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ERROR ANALYSIS OF A SPACE-TIME FINITE ELEMENT
METHOD FOR SOLVING PDES ON EVOLVING SURFACES∗

MAXIM A. OLSHANSKII† AND ARNOLD REUSKEN‡

Abstract. In this paper we present an error analysis of an Eulerian finite element method
for solving parabolic partial differential equations (PDEs) posed on evolving hypersurfaces in Rd,
d = 2, 3. The method employs discontinuous piecewise linear in time–continuous piecewise linear
in space finite elements and is based on a space-time weak formulation of a surface PDE problem.
Trial and test surface finite element spaces consist of traces of standard volumetric elements on a
space-time manifold resulting from the evolution of a surface. We prove first order convergence in
space and time of the method in an energy norm and second order convergence in a weaker norm.
Furthermore, we derive regularity results for solutions of parabolic PDEs on an evolving surface,
which we need in a duality argument used in the proof of the second order convergence estimate.
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1. Introduction. Partial differential equations (PDEs) posed on evolving sur-
faces appear in a number of applications. Well-known examples are the diffusion
and transport of surfactants along interfaces in multiphase fluids [17, 27], diffusion-
induced grain boundary motion [3, 22], and lipid interactions in moving cell mem-
branes [10, 23]. Recently, several numerical approaches for handling such type of
problems have been introduced; cf. [7]. In [5, 8] Dziuk and Elliott developed and
analyzed a finite element method for computing transport and diffusion on a surface
which is based on a Lagrangian tracking of the surface evolution. If a surface under-
goes strong deformation, topological changes, or is defined implicitly, e.g., as the zero
level of a level set function, then numerical methods based on a Lagrangian approach
have certain disadvantages. Methods using an Eulerian approach were developed in,
e.g., [6, 28], based on an extension of the surface PDE into a bulk domain that con-
tains the surface. An error analysis of this class of Eulerian methods for PDEs on an
evolving surface is not known.

In the present paper, we analyze an Eulerian finite element method for parabolic
type equations posed on evolving surfaces introduced in [15, 26]. This method does
not use an extension of the PDE off the surface into the bulk domain. Instead, it
uses restrictions of (usual) volumetric finite element functions to the surface, as first
suggested in [25, 24] for stationary surfaces. The method that we study uses contin-
uous piecewise linear in space and discontinuous piecewise linear in time volumetric
finite element spaces. This allows a natural time-marching procedure, in which the
numerical approximation is computed on one time slab after another. Moreover, spa-
tial meshes may vary per time slab. Therefore, in our surface finite element method
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one can use adaptive mesh refinement in space and time as explained in [11] for the
heat equation in Euclidean space. Numerical experiments in [15, 26] have shown the
efficiency of the approach and demonstrated second order accuracy of the method in
space and time for problems with smoothly evolving surfaces. In [16] a numerical
example with two colliding spheres is considered, which illustrates the robustness of
the method with respect to topological changes. We consider this method to be a
natural and effective extension of the approach from [25, 24] for stationary surfaces
to the case of evolving surfaces. Until now, no error analysis of this (or any other)
Euclidean finite element method for PDEs on evolving surfaces was known. In this
paper we present such an error analysis.

The paper is organized as follows. In section 2, we formulate the PDE that
we consider on an evolving hypersurface in R

d, and recall a weak formulation and a
corresponding well-posedness result. A finite element method is explained in section 3.
The error analysis starts with a discrete stability result that is derived in section 4.
In section 5, a continuity estimate for the bilinear form is proved. An error bound in
a suitable energy norm is derived in section 6. The analysis has the same structure
as in the standard Cea lemma: a Galerkin orthogonality is combined with continuity
and discrete stability properties and with an interpolation error bound. The error
bound in the energy norm guarantees first order convergence if spatial and time mesh
sizes are of the same order. In section 7, we derive a second order error bound in a
weaker norm. For this we use a duality argument and need a higher order regularity
estimate for the solution of a parabolic problem on a smoothly evolved surface. Such a
regularity estimate is proved in section A. Concluding remarks are given in section 8.

2. Problem formulation. Consider a surface Γ(t) passively advected by a
smooth velocity field w = w(x, t), i.e., the normal velocity of Γ(t) is given by w · n
with n the unit normal on Γ(t). We assume that for all t ∈ [0, T ], Γ(t) is a smooth
hypersurface that is closed (∂Γ = ∅), connected, oriented, and contained in a fixed
domain Ω ⊂ R

d, d = 2, 3. In the remainder we consider d = 3, but all results have
analogues for the case d = 2. The conservation of a scalar quantity u with a diffusive
flux on Γ(t) leads to the surface PDE (cf. [21]):

(2.1) u̇+ (divΓw)u − νdΔΓu = 0 on Γ(t), t ∈ (0, T ],

with initial condition u(x, 0) = u0(x) for x ∈ Γ0 := Γ(0). Here u̇ = ∂u
∂t +w·∇u denotes

the advective material derivative, divΓ := tr((I − nnT )∇) is the surface divergence,
ΔΓ is the Laplace–Beltrami operator, and νd > 0 is the constant diffusion coefficient.

In the analysis of PDEs, it is convenient to reformulate (2.1) as a problem with
homogeneous initial conditions and a nonzero right-hand side. To this end, consider
the decomposition of the solution u = ũ+u0, where u0(·, t) : Γ(t) → R with t ∈ [0, T ]
is chosen sufficiently smooth and such that u0(x, 0) = u0(x) on Γ0, and

d
dt

∫
Γ(t) u

0 ds =

0. Since the solution of (2.1) has the mass conservation property d
dt

∫
Γ(t)

u ds = 0, the
new unknown function ũ satisfies ũ(·, 0) = 0 on Γ0 and has the zero mean property:

(2.2)

∫
Γ(t)

ũ ds = 0 for all t ∈ [0, T ].

For this transformed function the surface diffusion equation takes the form

(2.3)
˙̃u+ (divΓw)ũ − νdΔΓũ = f on Γ(t), t ∈ (0, T ],

ũ(·, 0) = 0 on Γ0.
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The source term is now f := −u̇0 − (divΓw)u0 + νdΔΓu
0. Using the Leibniz formula

(2.4)

∫
Γ(t)

v̇ + vdivΓw ds =
d

dt

∫
Γ(t)

v ds

and the partial integration over Γ(t), one immediately finds
∫
Γ(t) f ds = 0 for all

t ∈ [0, T ]. In the remainder we consider the transformed problem (2.3) and write u
instead of ũ. In the stability analysis in section 4, we will use the zero mean property
of f and the corresponding zero mean property (2.2) of u.

2.1. Weak formulation. For the finite element method that we consider, a
suitable weak formulation of (2.3) is needed. While several weak formulations of
(2.3) are known in the literature, see [5, 17], the most appropriate for our purposes is
the integral space-time formulation of (2.3) proposed in [26]. In this section we recall
this formulation. Consider the space-time manifold

S =
⋃

t∈(0,T )

Γ(t)× {t}, S ⊂ R
4.

Due to the identity

(2.5)

∫ T

0

∫
Γ(t)

f(s, t) ds dt =

∫
S
f(s)(1 + (w · n)2)− 1

2 ds,

the scalar product (v, w)0 =
∫ T

0

∫
Γ(t)

vw ds dt induces a norm that is equivalent to

the standard norm on L2(S). For our purposes, it is more convenient to consider the
(·, ·)0 inner product on L2(S). Let ∇Γ denote the tangential gradient for Γ(t) and
introduce the Hilbert space

(2.6) H = { v ∈ L2(S) | ‖∇Γv‖L2(S) <∞}, (u, v)H = (u, v)0 + (∇Γu,∇Γv)0.

We consider the material derivative u̇ of u ∈ H as a distribution on S. In [26] it is
shown that C1

0 (S) is dense in H . If u̇ can be extended to a bounded linear functional
on H , we write u̇ ∈ H ′ and 〈u̇, v〉 = u̇(v) for v ∈ H . Define the space

W = { u ∈ H | u̇ ∈ H ′ } with ‖u‖2W := ‖u‖2H + ‖u̇‖2H′ .

In [26], properties of H and W are analyzed. Both spaces are Hilbert spaces, and
smooth functions are dense in H and W . We shall recall other useful results for
elements of H and W at those places in this paper where we need them. Define

◦
W := { v ∈W | v(·, 0) = 0 on Γ0 }.

This space is well-defined, since functions fromW have well-defined traces in L2(Γ(t))
for any t ∈ [0, T ]. We introduce the symmetric bilinear form

a(u, v) = νd(∇Γu,∇Γv)0 + (divΓw u, v)0, u, v ∈ H,

which is continuous: a(u, v) ≤ (νd + α∞)‖u‖H‖v‖H with α∞ := ‖divΓw‖L∞(S). The

weak space-time formulation of (2.3) reads as follows: Find u ∈
◦
W such that

(2.7) 〈u̇, v〉+ a(u, v) = (f, v)0 for all v ∈ H.
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2.2. Well-posedness result and stability estimate. Well-posedness of (2.7)
follows from the following lemma derived in [26].

Lemma 2.1. The following properties of the bilinear form 〈u̇, v〉+ a(u, v) hold:
(a) Continuity: | 〈u̇, v〉+a(u, v)| ≤ (1+νd+α∞)‖u‖W ‖v‖H for all u ∈W, v ∈

H.
(b) Inf-sup stability:

(2.8) inf
0�=u∈

◦
W

sup
0�=v∈H

〈u̇, v〉+ a(u, v)

‖u‖W‖v‖H
≥ cs > 0.

(c) The kernel of the adjoint mapping is trivial: If 〈u̇, v〉 + a(u, v) = 0 holds for

some v ∈ H and all u ∈
◦
W , then v = 0.

As a consequence of Lemma 2.1, one obtains the following.
Theorem 2.2. For any f ∈ L2(S), the problem (2.7) has a unique solution

u ∈
◦
W . This solution satisfies the a priori estimate

(2.9) ‖u‖W ≤ c−1
s ‖f‖0.

Related to these stability results for the continuous problem, we make some re-
marks that are relevant for the stability analysis of the discrete problem in section 4.

Remark 2.1. Lemma 2.1 and Theorem 2.2 have been proved for a slightly more
general surface PDE than the surface diffusion problem (2.3), namely,

u̇+ αu− νdΔΓu = f on Γ(t), t ∈ (0, T ], and u = 0 on Γ0

with α ∈ L∞(S) and a right-hand side f ∈ H ′, not necessarily satisfying the zero
integral condition. The constant cs in the stability condition (2.8) can be taken as

cs =
νd√
2
(1+νd+α∞)−2e−2T (νd+c̃), c̃ =

∥∥∥∥α− 1

2
divΓw

∥∥∥∥
L∞(S)

with α∞ := ‖α‖L∞(S).

This stability constant deteriorates if νd ↓ 0 or T → ∞.
Remark 2.2. A stability result similar to (2.9), in a somewhat weaker norm

(without the ‖u̇‖H′ term), can be derived using Gronwall’s lemma; cf. [5]. In (2.7) we
then take v = u|[0,t] with t ∈ (0, T ], and using the Leibniz formula we get

1

2

∫
Γ(t)

u2 ds+νd

∫ t

0

∫
Γ(τ)

(∇Γu)
2 dsdτ =

∫ t

0

∫
Γ(τ)

fu dsdτ− 1

2

∫ t

0

∫
Γ(τ)

divΓw u2 dsdτ.

