation) and infer
that the non-linear nature of pendulum-based config-
urations has only a marginal effect on the results for
the barimetric moment of inertia. Lyons [4] concurs
that for plate rotations of less than 10◦ the non-linear
component of the motion does not cause significant
errors in the results.

The use of bifilar torsion pendula has been employed
extensively for the measurement of the moment of
inertia of aircraft and is considered to have advantages
over simple compound pendula [5–7]. Some practical
considerations are explored by Schwartz et al. [3]:
notably the effect of torsional loading within the sus-
pension wires. An obvious drawback of a bifilar pen-
dulum is its unstable nature; only limited arrangements
of an object can be accommodated. In contrast, three

or more wires allow for almost any orientation of the
body to be tested and also permit the suspension of a
plate from the wires, upon which the test body may be
rested. This may prove useful where direct attachment
of wires to the body is difficult.

Genta and Delprete [2] and Lyons [4] both note
that multifilar pendula with more than three suspension
wires and undergoing transverse oscillations may suffer
from irregular motion as some wires slacken, thereby
adversely affecting the results. It is for this reason, and
those discussed above, that the trifilar arrangement [8]
is a popular choice in the measurement of moments of
inertia.

Detailed investigations of many experimental con-
siderations concerning this technique are reported by
Genta and Delprete [2] and Lyons [4]; the subsequent
sections of this paper will be confined to an idealised
yet rigorous analysis in order to expand on this knowl-
edge base.

In the “Methodology of the Trifilar Arrangement”
section the trifilar method is summarised and simplified
calculations are derived for the determination of mo-
ments of inertia. The “Centre of Mass Alignment” sec-
tion examines how misalignment of the centre of mass,
a common problem in simple experimental setups, can
affect the computed moment of inertia. The significance
of this effect is compared to that of other measurement
errors in the “Error Analysis” section, and the analyt-
ical results are verified with respect to numerical data
based on a typical experimental configuration in the
“Example Calculations” section.

Methodology of the Trifilar Arrangement

A triangular plate is suspended from three vertical
wires, one at each corner. The body whose inertia is
to be determined is placed on the plate, with its centre
of mass at the centre of the plate. The plate is then
twisted in the horizontal plane and released so that it
performs free rotational oscillations about the centre of
mass. For the purposes of this paper, some simplifying
assumptions are made: firstly, all damping is neglected
and the pendulum is taken to be governed by simple
harmonic motion; secondly, the mass of the wires is
assumed to be negligible; thirdly, the wires are assumed
to carry only axial loading (and specifically no torsional
loading); and finally, the wires and plate are assumed
to be inextesible and rigid, respectively, and only the
rotational motion of the pendulum is taken into account
to produce a one-DOF dynamic system.

To determine the properties of the system as a whole
(the plate and the body), it is necessary to solve the
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dynamic equation formed by Newton’s second law for
rotation.

Tz = Izzθ̈ (1)

where Tz is the torque applied to the system in a hori-
zontal plane by the suspension wires, Izz is the moment
of inertia about the vertical axis through the centre of
mass (and geometric centre of the plate) and θ̈ is the
angular acceleration of the system.

The plate is shown viewed from above in Fig. 1(a),
where its horizontal rotation can be seen. In Fig. 1(b)
a view from the side shows the displacement of the
suspending wires attached to the corners. This analysis
will use linear theory, based on the assumption that the
angles are small and

sin θ ≈ θ sin α ≈ α

cos θ ≈ 1 cos α ≈ 1 (2)

The two angles can be related by the horizontal dis-
placement, d, of the corners, giving

L sin α = d

R sin θ = d (3)

so

Lα ≈ Rθ (4)

The vertical displacement of the plate is given by

�h = L(1 − cosα) (5)

but using the assumptions in equation (2) it is found
that

�h ≈ 0 (6)

meaning that the height of the plate is assumed constant
and the vertical acceleration is zero. This enables the
weight supported by each of the three wires, W, to be
computed easily using a static equilibrium equation in
the vertical direction:

