
Error analysis of a hexapod machine tool

J.A. Soons

Automated Production Technology Division

National Institute of Standards and Technology

Gaithersburg, MD 20899, U.S.A.

EMail: johannes.soons@nist.gov

Abstract

This paper describes the measurement and analysis of the quasi-static errors of a prototype
hexapod milling machine at the National Institute of Standards and Technology (NIST).
Emphasis is placed on a) the identification and definition of the parametric errors, b) the
development of an analytical model to describe how these parametric errors affect errors in the
position and orientation of the tool, c) identification of the most important parametric errors and
their potential impact on performance, d) comparison of hexapod error characteristics to those of
conventional machine tools, e) description of the techniques used to measure and estimate the
hexapod errors, and f) application of the various concepts to model the geometrical and thermal
errors of the NIST hexapod, including measurement results.

1 Introduction

Hexapods are mechanisms that provide controlled motion of a platform in all six
degrees of freedom through a parallel arrangement of six kinematic chains or
legs. Each leg contains only one actuated joint. In this paper consideration is
given only to those machine tools where each leg has a linear actuator that is
connected to the base and the platform through either two spherical or a
spherical and a universal joint. These passive joints allow rotational movements
such that each leg or strut effectively provides only one kinematic constraint
between the platform and the base: that of distance.

Machine tools with the above configuration have a number of potential
advantages over conventional machine tools [1,2]. These include high stiffness,
low weight, low effective inertia of the moving components, and mechanical
simplicity. Disadvantages include a complex workspace, a small orientation
range, and, unless special measures are taken, low structural damping. Their
accuracy is governed by different errors. Since each strut only realizes a
distance, the roll, pitch, yaw, and straightness errors associated with
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Figure 1: Front and top view of the prototype hexapod machine tool
located at NIST

conventional machine axes are not important. However, a new class of errors is
introduced. These errors stem from the positions of the platform and base joints,
the accuracy of these joints, and the average length of the struts.

The prototype hexapod located at NIST is shown in Figure 1. The platform
joints form a regular hexagon. The base joints are arranged in three pairs located
on the corners of an equilateral triangle and are supported by an octahedral base
frame. The characteristic radius through the platform joints is approximately
seven times smaller than that through the base frame joints. The joints are ball
and socket joints. The length of a strut is varied using a leadscrew-resolver
arrangement with the nut connected to the lower telescoping part. Each strut has
a stroke of 1400 mm and its average length equals 2860 mm.

2. The Kinematic Model

The kinematic model describes how errors in the actual geometry of the relevant
machine components, i.e., parametric errors, cause errors in the position and
orientation of the tool. In the derivation of the model, it is assumed that the
errors are small and their effect on the propagation of other errors can be
neglected. This assumption enables the use of rigid body kinematics to evaluate
the error propagation without restricting the model to rigid structures. The result
is a closed-form linear model completely defined by the nominal geometry of
the hexapod. Though derived differently, it is similar to Ropponen's model [4]
but differs from Wang's model which requires a forward solution [6].

Coordinate frames are attached to the base and to the platform. The latter
frame is located on the spindle axis at the point where the tool length equals
zero. The position and orientation of the platform frame as seen by the base
frame are described by the vector coordinates p and the rotation matrix R .
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A strut, denoted by the subscript /, defines a distance /• between a point a,
on the base and a point b • on the platform. First, the error 81 ̂ of this distance is
related to the errors e and s in the position and orientation of the platform,
respectively. In this case, 5/, is approximated by the component of the
movement of b, in the nominal direction n, of the strut:

<5/, =n, -(e + £xRb-) =n,. -e + (Rb; xn,)-s (1)

The prime symbol is used to indicate that the coordinates of point b- are
described in the platform frame. The error 81- can also be expressed in the
errors Aa, and Ab, in the position of the local centers of the joints, and error
A/, in the strut length between these centers:

(2)

Combining equations (1) and (2) for all struts yields the kinematic error model:

(3)

e
or: # = J5x , where 8\ = \ (4)

lAI

The errors e and c in the location of the platform can be derived from the
parametric errors Aa,, Ab;, and A/, using the inverse of the Jacobian J. This
inverse exists in the stable part of the workspace, i.e., where the platform
movement is constrained by the struts.