Using standard estimates we obtain, for h(t) := 1
2

∫
Γ(t) u

2 ds+νd
∫ t

0

∫
Γ(τ)(∇Γu)

2 dsdτ ,

(2.10) h(t) ≤ 1

2
‖f‖20 + (1 + ‖divΓw‖L∞(S))

∫ t

0

h(τ) dτ for all t ∈ [0, T ],

and using Gronwall’s lemma this yields a stability estimate.
Remark 2.3. In general, for the problem (2.7) a deterioration of the stability

constant for T → ∞, cf. Remark 2.1, cannot be avoided. This is seen from the
example of a contracting sphere with a uniform initial concentration u0. The solution
then is of the form u(x, t) = u0e

λt with λ > 0 depending on the rate of contraction.
This possible exponential growth is related to the fact that if we represent (2.7) as

u̇+Au = f, A : H → H ′ given by 〈Au, v〉 = (divΓwu, v)0 + νd(∇Γu,∇Γv)0,
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the symmetric operator A is not necessarily positive semidefinite. The possible lack
of positive semidefiniteness is caused by divΓw, which can be interpreted as local area
change: From the Leibniz formula we obtain

∫
γ(t)

divΓw(s, t) ds = d
dt

∫
γ(t)

1 ds =
d
dt |γ(t)| with γ(t) a (small) connected subset of the surface Γ(t). If the surface is not
compressed anywhere (i.e., the local area is constant or increasing), then divΓw ≥ 0
holds and A is positive semidefinite. In general, however, one has expansion and
compression in different parts of the surface. In the stability analysis of the discrete
problem in section 4, we restrict to the case that A is positive definite; cf. the com-
ments in Remark 4.1. The problem then has a nicer mathematical structure. In
particular the solution does not have exponentially growing components. The restric-
tion to positive definite A still allows interesting cases with small local area changes
(of arbitrary sign) and (very) strong convection of Γ(t). Even for very simple convec-

tion fields, A cannot be positive definite on the space
◦
W , the trial space used in (2.7).

This is due to the fact that for u(x, t) = u(t), i.e., u is constant in x, we have ∇Γu = 0.
We deal with this problem by restricting to a suitable subspace, as explained below.

We outline a stability result from [26] for the case if A is positive definite on a
subspace. Functions u ∈ H obey the Friedrichs inequality

(2.11)

∫
Γ(t)

|∇Γu|2 ds ≥ cF (t)

∫
Γ(t)

(
u− 1

|Γ(t)| ū
)2

ds for all t ∈ [0, T ]

with cF (t) > 0 and ū(t) :=
∫
Γ(t)

u(s, t) ds. A smooth solution to problem (2.3) satisfies

the zero average condition (2.2), and so we may look for a weak solution from the

following subspace of
◦
W :

(2.12) W̃ := { u ∈
◦
W | ū(t) = 0 for all t ∈ [0, T ] }.

Obviously, elements of W̃ satisfy the Friedrichs inequality with ū = 0. Exploiting
this, one obtains the following result.

Proposition 2.3. Assume f satisfies
∫
Γ(t)

f ds = 0 for almost all t ∈ [0, T ].

Then the solution u ∈
◦
W of (2.7) belongs to W̃ . Additionally assume that there exists

a c0 > 0 such that

(2.13) divΓw(x, t) + νdcF (t) ≥ c0 for all x ∈ Γ(t), t ∈ [0, T ]

holds. Then the inf-sup property (2.8) holds with
◦
W replaced by the subspace W̃ and

cs =
min{νd,c0}

2
√
2(1+νd+α∞)2

, where α∞ := ‖divΓw‖L∞(S).

If the condition in (2.13) is satisfied, then A is positive definite on the subspace

W̃ . Due to the positive-definitness, the stability constant cs is independent of T .

3. Finite element method. Consider a partitioning of the time interval: 0 =
t0 < t1 < · · · < tN = T with a uniform time step Δt = T/N . The assumption
of a uniform time step is made to simplify the presentation, but is not essential. A
time interval is denoted by In := (tn−1, tn]. The symbol Sn denotes the space-time
interface corresponding to In, i.e., Sn := ∪t∈InΓ(t) × {t} and S := ∪1≤n≤NSn. We
introduce the subspaces Hn := { v ∈ H | v = 0 on S \ Sn } of H , and define the
spaces

Wn = { v ∈ Hn | v̇ ∈ H ′
n }, ‖v‖2Wn

= ‖v‖2H + ‖v̇‖2H′
n
.
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An element (v1, . . . , vN ) ∈ ⊕N
n=1Wn is identified with v ∈ H , by v|Sn = vn. Our finite

element method is conforming with respect to the broken trial space

W b := ⊕N
n=1Wn with norm ‖v‖2W b =

N∑
n=1

‖vn‖2Wn
= ‖v‖2H +

N∑
n=1

‖v̇n‖2H′
n
.

For u ∈ Wn, the one-sided limits un+ = u+(·, tn) and un− = u−(·, tn) are well-defined
in L2(Γ(tn)) (cf. [26]). At t0 and tN , only u0+ and uN− are defined. For v ∈ W b, a

jump operator is defined by [v]n = vn+ − vn− ∈ L2(Γ(tn)), n = 1, . . . , N − 1. For n = 0,
we define [v]0 = v0+.

On the cross sections Γ(tn), 0 ≤ n ≤ N , of S, the L2 scalar product is denoted
by (ψ, φ)tn :=

∫
Γ(tn)

ψφds. In addition to a(·, ·), we define on the broken space W b

the following bilinear forms:

d(u, v) =

N∑
n=1

dn(u, v), dn(u, v) = ([u]n−1, vn−1
+ )tn−1 , 〈u̇, v〉b =

N∑
n=1

〈u̇n, vn〉 .

It is easy to check, see [26], that the solution to (2.7) also solves the following
variational problem in the broken space: Find u ∈ W b such that

(3.1) 〈u̇, v〉b + a(u, v) + d(u, v) = (f, v)0 for all v ∈W b.

This variational formulation uses W b ⊂ H as test space, since the term d(u, v) is not
well-defined for an arbitrary v ∈ H . The initial condition u(·, 0) = 0 is not an essential
condition in the space W b, but is treated in a weak sense. From an algorithmic point
of view, this formulation has the advantage that due to the use of the broken space
W b = ⊕N

n=1Wn, it can be solved in a time stepping manner. The discretization that
we introduce below is a Galerkin method for the weak formulation (3.1) with a finite
element space Wh ⊂W b.

To define this Wh, consider the partitioning of the space-time volume domain
Q = Ω × (0, T ] ⊂ R

3+1 into time slabs Qn := Ω × In. For each time interval In :=
(tn−1, tn], we assume a given shape regular tetrahedral triangulation Tn of the spatial
domain Ω. The corresponding spatial mesh size parameter is denoted by h. Then
Qh =

⋃
n=1,...,N Tn×In is a subdivision of Q into space-time prismatic nonintersecting

elements. We shall call Qh a space-time triangulation of Q. This triangulation is
not fitted to the surface S. We allow Tn to vary with n (in practice, during time
integration one may adapt the space triangulation depending on the changing local
geometric properties of Γ(t)) and so the elements of Qh may not match at t = tn.

The local space-time triangulation QS
h consists of space-time prisms that are in-

tersected by S, i.e., QS
h = {T × In ∈ Qh | meas3((T × In) ∩ S > 0 }; cf. Figure 1. If

(T × In) ∩ S consists of a face F of the prism T × In, we include in QS
h only one of

the two prisms that have this F as their intersection. The (local) domain formed by
all prisms in QS

h is denoted by QS .
For any n ∈ {1, . . . , N}, let Vn be the finite element space of continuous piecewise

affine functions on Tn. We define the (local) volume space-time finite element space:

Vh := { v : QS → R | v(x, t) = φ0(x) + tφ1(x) on every Qn ∩QS with φ0, φ1 ∈ Vn }.

Thus, Vh is a space of piecewise bilinear functions with respect to QS
h , continuous in

space and discontinuous in time. Now we define our surface finite element space as
the space of traces of functions from Vh on S:

(3.2) Wh := {w : S → R | w = v|S , v ∈ Vh }.
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Fig. 1. Illustration of the local space-time triangulation QS
h in one time slab. In the left picture

we have a constant w, and hence (2.13) is satisfied.

The finite element method reads as follows: Find uh ∈Wh such that

(3.3) 〈u̇h, vh〉b + a(uh, vh) + d(uh, vh) = (f, vh)0 for all vh ∈ Wh.

As usual in time-discontinuous Galerkin (DG) methods, the initial condition for
uh(·, 0) is treated in a weak sense. Due to uh ∈ H1(Qn) for n = 1, . . . , N , the
first term in (3.3) can be written as

(3.4) 〈u̇h, vh〉b =
N∑

n=1

∫ tn

tn−1

∫
Γ(t)

(
∂uh
∂t

+w · ∇uh
)
vhds dt.

In the (very unlikely) case that Γ(t) is a face of two tetrahedra T1,T2 and both T1×In
and T2×In are contained in QS

h , we use a simple averaging in the evaluation ofw ·∇uh
in (3.4). Recall that the solution of the continuous problem (2.3) satisfies the zero
mean condition (2.2), which corresponds to the mass conservation law valid for the
original problem (2.1). We investigate whether the condition (2.2) is preserved for
the finite element formulation (3.3).

Assume that uh is a solution of (3.3). Denote ūh(t) =
∫
Γ(t) uhds. We have∫

Γ(t)
f ds = 0 for all t > 0. In (3.3), set vh = 1 for t ≤ tn and vh = 0 for t > tn.

This implies ūh,−(tn) :=
∫
Γ(tn)

un− ds = 0 for n = 0, 1, . . . . Setting vh = t − tn−1

for tn−1 ≤ t ≤ tn and vh = 0 otherwise, we additionally get
∫ tn
tn−1

ūh(t) dt = 0.

Summarizing, we obtain the following:

(3.5) ūh,−(tn) = 0 and

∫ tn

tn−1

ūh(t) dt = 0, n = 1, 2, . . . .

For a stationary surface, ūh(t) is a piecewise affine function and thus (3.5) implies
ūh(t) ≡ 0, i.e., we have exact mass conservation on the discrete level. If the surface
evolves, the finite element method is not necessarily mass conserving: (3.5) holds,
but ūh(t) �= 0 may occur for tn−1 ≤ t < tn. To enforce a better mass conservation
and enhance stability of the finite element method, cf. Remark 4.1, we introduce a
consistent stabilizing term to the discrete bilinear form. More precisely, define

(3.6) aσ(u, v) := a(u, v) + σ

∫ T

0

ū(t)v̄(t) dt, σ ≥ 0.

Instead of (3.3), we consider the stabilized version: Find uh ∈Wh such that

(3.7) 〈u̇h, vh〉b + aσ(uh, vh) + d(uh, vh) = (f, vh)0 for all vh ∈Wh.