W = 1

3
mg(cos α)−1 ≈ 1

3
mg (7)

where m is the mass of the system and g is the gravi-
tational acceleration. Following on from this, the hori-
zontal force acting on one corner of the plate opposes
the displacement by

F = −W sin α ≈ −1

3
mgα (8)

and the torque on the plate is defined in terms of the
three corner forces and the distance from the centre,
R, by

Tz = 3RF = −Rmgα (9)

Using equation (4) produces

Tz = − R2mg
L

θ (10)

and substitution into equation (1) gives the dynamic
equation of motion

R2mg
L

θ + Izzθ̈ = 0 (11)

Fig. 1 Triangular plate
rotated from rest by an angle
θ about the vertical axis
through its centre. The wires
suspending the plate form an
angle α with their vertical
equilibrium positions. The
change in the plate’s vertical
position, �h, has been
exagerated. (a) Top view.
(b) Side view through
section AA

(a) (b)
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Assuming simple harmonic motion, the solution can be
found in terms of the angular frequency of ocsillation,
ω, from

R2mg
L

− ω2 Izz = 0 (12)

and substituting ω = 2π/τ gives

Izz = R2mgτ 2

4π2L
(13)

where τ is the period of oscillation. Finally, the mass
and inertia are split into components belonging to the
plate and the body:

m = mP + mB (14)

Izz = IPzz + IBzz (15)

where the subscripts P and B refer to the plate and
body respectively so that the moment of inertia of the
body is found using

IBzz = R2gτ 2

4π2L
(mP + mB) − IPzz (16)

IPzz can be obtained by applying equation (13) with the
period of the unladen plate, so that six measurements
must be made in order to calculate the moment of
inertia of the body using equation (16). In addition to
this it is necessary to deduce the position of the centre
of mass of the body being measured in order that it
can be lined up with the centre of the plate. This is
sometimes difficult and in the next section, the effect
of misaligning the centres is discussed.

Centre of Mass Alignment

Precise determination of the centre of mass of irregular
bodies can prove difficult, and aligning the center of
mass with the centre of a trifilar plate can be even more

troublesome. The importance of this issue is highlighted
by Pal and Gaberson [9, 10]. Derriman [11] describes
a method of compensating for such misalignments in a
torsional “pendulum” which could be adapted to a trifi-
lar pendulum, however his method requires somewhat
complicated apparatus and will only give the moment
of inertia of the body about the point at the centre of
the rotation and not its baricentric moment of iner-
tia. Lyons [4] briefly states a formula for determining
moments of inertia with offset centers of mass, as an
alternative to that derived here.

If the body is placed on the plate with its centre of
mass misaligned, the value calculated for the moment
of inertia is affected in two ways:

1. The inertia of the system is no longer simply a
sum of the two component inertias, but must be
calculated taking into account the distance of each
component centre of mass from the system centre
of mass.

2. The centre of mass (and therefore the centre of
rotation) is no longer located at the geometric
centre of the plate. This will redefine the weight
distribution between the wires and also the angle,
α, through which each wire is displaced for a given
plate rotation, θ . This in turn redefines the equation
of motion.

To examine the extent of these effects, it is assumed
that the centre of mass of the body lies somewhere on
a line directly between the centre and a corner of the
triangle. It is displaced a distance D from the centre,
as depicted in Fig. 2. The displacement of the overall
system centre of mass, �R, is then defined by the ratio
of the component masses:

�R = mB

mP + mB
D (17)

Fig. 2 Geometry of the
system when the centres of
mass of the plate and the
body are misaligned. (a)
Centres of mass. (b) New
shorter and longer R values,
RS and RL

(a) (b)
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Addressing the first item above, equation (14) must
now be replaced by

Izz = (
IPzz + mP�R2

) + (
IBzz + mB(D − �R)2

)

= IPzz + IBzz + mPmB D2

mP + mB
(18)

Substituting back into equation (13) produces

IBzz = R2gτ 2

4π2L
(mP + mB) − IPzz − mPmB D2

mP + mB
(19)

where the last term accounts for the change in moment
of inertia of the system due to misalignment.