The kinematic model implies the following.
a) For each strut, a structural loop can be identified from spindle to platform to

strut to base to workpiece and back to the spindle. Only the errors in this loop
that act in the local direction of the strut are of importance. Therefore,
straightness and angular errors of the linear actuator do not affect the
hexapod accuracy nor does an offset of the strut in a spherical joint
orthogonal to the strut direction.

b) In contrast to conventional machine tools, both the average and relative strut
length error A/, are important.

c) The errors Aa, and Aby describe both errors in the position of a joint and
errors of the joint. Only the joint error in the strut direction is important.
Therefore a joint error can be modeled and measured as a single variable that
is dependent on the orientation of the strut relative to the frame or base.
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Figure 2: Error field in the central planes resulting from a constant error
of 100 |im in the length of strut 3.

d) In general, the component of Aa- that corresponds to a rigid body
displacement of the base is not important, thus reducing the number of
constant error parameters by six. However, the rigid body motion that varies
in time due to thermal expansion of the base frame cannot be neglected.

e) The rigid body component of Ab- describes the errors in the position and
orientation of the spindle. Since the roll error of the spindle is usually not
important, the number of error parameters can be reduced by one. Spindle
errors can be included in the model by either adding them to e' and E' or by
removing the respective rigid body movement from Aby.

f) The errors Aa, and Ab; can be expressed in a local coordinate frame whose
Z-axis points in the direction m of the strut when the joint is in its central
position. For the base joints the respective coordinate transformation equals:

„ _\ zxm- m, x(zxm,)
z\a, — i r —; ;— m,

zxm, zxm,
Aa, (5)

The rows of the above matrix contain the direction vectors of the local
coordinate frame. In practice, the orientation range of a strut is limited,
typically in the order of ± 30°. Due to the limited angle & between the strut
and m , the contribution to the hexapod accuracy of the errors a"^ and A/-
are almost the same. The difference is difficult to estimate and only
important at extreme platform orientations. The sensitivity of 81- to a] ̂ and
aly is limited by ± sin ft. Similar arguments apply to the platform joints.

g) Because of the limited orientation range of the struts, a significant component
of the error field resulting from A/, can be described by a rigid body
displacement of the base (see Figure 2). Most of this component can be
removed by subtracting the average strut length error AZ, from A/,, adding it
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Figure 3: Maximum standard uncertainty in the central planes due to
uncorrelated errors Al with a variance of 1 jim̂ .

to a\^ , introducing a new component of A/, equal to (l-cos^)A/- , and by
removing the rigid body component of the modified errors Aa • .

h) Only the difference Aa, - RAb • is important. When the orientation of the
platform is constant, the effect of Aa • and Ab; cannot be separated nor is it
important. In practice, because of the limited orientation range of the
platform, the difference between Aa • and Aby is difficult to assess.

3. Sensitivity Analysis

Next an examination is made of the sensitivity of the hexapod errors to the
various error parameters. The effects of the variation of the parametric errors are
assessed by a variance analysis of the linear kinematic model. Figure 3 shows
the standard uncertainty of the tool position along the longest axis of the
uncertainty ellipsoid. The data are for uncorrelated length errors Al having a
variance of 1, and are calculated as the maximum eigenvalue of
(J~*)pCov(Al)(J~^)p*\ (jT*)/> represents the first three rows of the inverted
Jacobian J , modified for position errors at the tool tip for a tool length of 100
mm, and Cov(Al) is the covariance matrix of Al .

In the center of the workspace, the errors in the X- and Y-directions are
more sensitive to errors in Al than are those in the Z-direction. Moving the
platform up increases the sensitivity of the errors in the Z-direction to Al and
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Figure 4: Relative length uncertainty (2a) for different platform
orientations, tool lengths, and parametric errors.

decreases it in the X- and Y-directions. Moving the platform away from the
center and tilting it both increase the position uncertainty. The effect is more
pronounced in the case of tilting. Angular errors were found more sensitive to
errors in Al than position errors. This is due to the small platform size. The
result indicates that, because of the parallel nature of the hexapod, errors
average rather than add. Accordingly, the error propagation is more favorable
than that of conventional machine tools.

Analysis of variance tends to overstate the effects of constant or slowly
varying parametric errors on hexapod errors. Therefore, the hexapod error
sensitivity to a constant parametric error was obtained by calculating its effect
on the errors in approximately 50000 lengths distributed throughout the
workspace. The results, expressed as the relative length error that encompasses
± 2cr of the simulated errors, are shown in Figure 4.

Another useful tool is that of parametric error shapes. A parametric error
shape is the calculated error pattern at the target points of either a performance
evaluation test or a machined part with all error parameters equal to zero except
for one which is set equal to either 1 or some scaled value. Because both the
error model and the tool path errors are linear with respect to the parameters, the
error shape corresponding to an arbitrary set of parameter values can be
calculated as the corresponding linear combination of the parametric error
shapes. Figure 5 shows the parametric error shapes for a circular ballbar test
with a horizontal platform orientation. Note the low sensitivity of the circularity
errors to the parametric errors.