As mentioned above, taking σ > 0 we expect both a stabilizing effect and an improved
mass conservation property. Adding this stabilization term does not lead to significant
additional computational costs for computing the stiffness matrix; cf. section 3.1.
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For the solution u ∈ W of (3.1), the stabilization term vanishes: ū(t) = 0.
Therefore, the error e = u−uh of the finite element method (3.7) satisfies the Galerkin
orthogonality relation:

(3.8) 〈ė, vh〉b + aσ(e, vh) + d(e, vh) = 0 for all vh ∈Wh.

3.1. Implementation aspects. We comment on a few implementation aspects.
More details are found in the recent article [15].

By choosing the test functions vh in (3.7) per time slab, one obtains an implicit
time stepping algorithm. Two main implementation issues are the approximation of
the space-time integrals in the bilinear form 〈u̇h, vh〉b + aσ(uh, vh) and the represen-
tation of the finite element trace functions in Wh. To approximate the integrals, one
makes use of the formula (2.5) converting space-time integrals to surface integrals
over S, and next one approximates S by a “discrete” surface Sh; this is done locally,
i.e., time slab per time slab. The surface Sh can be the zero level of φh ∈ Wĥ, where
φh is a bilinear finite element approximation of a level set function φ(x, t), the zero
level of which is the surface S. To reduce the “geometric error,” it may be efficient
to find φh ∈ Wĥ in a finite element space with mesh size ĥ < h, Δ̂t < Δt, e.g.,

ĥ = 1
2h, Δ̂t =

1
2Δt (one refinement of the given outer space-time mesh). Within each

space-time prism the zero level of φh ∈ Wĥ can be represented as a union of tetra-
hedra, cf. [15], and standard quadrature formulas can be used. Results of numerical
experiments, with such treatment of integrals over S, are reported in [15, 16, 26].

For the representation of the finite element functions in Wh it is natural to use
traces of the standard nodal basis functions in the volume space-time finite element
space Vh. In general, these trace functions form (only) a frame in Wh. A finite
element surface solution is represented as a linear combination of the elements from
this frame. Linear systems resulting in every time step may have more than one
solution, but every solution yields the same trace function, which is the unique solution
of (3.7). If Δt ∼ h and ‖w‖L∞(S) = O(1), then the number of tetrahedra T ∈ Tn
that are intersected by Γ(t), t ∈ In, is of the order O(h−2). Hence, per time step the
linear systems have O(h−2) unknowns, which is the same complexity as a discretized
spatially two-dimensional elliptic problem. Note that although we derived the method
in R

3+1, due to the time stepping and the trace operation, the discrete problems
have two-dimensional complexity. Since the discrete problems have a complexity of
(only) O(h−2), it may be efficient to use a sparse direct solver for computing the
discrete solution. Linear algebra aspects of the surface finite element method have
been addressed in [24] and will be further investigated in future work.

The stabilization term in (3.6) does not cause significant additional computational

work. In one time slab it has the form
∫ tn
tn−1

ū(t)v̄(t) dt. Let φi, 1 ≤ i ≤M , denote the

nodal basis functions in the outer space Vh, and then the M ×M -matrix representing
this bilinear form has entries

∫ tn
tn−1

∫
Γ(t) φj ds

∫
Γ(t) φi ds dt. If quadrature for

∫ tn
tn−1

with nodes ξ1, . . . , ξk ∈ [tn−1, tn] is applied, this results in a stabilization matrix

of the form S =
∑k

r=1 αrzrz
T
r with αr ∈ R, zr ∈ R

M . The vector zr has entries

(zr)i =
∫
Γ(ξr)

φi(s, ξr) ds. We need only a few quadrature points, e.g., k = 2, and hence

S is a sum of only a few rank one matrices. The stabilization matrix is symmetric
positive semidefinite and often improves the conditioning of the stiffness matrix.

4. Stability of the finite element method. We present a stability analysis of
the discrete problem (3.7) for the positive definite case; cf. Remark 2.3. In Remark 4.1
below we explain why we restrict ourselves to the positive definite case and comment
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on the role of the stabilization. We introduce the following mesh-dependent norm:

|||u|||h :=

(
max

n=1,...,N
‖un−‖2tn +

N∑
n=1

‖[u]n−1‖2tn−1
+ ‖u‖2H

) 1
2

.

Theorem 4.1. Assume (2.13) and take σ ≥ νd
2 maxt∈[0,T ]

cF (t)
|Γ(t)| , where cF (t) is

defined in (2.11). Then the inf-sup estimate

(4.1) inf
u∈W b

sup
v∈W b

〈u̇, v〉b + aσ(u, v) + d(u, v)

|||v|||h|||u|||h
≥ cs

and the ellipticity estimate

(4.2) 〈u̇, u〉b + aσ(u, u) + d(u, u) ≥ 2cs

(
‖uN−‖2T +

N∑
n=1

‖[u]n−1‖2tn−1
+ ‖u‖2H

)

for all u ∈ W b hold with cs = 1
4 min{1, νd, c0} and c0 from (2.13). The results in

(4.1), (4.2) also hold with W b replaced by Wh.
Proof. Take u ∈ W b, u �= 0, and let M ∈ {1, . . . , N}. Set ũ = u for t ∈ (0, tM ]

and ũ = 0 for t ∈ (tM , T ). Applying partial integration on every time interval we get

〈u̇, ũ〉b =
1

2

M∑
n=1

(
‖un−‖2tn − ‖un−1

+ ‖2tn−1

)
− 1

2

∫ tM

0

(divΓw, u
2)Γ(t) dt.

It is also straightforward to derive

d(u, ũ) = −1

2

M∑
n=1

(
‖un−‖2tn − ‖un−1

+ ‖2tn−1

)
+

1

2
‖uM− ‖2tM +

1

2

M∑
n=1

‖[u]n−1‖2tn−1
.

The Friedrichs inequality (2.11) yields∫
Γ(t)

|∇Γu|2 ds ≥ cF (t)

(∫
Γ(t)

u2 ds− 1

|Γ(t)| ū
2(t)

)
.

Using this, we get

aσ(u, ũ) =

∫ tM

0

νd‖∇Γu‖2L2(Γ(t)) + (divΓw, u
2)L2(Γ(t)) + σū(t)2 dt

≥
∫ tM

0

1

2
(νdcF + 2divΓw, u

2)L2(Γ(t)) +

(
σ − νd

2

cF (t)

|Γ(t)|

)
ū(t)2

+
νd
2
‖∇Γu‖2L2(Γ(t)) dt

≥
∫ tM

0

1

2
(νdcF + 2divΓw, u

2)L2(Γ(t)) +
νd
2
‖∇Γu‖2L2(Γ(t)) dt.

Combining the relations above and using (2.13), we get

〈u̇, ũ〉b + aσ(u, ũ) + d(u, ũ)(4.3)

≥ 1

2

(
‖uM− ‖2tM +

M∑
n=1

‖[u]n−1‖2tn−1
+

∫ tM

0

c0‖u‖2L2(Γ(t)) + νd‖∇Γu‖2L2(Γ(t)) dt

)
.
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Taking M = N in this inequality proves (4.2). Let M be such that ‖uM− ‖tM =
maxn=1,...,N ‖un−‖2tn . Setting v = ũ + u, using (4.3), and performing obvious compu-
tations gives (4.1). Since Wh ⊂W b and u ∈Wh ⇒ ũ ∈Wh, the results in (4.1), (4.2)
also hold on the finite element subspace.

In this stability result there are no restrictions on the size of h and Δt. In
particular the stability is guaranteed even if Δt is large. This is in agreement with the
strong robustness of the method, observed in the numerical experiments in [15, 26, 16].

Remark 4.1. We comment on the assumptions we use in Theorem 4.1. An inf-
sup result in W b, similar to (4.1), can also be derived for the general (indefinite)
case, i.e., without assuming (2.13) and without stabilization. Such a result is given in
Lemma 5.2 in [26]. The proof uses a test function of the form v = μe−γtu + z with
a suitable μ > 0, γ > 0, and z ∈ W b. The factor e−γt is used to control the term
(divΓwu, u)0. Of course, the stability constant then depends on T and deteriorates
for T → ∞. For the discrete space Wh, however, we are not able to derive a stability
result for the general (indefinite) case. The key point is that for uh ∈ Wh, a test
function of the form e−γtuh is not allowed, since it is not an element of the test space
Wh. Using an approximation (interpolation or projection) of e−γtuh in the finite
element space, we are not able to get sufficient control of the term (divΓwu, u)0. A
similar difficulty, for the general problem, arises if one applies a discrete analogon of
the Gronwall argument outlined in Remark 2.2: Let u = uh ∈ Wh be a finite element
function. For the corresponding test function one can take v = ũ as in the proof
above, i.e., v = u|[0,tM ]. Taking σ = 0 we obtain

1

2
‖uM− ‖2tM +

1

2

M∑
n=1

‖[u]n−1‖2tn−1
+ νd

∫ tM

0

∫
Γ(t)

(∇Γu)
2 ds dt

=

∫ tM

0

∫
Γ(t)

fu ds dt− 1

2

∫ tM

0

∫
Γ(t)

divΓwu
2 ds dt.

Define h(t) := 1
2

∫
Γ(t) u

2 ds +
∑M

n=1 ‖[u]n−1‖2tn−1
+ νd

∫ t

0

∫
Γ(τ)(∇Γu)

2 dsdτ for t ∈
(tM−1, tM ], M = 1, . . .N . With similar arguments as in Remark 2.2, we get the
estimate

h(tM ) ≤ 1

2
‖f‖20 + (1 + ‖divΓw‖L∞(S))

∫ tM

0

h(τ) dτ, M = 1, . . . , N ;

cf. (2.10). To apply a discrete Gronwall inequality we need to control
∫ tM
0 h(τ) dτ by

the values h(tk), k = 0, . . . ,M . For a stationary Γ(t), this can be realized using the
fact that u is linear w.r.t. t on In. For an evolving Γ(t), however, the function h(t) can
have rather general behavior, and it is not clear under which reasonable assumptions
the integral can be bounded by the function values h(tk).

In view of these observations we restrict the analysis to the nicer positive definite
case, and hence we assume that (2.13) holds. As mentioned in Remark 2.3, condition
(2.13) is not sufficient for A to be positive definite on Wh. The difficulty comes from
the functions u(x, t) that are constant in spatial directions. For the continuous case,

we dealt with this problem by restricting to the subspace W̃ ; cf. (2.12). In case of an

evolving Γ(t), requiring the discrete solution uh to lie in W̃ is a too strong condition,
which leads to an unacceptable reduction of the degrees of freedom. (Often, only
uh = 0 is allowed.) This is the reason why we introduce the stabilization. For σ
sufficiently large, the corresponding stabilized operator Aσ is positive definite on Wh.
In numerical experiments we observe that in general σ = 0 results in a stable method.
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The ellipticity result (4.2) is sufficient for existence of a unique solution, and
(4.1) yields an a priori bound in the ||| · |||h-norm. We summarize this in the following
proposition.

Proposition 4.2. Assume (2.13) and take σ as in Theorem 4.1. Then the
discrete problem (3.7) has a unique solution uh ∈Wh. For uh, the a priori estimate

(4.4) |||uh|||h ≤ c−1
s ‖f‖0

holds with cs as in Theorem 4.1.