Addressing the second item above, it is necessary to
reformulate the equation of motion to correspond with
the new weight distribution and centre of rotation. The
distances of the corners from the centre of mass are
shown in Fig. 2 and are given by

RS = R − �R

RL =
√√
√
√

(
�R + R

2

)2

+
(√

3

2
R

)2

(20)

or

RS

R
= 1 − γ

RL

R
=

√
1 + γ + γ 2 where γ = �R

R
(21)

Equation (4) is replaced by

αS = RS

L
θ αL = RL

L
θ (22)

and equations (7–9) become

WS = 1

3
mg (1 + 2γ ) WL = 1

3
mg (1 − γ ) (23)

FS = −WSαS FL = −WLαL (24)

Tz = RS FS + 2RL FL (25)

Combining equations (22–25),

Tz = −1

3
mgθ

[

(1 + 2γ )
RS

2

L
+ (2 − 2γ )

RL
2

L

]

(26)

Substituting equation (21) and simplifying gives

Tz = − (
1 − γ 2

) R2mg
L

θ (27)

Putting this into equation (1) produces

(
1 − γ 2

) R2mg
L

θ + Izzθ̈ = 0 (28)

and assuming simple harmonic motion,

Izz = (
1 − γ 2

) R2mgτ 2

4π2L
(29)

Finally, equation (18) is substituted to give

IBzz = (
1 − γ 2) R2gτ 2

4π2L
(mP + mB) − IPzz − mPmB D2

mP + mB

= R2gτ 2

4π2L
(mP + mB) − IPzz − mB D2

mP + mB

×
(

mP + mBgτ 2

4π2L

)
(30)

The final term is the error in the moment of inertia
measurement caused by misalignment of the inertial
centres:

εD = − mB D2

mP + mB

(
mP + mBgτ 2

4π2L

)
(31)

There are two components to the error, represented
by the two bracketed terms. The first is caused by the
increased inertia of the system (plate and body com-
bined); the second is caused by the change in weight
distribution and centre of rotation due to the new
centre of mass position. If the mass of the plate, mP,
is small compared to that of the body, mB, such that

mP

mB
� Izz

R2m
(32)

then the second component has the greatest effect on
the measurement so that

εD ≈ − D2mBgτ 2

4π2L
. (33)

Fig. 3 The actuator in situ on the trifilar suspension plate
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Table 1 Measured properties
of the actuator and trifilar
suspension arrangement

Quantity Measurement

R 0.174 m
L 1.832 m
IPzz 4.035×10−3 kg m2

mP 0.422 kg
mB 2.750 kg
τ 1.615 s
D 0.000 m

The mass moment of inertia of a triangular prism about
its longitudinal axis is given by

Izz = 5
√

3

36
R2m ≈ 1

4
R2m (34)

so for a body with similar mass distribution to that of
the trifilar plate, a useful rule of thumb is obtained by
simplifying equation (32) to

mP

mB
� 1

4
. (35)

Error Analysis

An error analysis will be undertaken here to assess
the relative importance of the accuracy of different
variables. In order to present a clear analysis it will be
assumed that the mass of the plate is much less than that
of the body being measured, such that mP and IPzz are
both negligible, m = mB, Izz = IBzz and equation (32)
holds true. It can be shown using the same approach
given here that the final result obtained in equation (45)
is not affected by these assumptions but the derivation
becomes far more protracted. Accordingly, applying
these simplifications to equation (30) gives

Izz = mgτ 2

4π2L

(
R2 − D2

)
(36)

The misalignment error, D, is replaced by a dimension-
less quantity, D+, to produce

Izz = R2mgτ 2

4π2L

(
1 − D+2

)
where D+ = D

R
(37)

The sensitivity of Izz to D+ is given by

∂ Izz

∂ D+ = − R2mgτ 2

2π2L
D+ (38)

Expressing this as a fraction of the total moment of
inertia,
∂ Izz
∂ D+

Izz
= − 2D+

1 − D+2 (39)

