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ERROR ANALYSIS OF SOME FINITE ELEMENT METHODS
FOR THE STOKES PROBLEM

ROLF STENBERG

Abstract. We prove the optimal order of convergence for some two-dimen-
sional finite element methods for the Stokes equations. First we consider meth-
ods of the Taylor-Hood type: the triangular Pi - P2 element and the Qk -
Qk-\ > k ^ 2 , family of quadrilateral elements. Then we introduce two new
low-order methods with piecewise constant approximations for the pressure.
The analysis is performed using our macroelement technique, which is reviewed
in a slightly altered form.

1. Introduction

In this paper we will consider some finite element methods for the Stokes
equations: find the velocity u and the pressure p such that

-vAu + Vp = f   in Si,
(1.1) divu = 0   inQ,

u = 0   on dSi,

where flcRJ, ¿/ = 2, 3, is a bounded polygonal or polyhedral domain, f is
the given body force, and v > 0 is the viscosity.

The usual variational formulation of ( 1.1 ) is the following. Find u G Hq (Si)
and p e Iq(îî) such that

(divn,0) = O, q€L20(Si),

l/(Vu,Vv)-(divv,/7) = (f,v),        ve//0'(ß)\

where (•, •) denotes the inner product in L (SI), L (Si)    or L (Si)      , and
1L0(Si) the space

:;;(ß) = |/>€L2(fi)|^/>¿/x = oJ

For f € H l(Si)d this problem has a unique solution; cf. [11].
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496 ROLF STENBERG

The mixed method based on (1.2) reads as follows. Find uh e\h c Hr\(Si)
and phePhc L^Q) such that

(13) f(VuA,Vv) - (divT,pA) = (f,T),      \eVh,
(divu/!,¿7) = 0, qePh.

It is well known that in order to get a working method, the spaces \h and Ph
cannot be chosen arbitrarily. The method can be expected to behave well only
if the following "inf-sup condition" is satisfied:

(1.4) inf     sup  ip^lill >c>0.
(¥/>€/>„ o-Aev, HJIpIIo

The following fundamental result is classical.

Proposition 1.1 (Babuska [1, 2], Brezzi [6]). Suppose that the finite element
spaces Yh and Ph satisfy (1.4). Then the system (1.3) has a unique solution
(uh,p„) satisfying

II« "Mi + \\P-PhWo $ C I mf ||u - v||, + mf \\p - q\\0j ,
where (u, p) is the solution to (1.2).

By now, this field of problems is rather well understood; there exist rather
general techniques for verifying the inf-sup condition [5, 14] and for the con-
struction of methods satisfying it. As a consequence, the collection of methods
which are known to be stable (i.e., satisfying (1.4)) is relatively large; cf., e.g.,
the recent book by Girault and Raviart [11].

The purpose of this paper is to extend the list of stable methods. In §3 we
consider two families of "Taylor-Hood" type methods, and in the last section
we introduce and analyze two new low-order methods. In the analysis we use
the macroelement technique, introduced by us in [14], which we recall in §2 in
a slightly more practical form.

The results of this paper are trivially also valid when the same finite element
spaces are used for the equations of (nearly) incompressible elasticity.

Some of the results of this paper have also been obtained in [7].
Our notation is standard; cf. [8, 11].

2. The macroelement technique

For further reference we will here present the technique in a quite general
form for both two- and three-dimensional problems, even if all the methods
to be analyzed in this paper are two-dimensional. The presentation does not
cover all possible cases (such as, e.g., a mixing of triangles and quadrilaterals,
prismatic elements, etc.), but the modifications needed for a method not covered
are trivial.

Let ^ be a finite element partitioning of Í2 into subdomains which are
all assumed to be either triangles or convex quadrilaterals when Si c R , and
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tetrahedrons or convex hexahedrons when flcR . The partitioning is assumed
to satisfy the standard regularity and compatibility condition [8], but we will
not assume 9^ to be quasi-uniform. Let K denote the reference triangle,
tetrahedron, square, or cube, respectively, and for K eWh denote by FK the
affine, bilinear, or trilinear mapping from k onto K. Further, let V and P
be two polynomial spaces defined on k. We now assume that \h and Ph are
defined as

(2.1) V/! = {vG//01(fi)i/|v(x) = v(JF-1(x)), veV, Ke%},

and

(2.2a) Ph = {peL20(Si)\p(x)=p(F-i(x)), peP, KeW,},
or

(2.2b)      Ph = {peC(Si)nL¡(Si)\p(x)=p(F-](x)), peP, Ke%}.
Further, we make the assumption that V^ contains the piecewise linear, isopara-
metric bilinear, or isoparametric trilinear functions for the triangular and tetra-
hedral, quadrilateral, or hexahedral case, respectively. With the choice (2.2a),
Ph is assumed to contain the piecewise constants, whereas for (2.2b) it contains
the piecewise linear, isoparametric bilinear, or isoparametric trilinear functions.

A method where the pressure space is defined according to (2.2b) is usually
referred to as a "Taylor-Hood" method.