5. Continuity result. We derive continuity results for the bilinear form of the
finite element method.

Lemma 5.1. For any e, v ∈W b, the following holds with constants c independent
of e, v, h,N :

| 〈ė, v〉b + aσ(e, v) + d(e, v)| ≤ c|||v|||h

(
‖e‖W b +

N−1∑
n=0

‖[e]n‖tn
)
,(5.1)

| 〈ė, v〉b + aσ(e, v) + d(e, v)| ≤ c|||e|||h

(
‖v‖W b +

N−1∑
n=1

‖[v]n‖tn + ‖v‖T

)
.(5.2)

Proof. The stabilizing term in aσ(e, v) is estimated as follows:

(5.3)

∣∣∣∣∣σ
∫ T

0

∫
Γ(t)

e dx

∫
Γ(t)

vdx dt

∣∣∣∣∣ ≤ σ

∫ T

0

|Γ(t)|
(∫

Γ(t)

e2dx

) 1
2
(∫

Γ(t)

v2dx

) 1
2

dt

≤ σ max
t∈[0,T ]

|Γ(t)|‖e‖0‖v‖0.

The material derivative term is treated using partial integration:

〈ė, v〉b =
N∑

n=1

(
(en−, v

n
−)tn − (en−1

+ , vn−1
+ )tn−1

)
− (divΓw e, v)0 − 〈v̇, e〉b

= −
N∑

n=1

([e]n−1, vn−1
+ )tn−1 −

N−1∑
n=1

([v]n, en−)tn

+ (eN− , v)T − (divΓw e, v)0 − 〈v̇, e〉b

= −d(e, v)−
N−1∑
n=1

([v]n, en−)tn + (eN− , v)T − (divΓw e, v)0 − 〈v̇, e〉b .

Now we use the relation 〈v̇, e〉b =
∑N

n=1 〈v̇n, en〉 and the Cauchy inequality to estimate

| 〈ė, v〉b + d(e, v)| ≤ ‖eN−‖T ‖v‖T + α∞‖e‖0‖v‖0 + ‖e‖H

(
N∑

n=1

‖v̇n‖2H′
n

) 1
2

+ max
n=1,...,N−1

‖en−‖tn
N−1∑
n=1

‖[v]n‖tn .

(5.4)
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Combining (5.3), (5.4), and a(e, v) ≤ νd‖∇Γe‖0‖∇Γv‖0 + α∞‖e‖0‖v‖0, we get

| 〈ė, v〉b + aσ(e, v) + d(e, v)|

≤ ‖eN−‖T ‖v‖T +

(
2α∞ + σ max

t∈[0,T ]
|Γ(t)|

)
‖e‖0‖v‖0 + ‖e‖H

(
N∑

n=1

‖v̇n‖2H′
n

) 1
2

+ νd‖∇Γe‖0‖∇Γv‖0 + max
n=1,...,N−1

‖en−‖tn
N−1∑
n=1

‖[v]n‖tn .

The Cauchy inequality and the definition of the norms |||e|||h, ‖v‖W b imply the result
in (5.2). The inequality in (5.1) is proved by the same arguments, but the partial
integration step is skipped.

The norm ||| · |||h is weaker than the norm ‖ · ‖W used for the stability analysis
of the original “differential” weak formulation (2.7), since the latter norm provides
control over the material derivative in H ′. For the discrete solution, we can establish
control over the material derivative only in a weaker sense, namely, in a space dual
to the discrete space. Indeed, using estimates as in the proof of Lemma 5.1 we get

|aσ(uh, v)| ≤ |||uh|||h

((
α∞ + σ max

t∈[0,T ]
|Γ(t)|

)2

‖v‖20 + ν2d‖∇Γv‖20

) 1
2

≤ c |||uh|||h‖v‖H ,

and thus for the discrete solution uh ∈Wh of (3.7) one obtains, using (4.4),

(5.5) sup
v∈Wh

〈u̇h, v〉b + d(uh, v)

‖v‖H
= sup

v∈Wh

(f, vh)0 − aσ(uh, v)

‖v‖H
≤ c‖f‖0.

6. Discretization error analysis. In this section we prove an error bound for
the discrete problem (3.7). The analysis is based on the usual arguments, namely,
the stability estimate derived above combined with the Galerkin orthogonality and
interpolation error bounds. The surface finite element space is the trace of an outer
volume finite element space Vh. For the analysis of the discretization error in the
surface finite element space, we use information on the approximation quality of the
outer space. Hence, we need a suitable extension procedure for smooth functions on
the space-time manifold S. This topic is addressed in subsection 6.1.

6.1. Extension of functions defined on S. For a function u ∈ H2(S), we need
an extension ue ∈ H2(U), where U is a neighborhood in R

4 that contains the space-
time manifold S. Below we introduce such an extension and derive some properties
that we need in the analysis. We extend u in a spatial normal direction to Γ(t) for
every t ∈ [0, T ]. For this procedure to be well-defined and the properties to hold, we
need sufficient smoothness of the manifold S. We assume S to be a three-dimensional
C3-manifold in R

4. For some δ > 0 let

(6.1) U = {x := (x, t) ∈ R
3+1 | dist(x,Γ(t)) < δ }

be a neighborhood of S. The value of δ depends on curvatures of S and will be specified
below. Let d : U → R be the signed distance function, |d(x, t)| := dist(x,Γ(t)) for all
x ∈ U . Thus, S is the zero level set of d. The spatial gradient nΓ = ∇xd ∈ R

3 is the
exterior normal vector for Γ(t). The normal vector for S is

nS = ∇d/‖∇d‖ =
1√

1 + V 2
Γ

(nΓ,−VΓ)T ∈ R
4, VΓ = w · nΓ.
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Recall that VΓ is the normal velocity of the evolving surface Γ(t). The normal nΓ has
a natural extension given by n(x) := ∇xd(x) ∈ R

3 for all x ∈ U . Thus, n = nΓ on S
and ‖n(x)‖ = 1 for all x ∈ U . The spatial Hessian of d is denoted by H ∈ R

3×3. The
eigenvalues of H are κ1(x, t), κ2(x, t), and 0. For x ∈ Γ(t), the eigenvalues κi(x, t),
i = 1, 2, are the principal curvatures of Γ(t). Due to the smoothness assumptions on
S, the principal curvatures are uniformly bounded in space and time:

sup
t∈[0,T ]

sup
x∈Γ(t)

(|κ1(x, t)|+ |κ2(x, t)|) ≤ κmax.

We introduce a local coordinate system by using the projection p : U → S:

p(x) = x− d(x)(n(x), 0)T =
(
x− d(x, t)n(x, t), t

)
for all x = (x, t) ∈ U.

For δ sufficiently small, namely, δ ≤ κ−1
max, the decomposition x = p(x)+d(x)

(
n(x), 0

)
is unique for all x ∈ U ([14, Lemma 14.16]).

The extension operator is defined as follows. For a function v on S, we define

(6.2) ve(x) := v(p(x)) for all x ∈ U,

i.e., v is extended along spatial normals on S.
We need a few relations between surface norms of a function and volumetric

norms of its extension. Define μ(x) := (1 − d(x)κ1(x))(1 − d(x)κ2(x)) for x ∈ U .
From (2.20), (2.23) in [4] we have

μ(x)dx = ds(p(x)) dr, x ∈ U,

where dx is the volume measure in R
3, ds the surface measure on Γ(t), and r the

local coordinate at y ∈ Γ(t) in the (orthogonal) direction nΓ(y). Assume δ ≤ 1
4κ

−1
max.

Using the relation κi(x) =
κi(p(x))

1+d(x)κi(p(x))
, i = 1, 2, x ∈ U ((2.2.5) in [4]), one obtains

9
16 ≤ μ(x) ≤ 25

16 for all x ∈ U . Now let v be a function defined on S and w,
defined on U , given by w(x) = g(x)v(p(x)), with a function g that is bounded on U :
‖g‖L∞(U) ≤ cg <∞. An example is the pair w = ve and v given in (6.2) with g ≡ 1.
For v, w we have the following, with U(t) = { x ∈ R

3 | dist(x,Γ(t)) < δ } the cross-
section of U for t ∈ [0, T ] and a local coordinate system denoted by x = (p(x), r):

‖w‖2L2(U) =

∫
U

w2(x) dx ≤ c

∫ T

0

∫
U(t)

w(x)2μ(x) dxdt

≤ c

∫ T

0

∫
U(t)

v(p(x))2μ(x) dxdt = c

∫ T

0

∫ δ

−δ

∫
Γ(t)

v(p(x))2 ds(p(x))drdt

≤ c δ

∫ T

0

∫
Γ(t)

v2 dsdt ≤ cδ‖v‖2L2(S).

(6.3)

The constant c in the estimate above depends only on the smoothness of S and
on cg. If in addition |g(x)| ≥ c0 > 0 on U holds, then we obtain the estimate

‖w‖2L2(U) ≥ cδ‖v‖2L2(S) with a constant c > 0 depending only on |VΓ| and c0. Using

these results applied to w = ve as in (6.2) (i.e., g ≡ 1), we obtain the equivalence

(6.4) ‖ue‖2L2(U) � δ‖u‖2L2(S) for all u ∈ L2(S).
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In the remainder of this section, for u defined on S, we derive bounds on derivatives
of ue on U in terms of the derivatives of u on S. We first recall a few elementary
results. From

∇Su =
(
I4×4 − nSnT

S
)(

∇xu
e

uet

)
, ∇Γ(t)u =

(
I3×3 − nΓn

T
Γ

)
∇xu

e,

one derives the following relations between tangential derivatives:

∇Γ(t)u = B∇Su, B := [I3×3,−VΓnΓ] ∈ R
3×4,(6.5)

u̇ = (1 + V 2
Γ )(∇Su)4 +w · ∇Γ(t)u,(6.6)

where (∇Su)4 denotes the fourth entry of the vector ∇Su ∈ R
4. The spatial deriva-

tives of the extended function can be written in terms of surface gradients (cf., e.g.,
(2.2.13) in [4]):

(6.7) ∇xu
e(x) = (I− dH)∇Γ(t)u(p(x)) = (I− dH)B∇Su(p(x)) =: B1∇Su(p(x))

for x ∈ U . This implies ∇xu
e(x) = ∇Γ(t)u(p(x)) = ∇Γ(t)u(x) for x ∈ S. For the

time derivative we obtain

uet (x) =
∂

∂t
(ue ◦ p)(x) = ∂

∂t
ue(x − d(x, t)n(x, t), t)

= uet (p(x)) − (dtn+ dnt) · ∇xu
e(p(x))

= uet (p(x)) − (dtn+ dnt) · ∇Γ(t)u(p(x)).

(6.8)

The time derivative uet on S is represented in terms of surface quantities (cf. (6.6)):

uet = u̇−w · ∇xu
e = u̇−w · ∇Γ(t)u = (1 + V 2

Γ )(∇Su)4 on S.

Using this and (6.5) in (6.8) we obtain, for x ∈ U ,

(6.9) uet (x) = (1+V 2
Γ )(∇Su(p(x)))4 − (dtn+dnt) ·B∇Su(p(x)) =: B2 ·∇Su(p(x)).