Similar equations can be derived for the other parame-
ters. In preparation for integration the total error in Izz

caused by small changes in the measured variables is
expressed as

δIzz = ∂ Izz

∂ D+ δD+ + ∂ Izz

∂ R
δR + ∂ Izz

∂m
δm

+∂ Izz

∂τ
δτ + ∂ Izz

∂L
δL (40)

and the fractional error in Izz is then

δIzz

Izz
= − 2D+

1 − D+2 δD+ + 2

R
δR + 1

m
δm + 2

τ
δτ − 1

L
δL

(41)

Integrating gives the fractional error as

ln
Izz + �Izz

Izz
= ln

1 − (
D+ + �D+)2

1 − D+2 + 2 ln
R + �R

R

+ ln
m + �m

m
+ 2 ln

τ + �τ

τ

− ln
L + �L

L
(42)

or

Izz + �Izz

Izz
=

(
1 − (

D+ + �D+)2

1 − D+2

)(
R + �R

R

)2

×
(

m + �m
m

)(
τ + �τ

τ

)2 (
L

L + �L

)

(43)

Making the assumption that the error variables are
small compared to their nominal parameter values,

Table 2 Estimated and
calculated effect of
measurement error on
computed second moment of
inertia of the plate and body
combined: Izz = IBzz + IPzz

Quantity Effect of 1% error Effect of 10% error

Expected (%) Calculated (%) Expected (%) Calculated (%)

R 2.00 2.01 20.0 21.0
L −0.990 −0.990 −9.09 −9.09
m 1.00 1.00 10.0 10.0
τ 2.00 2.01 20.0 21.0
D 0 −0.0108 0 −1.08
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Table 3 Estimated and
calculated effect of
measurement error on
computed second moment of
inertia of the body alone: IBzz

Quantity Effect of 1% error Effect of 10% error

Expected (%) Calculated (%) Expected (%) Calculated (%)

R 2.00 2.28 20.0 23.8
L −0.990 −1.12 −9.09 −10.3
m 1.00 1.13 10.0 11.3
τ 2.00 2.28 20.0 23.8
D 0 −0.0122 0 −1.22

multiplying out equation (43) and ignoring numerator
terms above second order in the error variables gives

�Izz

Izz
= −2

�D+ D+

1−D+2 + 2
�R
R

+ �m
m

+ 2
�τ

τ
− �L

L+�L

+ O
(
�D+2

, �R2, �m2, �τ 2, �L2
)

(44)

If the nominal value of D+ is zero, corresponding to the
assumption that the centres of mass are intended to be
aligned, the equation can be simplified further:

�Izz

Izz
= 2

�R
R

+ �m
m

+ 2
�τ

τ
− �L

L + �L

+O
(
�D+2

, �R2, �m2, �τ 2, �L2
)

(45)

From this it is seen that, to first order, the alignment
of the body centre of mass on the trifilar plate is not
important. As explained at the start of this section,
the same result is obtained using the full equation for
the moment of inertia given in equation (30). In this
case Izz and m are defined as before by equations (14)
and (15), and refer to the combined properties of the
plate and body.

Example Calculations

To examine the strength of these conclusions, some
example calculations are now presented, based on real
numerical data. The body to be used is a linear ball
screw actuator, shown resting on a trifilar plate in Fig. 3.
The measured quantities for this arrangement are listed
in Table 1.

From these data it is possible to calculate the mass
ratio: mP/mB = 0.153. This is not significantly below
the value of 1/4 given in equation (35). As such the mass
and inertia of the plate can not be entirely neglected
in error calculations; equation (45) is valid for the
combined properties of the plate and body but not for
the body on its own.

Using equation (16) with the measured values, and
assuming the mass centres to be aligned, the combined

second moment of inertia is calculated as 33.98×
10−3 kg m2. This means the second moment of inertia
of the actuator is 29.94×10−3 kg m2.