4. Error Measurement

Techniques to assess the parametric errors of a hexapod are examined below.
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Figure 5: Parametric error shapes of a circular test for the errors of strut 3
(600 mm calibrated radius, lower XY-plane). Note the different scales.

4.1 Measurements on a Disassembled Machine

Measurements on disassembled machines can be performed to determine the
dimensions of critical machine assemblies. These measurements are meaningful
only when combined with kinematically repeatable assembly techniques [2].

4.2 Measurements of the Relative Motion of Machine Components

Tracking errors in the relative motion of hexapod components, e.g., the motion
of a point on a strut relative to the base or the platform, yields powerful
information on subsets of the parametric errors. Similar measurements can be
performed to improve the accuracy of the hexapod during operation [7]. It
should be noted that measurements between machine components other than the
platform and the base are affected by errors, such as bending, straightness, and
roll errors of the struts, that do not necessarily affect the hexapod accuracy.

4.3 Measurements of the Relative Motion of Platform and Workpiece

4.3.1 Measurement of all Position and Orientation Errors
Measurement of all errors in the position and orientation of the tool facilitates a
separate analysis of the errors associated with each strut assembly. Some
measurement techniques can be found in [3] and [8]. Equation 4 can be used to
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compute the contribution of each strut assembly to the observed drift or
repeatability of the tool at a specified location. However, error motion measured
in space requires a different approach because it is measured relative to a
reference whose position and orientation are unknown.

Measured errors e^ and £„ in the platform location can be expressed as:

— -"""I (6,
C-C, J

where e, and 2, are the errors in platform location at the first point of the
measurement and a is the orientation of the reference. Usually e,, c,, and a
are unknown, except for some setups where e<, is defined by a. Inserting
Equation (6) into Equation (3) yields:

;xn,).Cm (7)

where: m,* = Aa - -e, -axa- -R& (Ab̂  + « - a') x b^ ) (8)

Assuming constant parametric errors, the error A/ • and the vector m • * can be
estimated from the measured errors e^ and £„, during a path k with a constant
platform orientation R& . Here the strut direction vectors n, of the target points
have to span a three dimensional space. Measurements along two orthogonal
lines are sufficient. To improve the accuracy of the estimate or to account for
variable parametric errors, more than four target points in a path may be used.

The estimation of Aa • and Ab; requires measurements of a path with a new
platform orientation R& , yielding a new vector m, * for each strut. Depending
upon the setup, it may be necessary to introduce a new set of unknowns e,, £^ ,
and a. On the other hand, each setup yields 6x3 data points corresponding to
the vectors m, % , thus effectively providing nine new values. The number of
unknowns in Aa, and Ab- that can be estimated equals 6 x (3 + 3) -2x6 = 24,
which implies that measurements are required at a minimum of three different
platform orientations. Note that when a new set of unknowns e^ , s^, and a is
introduced for each new platform orientation, it is not possible to estimate the
six components of Ab • that describe the location of the spindle in the platform
frame. These errors can be assessed by rotating the tool around a single point,
while measuring the errors in the realized position of that point (for two
different lengths of the tool).

4.3.2 Arbitrary Performance Evaluation Tests
The error parameters can be simultaneously estimated such that some measure
of the difference between the observed and predicted errors during a set of tests
is minimized. The problem can be translated into the estimation of the linear
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Figure 6: Measured errors during a circular test (lower plane, 600 mm
uncalibrated radius). Note the 12 reversal peaks on the circle.

combination of parametric error shapes that approximates the observed errors.
This is achieved by solving the equation y = xp by the least squares method.
Here the vector y contains the observed errors during the test(s), the vector p
contains the parameters to be estimated, and each column of the matrix X
contains the parametric error shape(s) of a particular parameter. A significant
parameter analysis is applied to improve the robustness of the estimated model.
Computer-aided experimental design techniques [5] are being investigated to
select a suitable set of tests that improves the condition of the estimation.

Figure 6 shows the results of an initial error compensation. The required
error parameters were estimated using the results of circular ballbar tests in
various locations and with several platform orientations and tool offsets, as well
as tests where the tool is rotated around a single point while measuring the
errors in the realized position of that point. The latter test is sensitive to errors in
the position of the platform joints. To test the robustness of the estimation, a 600
mm ballbar was only used to verify the compensation.