The matrices B1, B2 in (6.7), (6.9) depend only on geometric quantities related to
S (d, dt, H, VΓ, n, nt). These quantities are uniformly bounded on U due to the
smoothness assumption on S. Hence, from (6.7) and the result in (6.3) we obtain

(6.10) ‖∇ue‖2L2(U) ≤ c δ‖∇Su‖2L2(S) for all u ∈ H1(S).

We need a similar result for the H2 volumetric and surface norms. From (6.7) we get
∂ue

∂xi
(x) = bi · ∇Su(p(x)), x ∈ U , i = 1, 2, 3, with bi the ith row of the matrix B1.

For z ∈ {x1, x2, x3, t}, we get

∂2ue

∂z∂xi
(x) = (bi)z · ∇Su(p(x)) + bi(∇S∇Su)(p(x))

∂

∂z
p(x), x ∈ U.

Due to the smoothness assumption on S, the vectors bi, (bi)z,
∂
∂zp(x) have bounded

L∞ norms on U , and application of (6.3) yields∥∥∥∥ ∂2ue

∂z∂xi

∥∥∥∥2

L2(U)

≤ cδ

⎛⎝ ∑
|μ|=2

‖Dμ
Su‖2L2(S) + ‖∇Su‖2L2(S)

⎞⎠ .

With similar arguments, using (6.9), one can derive the same bound for ‖∂2ue

∂z∂t ‖2L2(U).
Hence, we conclude that

(6.11) ‖ue‖2H2(U) ≤ cδ‖u‖2H2(S) for all u ∈ H2(S).
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6.2. Interpolation error bounds. In this section, we introduce and analyze
an interpolation operator. Recall that the local space-time triangulation QS

h consists
of cylindrical elements that are intersected by S, cf. Figure 1, and that the domain
formed by these prisms is denoted by QS . For K ∈ QS

h , the nonempty intersections
are denoted by SK = K ∩ S. Let

Ih : C(QS) → Vh

be the nodal interpolation operator. Since the triangulation may vary from time slab
to time slab, the interpolant is in general discontinuous between the time slabs.

In the remainder we take Δt ∼ h. This assumption is made to avoid anisotropic
interpolation estimates, which would significantly complicate the analysis for the case
of surface finite elements.

We take a fixed neighborhood U of S as in (6.1) with δ > 0 sufficiently small such
that the analysis presented in section 6.1 is valid (δ ≤ 1

4κ
−1
max). The mesh is assumed

to be fine enough to resolve the geometry of S in the sense that QS
h ⊂ U . We need one

further technical assumption, which holds if the space-time manifold S is sufficiently
resolved by the outer (local) triangulation QS

h .
Assumption 6.1. For SK = K ∩ S, K ∈ QS

h , we assume that there is a local
orthogonal coordinate system y = (z, θ), z ∈ R

3, θ ∈ R, such that SK is the graph
of a C1 smooth scalar function, say gK , i.e., SK = { (z, gK(z)) | z ∈ ZK ⊂ R

3 }.
The derivatives ‖∇gK‖L∞(ZK) are assumed to be uniformly bounded with respect to
K ∈ QS

h and h. Finally it is assumed that the graph SK either coincides with one
of the three-dimensional faces of K or it subdivides K into exactly two subsets (one
above and one below the graph of gK).

The next lemma is essential for our analysis of the interpolation operator. This
result was presented in [18, 19]. We include a proof because the four-dimensional case
is not discussed in [18, 19].

Lemma 6.1. There is a constant c, depending only on the shape regularity of the
tetrahedral triangulations Tn and the smoothness of S, such that

(6.12) ‖v‖2L2(SK) ≤ c
(
h−1‖v‖2L2(K) + h‖v‖2H1(K)

)
for all v ∈ H1(K), K ∈ QS

h .

Proof. We recall the following trace result (e.g., Theorem 1.1.6 in [2]) for a

reference simplex K̂:

‖v‖2
L2(∂ ̂K)

≤ c‖v‖L2( ̂K)‖v‖H1( ̂K) for all v ∈ H1(K̂).

The Cauchy inequality and the standard scaling argument yield for K ∈ QS
h

(6.13) ‖v‖2L2(∂K) ≤ c
(
h−1‖v‖2L2(K) + h‖v‖2H1(K)

)
for all v ∈ H1(K)

with a constant c that depends only on the shape regularity of K. Take K ∈ QS
h

and let SK = { (z, g(z)) | z ∈ ZK ⊂ R
3 } be as in Assumption 6.1. If SK coincides

with one of the three-dimensional faces of K, then (6.12) follows from (6.13). We
consider the situation that the graph SK divides K into two nonempty subdomains
Ki, i = 1, 2. Take i such that SK ⊂ ∂Ki. Let n = (n1, . . . , n4)

T be the unit outward
pointing normal on ∂Ki. For v ∈ H1(K), the following holds, where divy denotes the
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divergence operator in the y = (z, θ)-coordinate system (cf. Assumption 6.1):

2

∫
Ki

v
∂v

∂θ
dy =

∫
Ki

divy

(
0
v2

)
dy =

∫
∂Ki

n ·
(
0
v2

)
ds =

∫
∂Ki

n4v
2 ds

=

∫
SK

n4v
2 ds+

∫
∂Ki\SK

n4v
2 ds.

On SK , the normal n has direction (−∇zg(z), 1)
T , and thus n4(y) = (‖∇zg(z)‖2 +

1)−
1
2 holds. From Assumption 6.1 it follows that there is a generic constant c such

that 1 ≤ n4(z)
−1 ≤ c holds. Using this we obtain∫

SK

v2 ds ≤ c

∫
SK

n4v
2 ds ≤ c‖v‖L2(Ki)‖v‖H1(Ki) + c

∫
∂Ki\SK

v2 ds

≤ c‖v‖L2(K)‖v‖H1(K) + c

∫
∂K

v2 ds

≤ c
(
h−1‖v‖2L2(K) + h‖v‖2H1(K)

)
+ c

∫
∂K

v2 ds

≤ c
(
h−1‖v‖2L2(K) + h‖v‖2H1(K)

)
,

where in the last inequality we used (6.13).
We prove the following approximation result.
Theorem 6.2. For sufficiently smooth u defined on S we have

(6.14)

N∑
n=1

‖u− Ihu
e‖2Hk(Sn) ≤ ch2(2−k)‖u‖2H2(S), k = 0, 1,

‖u− (Ihu
e)−‖tn ≤ ch2‖u‖H2(Γ(tn)), n = 1, . . . , N,

‖u− (Ihu
e)+‖tn ≤ ch2‖u‖H2(Γ(tn)), n = 0, . . . , N − 1.

The constants c are independent of u, h,N .
Proof. Since S is a smooth three-dimensional manifold, the embedding H2(S) ↪→

C(S) holds. Hence, u ∈ C(S) implies ue ∈ C(U), and the nodal interpolant Ihu
e is

well-defined. Define vh = (Ihu
e)|S ∈ Wh. Using Lemma 6.1, we obtain for K ∈ QS

h

‖u− vh‖2L2(SK) ≤ c
(
h−1‖ue − Ihu

e‖2L2(K) + h‖ue − Ihu
e‖2H1(K)

)
.

Standard interpolation error bounds for Ih and summing over all K ∈ QS
h yields

‖u− vh‖2L2(S) ≤ ch3‖ue‖2H2(QS
h ).

We use QS
h ⊂ U and (6.11) to infer

‖u− vh‖2L2(S) ≤ cδh3‖u‖2H2(S).

Since we may assume δ � h, the result in (6.14) follows for k = 0. The same technique
is applied to show the result for k = 1:

‖∇S(u− vh)‖2L2(SK) ≤ c‖∇(ue − Ihu
e)‖2L2(SK)

≤ c(h−1‖∇(ue − Ihu
e)‖2L2(K) + h|∇(ue − Ihu

e)|2H1(K))

≤ ch‖ue‖2H2(K).
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Summing over all K ∈ QS
h and using (6.11) with δ � h then yields the first estimate

in (6.14). The second and third estimates follow by similar arguments, using that
ue is the extension in normal spatial direction and combining this with the three-
dimensional version of Lemma 6.1 and standard interpolation error bounds for Ihu

e
|T

with T a tetrahedron such that K = T × In ∈ QS
h .

6.3. Discretization error bound. The next theorem is the first main result of
this paper. It shows optimal convergence in the ||| · |||h norm.

Theorem 6.3. Let u ∈
◦
W be the solution of (2.7) and assume u ∈ H2(S),

u ∈ H2(Γ(t)) for all t ∈ [0, T ]. Let uh ∈ Wh be the solution of the discrete problem
(3.7) with a stabilization parameter σ as in Theorem 4.1. The following error bound
holds:

|||u− uh|||h ≤ ch(‖u‖H2(S) + sup
t∈[0,T ]

‖u‖H2(Γ(t))).

Proof. For the solution u ∈ H2(S) let eI = u− (Ihu
e)|S denote the interpolation

error and e = u − uh the discretization error. The stability result in (4.1) with W b

replaced by Wh and the continuity result (5.1) imply in a standard way, cf., e.g., [12],

|||e|||h ≤ |||eI |||h + c

(
‖eI‖W b +

N−1∑
n=0

‖[eI ]n‖tn
)
.

Using the first interpolation bound in Theorem 6.2 and Hn ⊂ L2(Sn), we get

‖eI‖2W b =
N∑

n=1

‖(ėI)n‖2H′
n
+ ‖eI‖2H ≤

N∑
n=1

‖(ėI)n‖2L2(Sn) + ‖eI‖2H

≤ c

N∑
n=1

‖(eI)n‖2H1(Sn) ≤ ch2‖u‖2H2(S).

(6.15)

Furthermore, applying the result in the second and the third interpolation bounds in
Theorem 6.2 we obtain

N−1∑
n=0

‖[eI ]n‖tn ≤ ‖(eI)+‖t0 +
N−1∑
n=1

(‖(eI)n−‖tn + ‖(eI)n+‖tn)

≤ c h2 (Δt)−1 sup
n=0,...,N−1

‖u‖H2(Γ(tn)) ≤ c h sup
t∈[0,T ]

‖u‖H2(Γ(t)).

This together with (6.15) proves the theorem.

7. Second order convergence. In this section we derive an error estimate
‖u− uh‖∗ ≤ ch2 for Δt ∼ h in a suitable norm with the help of a duality argument.
To formulate an adjoint problem, we define a “reverse time” in the space-time manifold
S. Let X(t) be the Lagrangian particle path given by w and initial manifold Γ0:

dX

dt
(t) = w(X(t), t), t ∈ [0, T ], X(0) ∈ Γ0.

Hence, Γ(t) = {X(t) | X(0) ∈ Γ0 }. Define, for t ∈ [0, T ],

X̃(t) := X(T − t), Γ̃(t) := Γ(T − t), w̃(x, t) := −w(x, T − t), x ∈ Ω.
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From

dX̃

dt
(t) = −dX

dt
(T − t) = −w(X(T − t), T − t) = w̃(X̃(t), t),

it follows that X̃(t) describes the particle paths corresponding to the flow w̃ with

X̃(0) = X(T ) ∈ Γ(T ). Hence, Γ̃(t) = { X̃(t) | X̃(0) ∈ Γ(T ) = Γ̃0 }. We introduce the
material derivative with respect to the flow field w̃:

v̌(x, t) :=
∂v

∂t
(x, t) + w̃(x, t) · ∇v(x, t), (x, t) ∈ S.