Two tables are now presented, showing the expected
percentage error, according to equation (45), in the
moment of inertia for 1% and 10% changes in each of
the measured variables compared to the actual change
calculated by putting the perturbed values into equa-
tion (30). Table 2 shows the error in the combined
second moment of inertia of the body and plate, Izz =
IBzz + IPzz, while Table 3 shows the error in the second
moment of inertia of the body considered in isolation,
IBzz. The first data set indicates that the estimated and
calculated errors for the combined system are similar
(and in fact identical for the linear terms). The accuracy
of the estimated values is seen to decrease with the
magnitude of the error. The second data set illustrates
the difference between the errors calculated for the
body alone and those estimated for the combined plate
and body system. These results demonstrate the in-
adequacy of equation (45) in predicting the errors in
the body inertia computation when equation (32) is
invalidated: the estimated error does not correspond as
well with the calculated values. Nonetheless, it is seen
that the relative importance of the measured variables
is similar in both cases. Most significantly, the alignment
of the centres of mass has a very small effect on the
moment of inertia computation, requiring an alignment
error of around 10% of the radius circumscribed by the
plate to produce a 1% error in the result.

Conclusion

A formula for computing the moment of inertia of
a body using a trifilar pendulum has been derived,
using some simplifying assumptions but taking account
of misalignment of the body center of mass with the
plate center of mass, and the corresponding changes
in body motion and weight distribution between the
wires. The effects of measurement errors are calculated
and shown to correspond well with first order approx-
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imations, and this is substantiated using data from a
typical experimental configuration. These findings have
been used to assess the relative importance of each
measurement, the most significant observation being
that precise alignment of the body’s center of mass on
the plate is less important than accuracy in the other
measurements: a misalignment of approximately 10%
of the radius of a circle circumscribed about the trifilar
plate is required to produce only a 1% error in the cal-
culation. This is significant because accurate alignment
of irregular bodies on trifilar plates is arguably the most
difficult operation of the procedure, and subject to the
greatest error.

References

1. Witter MC, Brown DL, Dillon M (1999) A new method
for RBP estimation – the dynamic inertia method. In: 58th
annual conference, Society of Allied Weight Engineers,
paper no. 2461, San Jose, 24–26 May 1999

2. Genta G, Delprete C (1994) Some considerations on the ex-
perimental determination of moments of inertia. Meccanica
29:125–141

3. Schwartz AB, Malick S, Friesen JR (1957) Measurement of
the moment of inertia of Missile-type bodies: a modified Bifi-
lar Torsion Pendulum formula. Aircr Eng 29:271–274

4. Lyons D (2002) Obtaining optimal results with filar pendu-
lums for moment of inertia measurements. In: 61st annual
conference, Society of Allied Weight Engineers, paper no.
3237, Virginia Beach, 20–22 May 2002

5. Miller MP (1930) An accurate method for measuring the mo-
ments of inertia of airplanes. N.A.C.A. Tech. Note, number
351

6. Soule HA, Miller MP (1933) The experimental determination
of the moments of inertia of airplanes. N.A.C.A. Tech. Note,
number 467

7. Gracey W (1948) The experimental determination of the
moments of inertia of airplanes by a simplified compound-
pendulum method. N.A.C.A. Tech. Note, number 1629

8. Korr AL, Hyer P (1962) A Trifilar Pendulum for the de-
termination of moments of inertia. Tech Report, Frankford
Arsenal, Philadelphia, PA (USA). Pitman-Dunn Research
Labs., August

9. Pal D, Gaberson HA (1973) The measurement of the inertial
properties of routinely installed naval shore based equip-
ment. Tech. Report, Naval Civil Engineering Laboratory,
Port Hueneme, January

10. Pal D, Gaberson HA (1973) Surmounting the inherent errors
in the Trifilar Pendulum measurement of moment of iner-
tia. In: 85th meeting, Acoustical Society of America 54:292,
Boston, 10–13 April 1973

11. Derriman WH (1903) On an oscillating table for determining
moments of inertia. Proc Phys Soc 18:420–422


	Error Analysis in Trifilar Inertia Measurements
	Abstract
	Nomenclature
	Introduction
	Methodology of the Trifilar Arrangement
	Centre of Mass Alignment
	Error Analysis
	Example Calculations
	Conclusion
	References