Measurement techniques that yield information on a single parametric error
or a limited set of parametric errors are under development. For the relative strut
length error, an experimental setup was devised that uses laser-interferometric
length measurements. The platform is moved along a line parallel to the strut
whose length error is to be determined. If the programmed platform orientation
is held constant during the movement, the strut and its spherical joints will not
rotate. The tool offset is calculated such that the retroreflector is on the
imaginary line that passes through the leadscrew. If the laser is aligned along the
path of the retroreflector, the laser readout equals changes in the length of the
strut, irrespective of the errors introduced by other joints and struts (as far as
first-order effects are concerned).
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Figure 7: Effect of joint friction on a circular ballbar measurement.
Solid lines indicate clockwise motion (300 mm calibrated radius,
ballbar inclined 45°, platform rotated 15° around X)

5. Joint Friction

Joint friction causes bending of the struts resulting in a second-order error in
their effective length. Far more important are the increased axial strut forces that
cause elastic deformation that is dependent on the direction of motion. For
horizontal platform movements, a major component of the resulting error
motion is an angular error around a horizontal axis below the platform and
orthogonal to the programmed path. As a result, the tool tip precedes the
programmed motion when the tool length is large. On the hexapod located at
NIST, angular reversal errors on the order of 35" were observed.

For ballbar measurements the effect is complex. When the platform is in a
horizontal orientation, the identified angular error does not cause an error in
horizontal circular contours. However, on a tilted platform the tool has an Abbe
offset in the horizontal plane. This offset results in a position error in the Z-
direction that changes direction when the motion is reversed. This position error
acts in a sensitive direction when a horizontal circle is measured with the ballbar
inclined relative to the plane of the circle (see Figure 7).

The following simplified procedure is used to calculate the effect of joint
friction: (1) at each point along the tool path, the axis around which a strut is
rotating is determined, (2) a constant friction moment around the identified axis
of rotation is applied at each joint, (3) the resulting force and moment that each
strut applies to the platform are calculated, (4) the force and moment that have
to be applied to the platform to counteract the friction forces are calculated, and
(5) the necessary change in the axial force of each strut [1] and the resulting
length error are determined. The calculated scaled parametric error shape when
all joints have an equal friction moment is shown in Figure 7. The estimation of
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Figure 8: Measured position drift at a stationary position (lower plane,
-400 mm from the center in Y-direction). Between measurements, the
machine is moved with a feedrate of 6000 mm/min.

the friction moments of individual joints using the parametric error shape
technique of Section 4.3.2 will be investigated.

6. Thermal errors

In the prototype hexapod at NIST, the major source of thermal errors is the
thermal expansion of the struts due to the heat generated by friction in the
telescope and the ballscrew drive. The struts are long and have no temperature
invariant closed-loop metrology system. Temperature elevations resulting from
the spindle are mainly confined to the platform and the lower part of the struts.
No significant temperature elevation due to joint rotation has been observed.

A thermal error model was developed. The model is analytical and assumes
a stress-free thermal expansion of the structural loop elements (i.e., outer frame,
struts, and platform). Temperature elevations were measured using 34
thermocouples, located mainly on the struts. The observed and predicted drift of
the tool due to various motion patterns of the platform are shown in Figure 8.
Only a fraction of the observed drift is predicted because of difficulties in the
determination of the effective temperature distribution of the leadscrew using
sensors on the outer strut surface. Improved temperature measurement
techniques and laser-interferometric measurements of strut expansion after
different movement patterns are studied to improve the model.

Conclusions

The errors of a hexapod in an unloaded reference state, i.e., the geometric errors,
are determined by 35 constant parameters and 18 functions. The relevant errors
in the position of the base and platform joints are described by 12 and 17
constants, respectively. Six constant parameters describe the errors in the
average strut lengths. The errors in the relative strut lengths are described by six
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functions. Finally, 12 functions are required to describe the variation of the
relevant joint errors due to changes in the strut orientation.

On the prototype hexapod at NIST, the errors in the relative strut length
could be measured individually. The constant error parameters that significantly
affect the hexapod accuracy could be estimated simultaneously by using
metrology tools developed for the performance evaluation of conventional
machine tools. However, there is no straightforward relationship between the
results of conventional performance evaluation tests and the parametric errors.
Further research is needed to identify more optimized error assessment
procedures, including those focused on subsets of the error parameters.

The measurements on the prototype indicate the need for closed-loop
thermally invariant metrology that addresses the length of the total strut, low-
friction high-stiffness joints, and a higher structural damping.
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