For a given f∗ ∈ L2(S), we consider the following dual problem:

v̌ − νdΔ˜Γv + σ

∫
˜Γ(t)

v ds = f∗ on Γ̃(t), t ∈ [0, T ],

v(·, 0) = 0 on Γ̃0 = Γ(T ).

(7.1)

The problem (7.1) is of integro-differential type. From the analysis of [26] it follows
that a weak formulation of this problem as in (2.7), with the bilinear form a(·, ·)
replaced by aσ(·, ·), has a unique solution v ∈

◦
W . As is usual in the Aubin–Nitsche

duality argument, we need a suitable regularity result for the dual problem (7.1). In
the literature we did not find the regularity result that we need. Therefore, we derived
the result given in Theorem 7.1. A proof is given in the appendix. A corollary of this
theorem gives the regularity result for the dual problem that we need.

Theorem 7.1. Consider the parabolic surface problem

u̇− νdΔΓu = f on Γ(t), t ∈ (0, T ],

u(·, 0) = 0 on Γ0.
(7.2)

Let S be sufficiently smooth (precise assumptions are given in the proof) and f ∈
L2(S). Then the unique weak solution u ∈

◦
W of (7.2) satisfies u ∈ H1(S), u ∈

H2(Γ(t)) for almost all t ∈ [0, T ], and

(7.3) ‖u‖2H1(S) +

∫ T

0

‖u‖2H2(Γ(t)) dt ≤ c‖f‖20

with a constant c independent of f . If, in addition, f ∈ H1(S) and f |Γ0 = 0, then
u ∈ H2(S) and

(7.4) sup
t∈[0,T ]

‖u‖H2(Γ(t)) + ‖u‖H2(S) ≤ c‖f‖H1(S)

with a constant c independent of f .
Corollary 7.2. Let S be sufficiently smooth (as in Theorem 7.1). Assume

f∗ ∈ H1
0 (S). Then the unique weak solution v ∈W0 of (7.1) satisfies v ∈ H2(S) and

(7.5) sup
t∈[0,T ]

‖v‖H2(Γ(t)) + ‖v‖H2(S) ≤ c‖f∗‖H1(S)

with a constant c independent of f∗.
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Proof. We have v ∈W0 ⊂ L2(S). Hence,
∫
˜Γ(t)

v ds ∈ L2(S) and∥∥∥∥∥
∫
˜Γ(t)

v ds

∥∥∥∥∥
0

≤
(

max
t∈[0,T ]

|Γ̃(t)|
)
‖v‖0 ≤ c ‖f∗‖H′ ≤ c ‖f∗‖0.

Therefore, v solves the parabolic surface problem

v̌ − νdΔ˜Γv = F on Γ̃(t),

v(·, 0) = 0 on Γ̃0

with F := f∗−σ
∫
˜Γ(t)

v ds ∈ L2(S) and ‖F‖0 ≤ c‖f∗‖0. The first part of Theorem 7.1

yields v̌ ∈ L2(S) and ‖v̌‖0 ≤ c‖F‖0. Hence, employing the Leibniz formula, we check
∂
∂t

∫
˜Γ(t)

v ds ∈ L2(S). This and v ∈ H yields
∫
˜Γ(t)

v ds ∈ H1(S) together with a

corresponding a priori estimate. Therefore, F ∈ H1(S) and ‖F‖H1(S) ≤ c ‖f∗‖H1(S).

From v(·, 0) = 0 on Γ̃0 and f∗|
˜Γ0

= 0, we get F |
˜Γ0

= 0. Applying the second part of

the theorem completes the proof.
Lemma 7.3. Assume v ∈ H2(S) solves (7.1) for some f∗ ∈ H1

0 (S). Define

v∗(x, t) := v(x, T − t), x ∈ Γ(t) = Γ̃(T − t). Then one has

(7.6) 〈ż, v∗〉b + aσ(z, v
∗) + d(z, v∗) = (z, f∗)0 for all z ∈Wh +H1(S).

Proof. From the definitions and using the Leibniz rule, we obtain (note that v∗

is continuous, and hence v∗,n− = v∗,n+ = v∗,n)

〈ż, v∗〉b + aσ(z, v
∗) + d(z, v∗)

=

N∑
n=1

∫ tn

tn−1

∫
Γ(t)

żv∗ + zv∗divΓw ds dt+

N∑
n=1

([z]n−1, v∗,n−1)tn−1

+ νd(∇Γz,∇Γv
∗)0 + σ

∫ T

0

∫
Γ(t)

z dx

∫
Γ(t)

v∗ dx dt

=
N∑

n=1

(
(zn−, v

∗,n)tn − (zn−1
+ , v∗,n−1)tn−1

)
−

N∑
n=1

∫ tn

tn−1

∫
Γ(t)

zv̇∗ ds dt

+

N∑
n=1

([z]n−1, v∗,n−1)tn−1 + νd(∇Γz,∇Γv
∗)0 + σ

(
z,

∫
Γ(t)

v∗ dx

)
0

= −
(
v̇∗ + νdΔΓv

∗ − σ

∫
Γ(t)

v∗ dx, z

)
0

.

Now note that on S

v̇∗(·, t) = ∂v∗

∂t
(·, t) +w(·, t)∇v∗(·, t) = −∂v

∂t
(·, T − t)− w̃(·, T − t) · ∇v(·, T − t)

= −v̌(·, T − t),

and ΔΓ(t)v
∗(·, t) = Δ

˜Γ(T−t)v(·, T − t). From this and the equation for v in (7.1), it

follows that v̇∗ + νdΔΓv
∗ − σ

∫
Γ(t)

v∗ dx = −f∗ on S. This completes the proof.

Denote by ‖ · ‖−1 a norm dual to the H1
0 (S) norm with respect to the L2-duality.

In the next theorem we present the second main result of this paper.
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Theorem 7.4. Assume that S is sufficiently smooth (as in Theorem 7.1) and
that the assumptions of Theorem 6.3 are satisfied. Then the following estimate holds:

‖u− uh‖−1 ≤ ch2

(
‖u‖H2(S) + sup

t∈[0,T ]

‖u‖H2(Γ(t))

)
.

Proof. Take arbitrary f∗ ∈ H1
0 (S). Using the relation in (7.6), Galerkin or-

thogonality, the second continuity result in Lemma 5.1, and the error estimate from
Theorem 6.3, we obtain, with e := u− uh, eI = v∗ − Ih(v

∗)e ∈ W b,

(e, f∗)0 = 〈ė, v∗〉b + aσ(e, v
∗) + d(e, v∗) = 〈ė, eI〉b + aσ(e, eI) + d(e, eI)

≤ c|||e|||h

(
‖eI‖W b +

N−1∑
n=1

‖[eI ]n‖tn + ‖eI‖T

)

≤ ch

(
‖u‖H2(S) + sup

t∈[0,T ]

‖u‖H2(Γ(t))

)(
‖eI‖W b +

N−1∑
n=1

‖[eI ]n‖tn + ‖eI‖T

)
.

Applying interpolation estimates as in the proof of Theorem 6.3, we get

‖eI‖W b +
N−1∑
n=1

‖[eI ]n‖tn + ‖eI‖T ≤ c h

(
‖v∗‖H2(S) + sup

t∈[0,T ]

‖v∗‖H2(Γ(t))

)
.

Hence, using (7.5), we get

(e, f∗)0 ≤ ch2

(
‖u‖H2(S) + sup

t∈[0,T ]

‖u‖H2(Γ(t))

)(
‖v∗‖H2(S) + sup

t∈[0,T ]

‖v∗‖H2(Γ(t))

)

≤ ch2

(
‖u‖H2(S) + sup

t∈[0,T ]

‖u‖H2(Γ(t))

)
‖f∗‖H1(S).

From this, the result immediately follows.
Remark 7.1. Numerical experiments suggest that the method has second order

convergence in the L2(S) norm. We proved the second order convergence only in the
weaker H−1(S) norm. The reason for using this weaker norm is that our arguments
use isotropic polynomial interpolation error bounds on four-dimensional space-time
elements. These bounds require isotropic space-time H2(S)-regularity bounds for the
solution. For our class of parabolic problems such isotropic regularity bounds are
more restrictive than in an elliptic case, since the solution is in general less regular
in time than in space. Due to this, instead of the common f∗ ∈ L2(S) regularity
assumption for the right-hand side of the dual problem, we need the stronger as-
sumption f∗ ∈ H1(S) to guarantee a H2(S)-regularity of the solution. This stronger
regularity requirement for f∗ results in the weaker H−1(S) error norm. It may be
possible to derive second order convergence in the L2(S)-norm if suitable anisotropic
interpolation estimates are available. So far, however, we have not been able to derive
such estimates for the finite element space-time trace space. This topic is left for
future research.

8. Conclusions and outlook. We analyzed an Eulerian method based on traces
on the space-time manifold of standard bilinear space-time finite elements. A stabil-
ity result is derived in which there are no restrictions on the size of Δt and h. This
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indicates that the method has favorable robustness properties. We proved first and
second order discretization error bounds for this method. To the best of our knowl-
edge, this is the first Eulerian finite element method which is proved to be second
order accurate for PDEs on evolving surfaces. In the applications that we consider,
we restrict to first order finite elements, due to the fact that the approximation of
the evolving surface causes an error (geometric error) of size O(h2), which is consis-
tent with the interpolation error for P1 elements. Results of numerical experiments,
which illustrate the second order convergence and excellent stability properties of the
method, are presented in [15, 26, 16]. These experiments clearly indicate that second
order convergence holds in L2(S) norm, which is stronger than the H−1(S) norm
used in our analysis. The experiments also show that the stabilization term (σ > 0
in (3.6)) improves the discrete mass conservation of the method, but is not essential
for stability or overall accuracy. Essential for our analysis is the condition (2.13),
which allows a strong convection of Γ(t) but only small local area changes. Numerical
experiments indicate that the latter is not critical for the performance of the method.

There are several topics that we consider to be of interest for further research.
Maybe an error analysis that needs weaker assumptions (than (2.13)) or avoids the sta-
bilization can be developed. A second interesting topic is the derivation of anisotropic
interpolation error estimates which may then lead to a second order error bound in the
L2(S) norm. A further open problem is the derivation of rigorous error estimates for
the case when the smooth space-time manifold S is approximated, e.g., by a piecewise
tetrahedral surface.

Appendix A. Proof of Theorem 7.1. Without loss of generality we may set

νd = 1. The weak formulation of (7.2) is as follows: determine u ∈
◦
W such that

(A.1) 〈u̇, v〉+ (∇Γu,∇Γv)0 = (f, v)0 for all v ∈ H.

The proof is based on techniques as in [5, 13]. We define a Galerkin solution in
a sequence of nested spaces spanned by a special choice of smooth basis functions.
We derive uniform energy estimates for these Galerkin solutions, and based on a
compactness argument these estimates imply a bound in the ‖ · ‖H1(S) norm for the
weak limit of these Galerkin solutions. We use a known H2-regularity result for
the Laplace–Beltrami equation on a smooth manifold and energy estimates for the
material derivative of the Galerkin solutions to derive a bound on the ‖ · ‖H2(S) norm
for the weak limit of these Galerkin solutions.

1. Galerkin subspace and boundedness of L2-projection. We introduce Galerkin

subspaces of
◦
W , similar to those used in [5]. For this we need a smooth diffeomor-

phism between S and the cylindrical reference domain Ŝ := Γ0 × (0, T ). We use a
Langrangian mapping from Γ0 × [0, T ] to the space-time manifold S, as in [26]. The
velocity field w and Γ0 are sufficiently smooth such that for all y ∈ Γ0, the ODE
system

Φ(y, 0) = y,
∂Φ

∂t
(y, t) = w(Φ(y, t), t), t ∈ [0, T ],

has a unique solution x := Φ(y, t) ∈ Γ(t). (Recall that Γ(t) is transported with the
velocity field w.) The corresponding inverse mapping is given by Φ−1(x, t) := y ∈ Γ0,
x ∈ Γ(t). The Lagrangian mapping Φ induces a bijection

F : Γ0 × [0, T ] → S, F (y, t) := (Φ(y, t), t).

We assume this bijection to be a C2-diffeomorphism between these manifolds.
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For a function u defined on S we define û = u ◦ F on Γ0 × (0, T ):

û(y, t) = u(Φ(y, t), t) = u(x, t).

Vice versa, for a function û defined on Γ0 × (0, T ), we define u = û ◦ F−1 on S:

u(x, t) = û(Φ−1(x, t), t) = û(y, t).

By construction, we have

(A.2) u̇(x, t) =
∂û

∂t
(y, t).

We need a surface integral transformation formula. For this we consider a local
parametrization of Γ0, denoted by μ : R2 → Γ0, which is at least C2 smooth. Then,
Φ ◦ μ := Φ(μ(·), t) defines a C2 smooth parametrization of Γ(t). For the surface
measures d ŝ and ds on Γ0 and Γ(t), respectively, we have the relations

(A.3) ds = γ(·, t) d ŝ, d ŝ = γ̃(·, t) ds

with functions γ and γ̃ that are both C1 smooth, bounded, and uniformly bounded
away from zero: γ ≥ c > 0 on Γ0 × (0, T ) and γ̃ ≥ c > 0 on S; cf. section 3.3 in [26].

Denote by φ̂j , j ∈ N the eigenfunctions of the Laplace–Beltrami operator on Γ0.

Define φj : S → R by φj(Φ(y, t), t) := φ̂j(y), and note that due to (A.2) one has

φ̇j = 0. The set {φj(·, t) | j ∈ N} is dense in H1(Γ(t)). We define the spaces

XN (t) = span{φ1(·, t), . . . , φN (·, t)},

XN =

⎧⎨⎩
N∑
j=1

uj(t)φj(x, t) | uj ∈ H1(0, T ;R), uj(0) = 0, 1 ≤ j ≤ N

⎫⎬⎭ .

Below, in step 2, we construct a Galerkin solution in the subspaceXN ⊂
◦
W . Note that

for v ∈ XN , we have v(·, t) ∈ XN(t). In the analysis in step 6, we need H1-stability of
the L2-projection on XN (t). This stability result is derived in the following lemma.

Lemma A.1. Denote by PXN (t) the L2-orthogonal projector on XN (t), i.e., for
ζ ∈ L2(Γ(t)), ∫

Γ(t)

PXN (t)ζ v ds =

∫
Γ(t)

ζv ds for all v ∈ XN (t).

For ζ ∈ H1(Γ(t)), the estimate

(A.4) ‖∇ΓPXN (t)ζ‖L2(Γ(t)) ≤ C ‖ζ‖H1(Γ(t))

holds with a constant independent of N and t.
Proof. Fix some t ∈ (0, T ) and let γ be a smooth and positive function on

Γ0 defined in (A.3), and then (f, g)γ :=
∫
Γ0
fg γ ds defines a scalar product on

L2(Γ0). This scalar product induces a norm equivalent to the standard L2(Γ0)-norm.
For given f ∈ H1(Γ0) let fN be an (·, ·)γ -orthogonal projection on XN (0). Since
ΔΓfN ∈ XN (0), we have

∫
Γ0
γ fΔΓfN ds =

∫
Γ0
γ fNΔΓfN ds. Using this and partial

integration, we obtain the identity∫
Γ0

|∇ΓfN |2 γ ds =
∫
Γ0

(∇ΓfN∇Γγ) (f − fN) ds+

∫
Γ0

(∇ΓfN∇Γf)γ ds.
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Applying the Cauchy inequality and positivity and smoothness of γ, we get∫
Γ0

|∇ΓfN |2 ds ≤ c

∫
Γ0

f2 + |∇Γf |2 ds,

i.e., the (·, ·)γ-orthogonal projection on XN (0) is H1-stable. For ζ ∈ H1(Γ(t)) define

ζ̂ = ζ ◦ Φ ∈ H1(Γ0) and ζ̂N = ζN ◦ Φ ∈ XN (0). From∫
Γ0

ζ̂N ψ̂Nγ dŝ =

∫
Γ(t)

ζNψN ds =

∫
Γ(t)

ζψN ds =

∫
Γ0

ζ̂ψ̂Nγ dŝ for all ψ̂N ∈ XN (0),

it follows that ζ̂N is the (·, ·)γ-orthogonal projection of ζ̂. Using the H1-stability of
this projection, the smoothness of Φ and Φ−1, and (A.3), we obtain

‖∇ΓζN‖L2(Γ(t)) ≤ C ‖∇Γζ̂N‖L2(Γ0) ≤ C ‖ζ̂‖H1(Γ0) ≤ C ‖ζ‖H1(Γ(t)).

Thus, the estimate in (A.4) holds.
2. Existence of Galerkin solution uN ∈ XN and its boundedness in H1(S) uni-

formly in N . We look for a Galerkin solution uN ∈ XN to (7.2). We consider
the following projected surface parabolic equation: determine uN = (u1, . . . uN) ∈
H1(0, T ;RN) such that for uN(x, t) :=

∑N
j=1 uj(t)φj(x, t), we have uN (·, 0) = 0 and

(A.5)

∫
Γ(t)

(u̇N −ΔΓuN)φ ds =

∫
Γ(t)

fφ ds for all φ ∈ XN(t), a.e. in t ∈ [0, T ].

In terms of uN , this can be rewritten as a linear system of ODEs of the form

(A.6) M(t)
duN

dt
+A(t)uN (t) = b(t), uN (0) = 0.

The matrices M,A are symmetric positive semidefinite. Since for the eigenfunctions
we have φ̂i ∈ C2(Γ0), see [1], and the diffeomorphism F is C2-smooth, we have
M,A ∈ W 1

∞(0, T ;RN×N). The smallest eigenvalue of M(t) is bounded away from
zero uniformly in t ∈ [0, T ]. The right-hand side satisfies b ∈ L2(0, T ;RN). By the
theory of linear ordinary differential equations, e.g., Proposition 6.5 in [20], we have
existence of a unique solution uN ∈ H1(0, T ;RN). Moreover, if f ∈ H1(S), then
b ∈ H1(0, T ;RN) and uN ∈ H2(0, T ;RN). For the corresponding Galerkin solution

uN ∈ XN , given by uN (x, t) =
∑N

j=1 uj(t)φj(x, t), we derive energy estimates. Taking

φ = uN (·, t) ∈ XN(t) in (A.5) and applying partial integration, we obtain the identity

1

2

d

dt

∫
Γ(t)

u2N ds+

∫
Γ(t)

|∇ΓuN |2 − 1

2
(divΓw)u2N ds =

∫
Γ(t)

fuN ds.

Applying the Cauchy inequality to handle the term on the right-hand side and using
a Gronwall argument with uN(·, 0) = 0 yields

sup
t∈(0,T )

∫
Γ(t)

u2N ds+

∫ T

0

∫
Γ(t)

|∇ΓuN |2 ds dt ≤ C‖f‖20,

and thus

(A.7) ‖uN‖H ≤ C‖f‖0
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with a constant independent of N . Taking φ = u̇N (·, t) ∈ XN(t) in (A.5) and using
the identity∫
Γ

∇Γv · ∇Γv̇ ds =
1

2

d

dt

∫
Γ

|∇Γv|2 ds−
1

2

∫
Γ

|∇Γv|2divΓw ds+

∫
Γ

D(w)∇Γv · ∇Γv ds

with the tensor D(w)ij =
1
2 (

∂wj

∂xi
+ ∂wi

∂xj
) (cf. (2.11) in [5]) yields∫

Γ(t)

u̇2N ds+
1

2

d

dt

∫
Γ(t)

|∇ΓuN |2 ds

=
1

2

∫
Γ(t)

|∇ΓuN |2divΓw ds−
∫
Γ(t)

D(w)∇ΓuN · ∇ΓuN ds+

∫
Γ(t)

fu̇N ds.

Employing the Cauchy inequality and a Gronwall inequality with uN(·, 0) = 0, we
obtain

(A.8) sup
t∈(0,T )

∫
Γ(t)

|∇ΓuN |2 ds+
∫ T

0

∫
Γ(t)

|u̇N |2 ds dt ≤ C‖f‖20

with a constant independent of N . From the results in (A.7) and (A.8) we obtain the
uniform boundedness result

(A.9) ‖uN‖H1(S) ≤ C‖f‖0.

3. The weak limit u solves (A.1) and ‖u‖H1(S) ≤ C‖f‖0 holds. From the uniform
boundedness (A.9) it follows that there is a subsequence, again denoted by (uN )N∈N,
that weakly converges to some u ∈ H1(S):

(A.10) uN ⇀ u in H1(S).

As a direct consequence of this weak convergence and (A.9) we get

(A.11) ‖u‖H1(S) ≤ c‖f‖0.

We recall an elementary result from functional analysis. Let X , Y be normed spaces,
T : X → Y linear and bounded, and (xn)n∈N a sequence in X . Then the following
holds:

(A.12) xn ⇀ x in X ⇒ Txn ⇀ Tx in Y.

Hence, from (A.10) we obtain the following, which we need further on:

(A.13) u̇N ⇀ u̇ in L2(S), uN ⇀ u in H.

We now show that u is the solution of (A.1). Define X̂N := span{φ̂1, . . . , φ̂N} and note

that ∪N∈NX̂N is dense in H1(Γ0). The set Ĉ = { t →
∑n

j=0 t
jψ̂j | ψ̂j ∈ X̂N , n,N ∈

N } is dense in L2(0, T ;H1(Γ0)). Using this and Lemma 3.3 in [26], it follows that
C = {

∑n
j=0 t

jψj(x, t) | ψj(·, t) ∈ XN (t), n,N ∈ N } is dense in H . Consider ψ(x, t) =

tjφk(x, t). From (A.5) it follows that for N ≥ k, we have∫ T

0

∫
Γ(t)

u̇Nψ +∇ΓuN · ∇Γψ ds dt =

∫ T

0

∫
Γ(t)

fψ ds dt,
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and using (A.10) it follows that this equality holds with uN replaced by u. From
linearity and density of C in H we conclude that u ∈ H1(S) ⊂ W solves (A.1). It
remains to check whether u satisfies the homogeneous initial condition.

From the weak convergence in H1(S), the boundedness of the trace operator
T : H1(S) → L2(Γ0), Tv = v(·, 0), and (A.12) it follows that uN (·, 0) converges
weakly to u(·, 0) in L2(Γ0). From the property uN (·, 0) = 0 for all N it follows that

u(·, 0) = 0 holds. Hence, u ∈
◦
W holds.

4. The estimate ‖∇2
Γu‖0 ≤ c‖f‖0 holds. The function u is a (weak) solution of

−ΔΓu = f − u̇ on Γ(t) with f(·, t) − u̇(·, t) ∈ L2(Γ(t)) for almost all t ∈ [0, T ]. The
H2-regularity theory for a Laplace–Beltrami equation on a smooth manifold (see [1])
yields u ∈ H2(Γ(t)) and

(A.14) ‖u‖H2(Γ(t)) ≤ Ct‖f(·, t)− u̇(·, t)‖L2(Γ(t)).

Due to the smoothness of S, we can assume Ct to be uniformly bounded w.r.t. t.
Using this and (A.11), we get

(A.15) ‖∇2
Γu‖20 ≤

∫ T

0

‖u‖2H2(Γ(t)) dt ≤ c

∫ T

0

‖f(·, t)− u̇(·, t)‖2L2(Γ(t)) dt ≤ c‖f‖20.

From this and (A.11), the result (7.3) follows.
5. The estimate supt∈[0,T ] ‖u‖H2(Γ(t)) + ‖∇Γu̇‖0 ≤ c‖f‖H1(S) holds. We will use

the assumptions f ∈ H1(S) and f |t=0 = 0. We need a commutation formula for the
material derivative and the Laplace–Beltrami operator. To derive this, we use the
notation ∇Γg = (D1g, . . . , Ddg)

T for the components of the tangential derivative and
the following identity, given in Lemma 2.6 of [9]:

˙(Dig) = Diġ −Aij(w)Djg with Aij(w) = Diwj − νiνsDjws, nΓ = (ν1, . . . , νd)
T .

Let ∇Γw = (∇Γw1 . . .∇Γwd) ∈ R
d×d, A = ∇Γw − nΓn

T
Γ (∇Γw)T , and ei the ith

basis vector in R
d. This relation can be written as ˙(Dig) = Diġ − eTi A∇Γg. For

a vector function g = (g1, . . . , gd)
T , this yields ˙(divΓg) = divΓġ − tr(A∇Γg). For a

scalar function g, the relation yields ˙(∇Γg) = ∇Γġ − A∇Γg. Taking g = ∇Γf thus
results in the following relation:

(A.16) ˙(ΔΓg)−ΔΓġ = −divΓ(A∇Γg)− tr(A∇2
Γg) =: R(w, g).

We take φ = φi (1 ≤ i ≤ N) in (A.5). Recall that from f ∈ H1(S) and smooth-
ness of S it follows that for b,M,A in (A.6) we have b ∈ H1(0, T ;RN) and M,A ∈
W 1

∞(0, T ;RN×N) and thus uN ∈ H2(0, T ;RN). Hence, differentiation w.r.t. t of (A.5)
with φ = φi is allowed, and using the Leibniz formula, φ̇i = 0, and the commutation
relation (A.16), we obtain, with vN := u̇N ,∫

Γ(t)

(v̇N −ΔΓvN )φi ds

= −
∫
Γ(t)

(u̇N −ΔΓuN)φidivΓw ds+

∫
Γ(t)

(ḟ + fdivΓw +R(w, uN))φi ds.

(A.17)
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We multiply this equation by u̇i(t) and sum over i to get

1

2

d

dt

∫
Γ(t)

v2N ds+

∫
Γ(t)

|∇ΓvN |2 ds

(A.18)

= −
∫
Γ(t)

(u̇N −ΔΓuN)vNdivΓw ds+

∫
Γ(t)

(ḟ + fdivΓw +R(w, uN ))vN ds

+
1

2

∫
Γ(t)

v2NdivΓw ds.

To treat the first term on the right-hand side, we apply partial integration and the
Cauchy inequality:∣∣∣∣∣

∫
Γ(t)

(u̇N −ΔΓuN)vNdivΓw ds

∣∣∣∣∣
≤ c

(
‖u̇N‖2L2(Γ(t)) + ‖∇ΓuN‖2L2(Γ(t))

)
+

1

4
‖∇ΓvN‖2L2(Γ(t)).

For the second term we eliminate the second derivatives of uN that occur in R(w, uN )
using the partial integration identity

∫
Γ
fD2

i g ds = −
∫
Γ
DifDig ds+

∫
Γ
fDigκνi ds.

Thus we get∣∣∣∣∣
∫
Γ(t)

(ḟ + fdivΓw +R(w, uN ))vN ds

∣∣∣∣∣
≤ c(‖ḟ‖L2(Γ(t)) + ‖f‖L2(Γ(t)))‖vN‖L2(Γ(t)) + c‖uN‖H1(Γ(t))‖vN‖H1(Γ(t))

≤ c
(
‖ḟ‖2L2(Γ(t)) + ‖f‖2L2(Γ(t)) + ‖uN‖2H1(Γ(t)) + ‖u̇N‖2L2(Γ(t))

)
+

1

4
‖∇ΓvN‖2L2(Γ(t)).

The two terms 1
4‖∇ΓvN‖2L2(Γ(t)) can be absorbed by the term ‖∇ΓvN‖2L2(Γ(t)) on the

left-hand side in (A.18). Using the estimates (A.8), (A.9) and a Gronwall inequality,
we obtain from (A.18)

(A.19) sup
t∈(0,T )

∫
Γ(t)

v2N ds+

∫ T

0

∫
Γ(t)

|∇ΓvN |2 ds dt ≤ C
(
‖f‖2H1(S) + ‖vN‖2Γ0

)
.

Since uN ∈ H2(0, T ;RN), the function duN

dt is continuous, and from (A.6) we get
duN

dt (0) = M(0)−1b(0) = 0, due to the assumption f(·, 0) = 0 on Γ0. Therefore,

vN (x, 0) =
∑N

j=1
duj

dt (0)φj(x, 0) = 0 on Γ0. Using this in (A.19), we get

(A.20) sup
t∈[0,T ]

∫
Γ(t)

v2N dt+ ‖vN‖2H = sup
t∈[0,T ]

∫
Γ(t)

u̇2N dt+ ‖u̇N‖2H ≤ C‖f‖2H1(S)

uniformly inN . Hence, for a subsequence, again denoted by (vN )N∈N, we have vN ⇀ v
in H . This implies, cf. (A.12), vN ⇀ v in L2(S). Due to (A.13) and uniqueness of
weak limits, we obtain v = u̇, i.e.,

(A.21) vN ⇀ u̇ in H
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holds. Passing to the limit in (A.20) yields, cf. exercise 7.5.5 in [13],

sup
t∈[0,T ]

∫
Γ(t)

u̇2 dt+ ‖u̇‖H ≤ C‖f‖H1(S),

which implies

(A.22) ‖∇Γu̇‖0 ≤ C‖f‖H1(S),

and by (A.14) it also implies

(A.23) sup
t∈[0,T ]

‖u‖H2(Γ(t)) ≤ C‖f‖H1(S).

6. The estimate ‖ü‖0 ≤ c‖f‖H1(S) holds. First we show ü ∈ H ′. For arbitrary
ζ ∈ C1(S) and ζN = PXN (t)ζ(·, t) ∈ XN(t) with PXN (t) the orthogonal projection
defined in Lemma A.1, using the relation (A.17) we obtain

〈üN , ζ〉 =
∫ T

0

∫
Γ(t)

üNζ ds dt =

∫ T

0

∫
Γ(t)

üNζN ds dt =

∫ T

0

∫
Γ(t)

v̇NζN ds dt

=

∫ T

0

∫
Γ(t)

[(ḟ +ΔΓvN )− (u̇N −ΔΓuN)divΓw + fdivΓw +R(w, uN )]ζN ds dt.

Applying partial integration, the Cauchy inequality, Lemma A.1, and the estimates
(A.8) and (A.19), we get

| 〈üN , ζ〉 | ≤ c ‖f‖H1(S)

(∫ T

0

‖ζN‖2L2(Γ(t)) + ‖∇ΓζN‖2L2(Γ(t)) dt

) 1
2

≤ c ‖f‖H1(S)‖ζ‖H .

Since C1(S) is dense in H , we get üN ∈ H ′ and ‖üN‖H′ ≤ c ‖f‖H1(S), uniformly in
N . Take ζ ∈ C1

0 (S). Recall that u̇N ⇀ u̇ in L2(S); cf. (A.13). Using this we get

〈ü, ζ〉 := −
∫ T

0

∫
Γ(t)

u̇ζ̇ + u̇ζdivΓw ds dt = − lim
N→∞

∫ T

0

∫
Γ(t)

u̇N ζ̇ + u̇NζdivΓw ds dt

= lim
N→∞

〈üN , ζ〉 ≤ sup
N

‖üN‖H′‖ζ‖H ≤ c‖f‖H1(S)‖ζ‖H .

Therefore, ü ∈ H ′ and ‖ü‖H′ ≤ c ‖f‖H1(S) and üN ⇀ ü in H ′. Thus, for vN = u̇N ,
v = u̇ we have, cf. (A.21),

(A.24) vN ⇀ v in H, v̇N ⇀ v̇ in H ′.

We take test function ψ(x, t) = tjφk(x, t) as in step 3. Using the relation (A.17), we
get for N ≥ k,

〈v̇N , ψ〉+ (∇ΓvN ,∇Γψ)0

= (ḟ +R(w, uN ), ψ)0 −
[
(u̇N , ψdivΓw)0 + (∇ΓuN ,∇Γ(ψdivΓw))0 − (f, ψdivΓw)

]
.

For N → ∞, due to uN ⇀ u in H1(S), we can replace uN by u, and since u is the
solution of (A.1), the term between square brackets vanishes. Using the weak limit
results in (A.24) and applying a density argument (as in step 3), we thus obtain

〈v̇, ξ〉+ (∇Γv,∇Γξ)0 = (ḟ +R(w, u), ξ)0 for all ξ ∈ H.
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From vN ⇀ v in W , boundedness of the trace operator from W to L2(Γ0), we obtain
vN (·, 0)⇀ v(·, 0) in L2(Γ0). Hence, due to vN |Γ0 = 0, we obtain v|Γ0 = 0. Therefore,
for the function v := u̇, we have v ∈ W0 is the weak solution of the surface parabolic
equation (A.1) with the right-hand side f∗ = ḟ + R(w, u) from L2(S). Hence, we
can apply the regularity result in (A.11) and get v̇ ∈ L2(S). Thus, ü ∈ L2(S) and

‖ü‖0 ≤ C‖f∗‖0 ≤ ‖ḟ‖0 +
( ∫ T

0 ‖u‖2H2(Γ(t)) dt
) 1

2 ≤ C‖f‖H1(S). Finally, note that from

this estimate and the results in (7.3), (A.22), (A.23), we obtain the H2-regularity
estimate in (7.4).
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