By a macroelement M we define a connected set of elements of which the
intersection of any two is either empty, a vertex, or one edge or face in R
and R , respectively.   Further, two macroelements M and M are said to
be equivalent if they can be mapped continuously onto each other, or more
precisely, if one can define a mapping G: M —> M such that:

(i)   G(M) = M.
(ii) If M = U"l, Kj, where K}-, j = 1, 2, ... , m , are the elements of M,

then Kj = G(K), j = 1, 2, ... , m , are the elements of M.
(iii)   G.~   = FK o F~l ,  j = 1, 2, ... , m, where FK   and F~   are the

mappings from the reference element k onto K. and K., respectively.
For a macroelement M we define the spaces

(2.3)      V0A/ = {v€//(¡(M)rf|v(x)=v^-1(x)),  vgV,  xeK,  K c M)

and

(2.4a)      PM = {peL2(M)\p(x)=p(F~\x)), peP, xeK, K c M},

or

(2.4b)      PM = {peC(M)\p(x)=ß(F~l(x)), peP, xeK, KcM},
depending on which of the possibilities (2.2a,b) is chosen. Further, we denote

NM = {pePM\(diw,p)M = 0, vevu/}.
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498 ROLF STENBERG

The collection of edges or faces, of the elements of ^h, in the interior of Si is
denoted by Yh.

The macroelement technique is given by the following

Theorem 2.1. Suppose that there is a fixed set of equivalence classes &., i —
1, 2, ... , q, of macroelements, a positive integer L, and a macroelement par-
titioning ^h such that:

(Ml) For each M e %■, i = \ ,2, ... , q, the space NM is one-dimensional,
consisting of functions that are constant on M.

(M2) Each M e Jfh belongs to one of the classes Wr i—\,2,...,q.
(M3) Each K e Wh is contained in at least one and not more than L macroele-

ments of Jfh.
(M4) Each T eYh is contained in the interior of at least one and not more

than L macroelements of Jih.
Then the stability inequality ( 1.4) is valid.
Proof. The proof will consist of a modification of some arguments given in [ 12,
14, 16].

We will need the following norm defined in Ph :

=   EhK\\VP\\l,K+EhT[\W\2ds,,2
\h

TeTk

where ([p])|r denotes the jump in p along the interelement boundary T and
hT stands for the length or area of T. In a macroelement M we similarly
define

\p\i= E 4ra;U+ E KÍ m\2ds,
KCM T&-M        JT

where YM denotes the interelement boundaries in the interior of M.
Now, since we assume that

-there is only a fixed number of different types of macroelements,
-all the elements in Wh are regular, and
-the condition (Ml) is satisfied,

one can prove (see [14, Lemma 3.1]) that there is a constant C independent of
Jth such that

(2.5) inf       sup     | |VV'IP|     >C>0,
<¥/>£/•,, OA€V0 M Mum\p\m

or alternatively stated: For a given p e Ph and M ^Jfh there is a vM e Yh ,
with \M = 0 in Si\M, such that

(2.6) (div y M,p)M>C\p\2M

and

(2-7) \vM\x,M<\P\M-
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We now define v e \h through v - Y,MeJf vM ■ This gives

(divv,p)=  £ (divvM, p)M>C E \P\2M>C\\P\\l

and

(2.8) IMI.îïCM^C E \*m\x,m<C E \P\M<CL\\p\\h,
MeJTp, MC.Jih

i.e., there is a constant C{ > 0 such that

(2.9) sup i&ÄfcCW,.
o/vev,,     ||v||,

Next, let us use an argument due to Verfiirth [16, Proposition 3.3] for show-
ing that (2.9) implies the corresponding condition with the L -norm for the
pressure, i.e., the inf-sup condition (1.4). We will show that the argument can
be used also when Ph consists of discontinuous functions and that the quasi-
uniformity assumption of [16] can be avoided.

Now, for every p e Ph there is a w e H0 (Si)   such that

(2.10) (divw,/»)>C2|b||o
and
(2.11) l|w|l,<IHo-
Further, one can show (cf. [9; 3, Lemma 3; 11, pp. 109-111]) that there is an
interpolant w e VA to w such that

1/2

(2.12) ¡Yl Olw-*ll¡U+ E hT   / |w-w|2¿/í        <C3|w|

and
(2.13) 11*11, <C4||w||,.
Using (2.10), (2.12), and (2.11), we now get

(div w, p) - (div(w - w), p) + (div w, p)

>(div(w-w),p) + C2||/>|È

= Eíw-w.Vp^+E  f ((*-")-n)M)ds + C
k&„ Ter/T

*-       E  ^2HW-*llo,JÏ+  E  hTX  /   |w-w|2¿/5

2
211^110

\\p\\h + c2\\p\\20

>-C3|w|l||/7iU + C2||/7||0

>-c3ibii0lbllA + c2iip|i;
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which combined with (2.11) and (2.13) gives

On the other hand, (2.9) can be written as

Hence, combining (2.14) and (2.15), we get

inf     sup    i, i, ..' i,    > min max{C, t, C* - C¿\ -  _, '   *
0^€P»OA€vJMI,l|P|lo '>° ' 5 6 Cl+C6

Let us close this section by giving some remarks on the difference between the
formulation of the macroelement technique given in [14] and that of this paper.
In [14], the macroelement partitioning Jfh was chosen so that each K e Wh was
a subset of exactly one M e Jih . Then the condition (Ml) ensures that we can
stabilize all pressure components except those which consist of constants on
each macroelement. To stabilize the piecewise constant pressure components,
we clearly need velocity degrees of freedom in the interior of the boundaries
between the macroelements. More precisely, we included the condition that
for any two neighboring macroelements M, , M2 of Jfh with fMnM ds ^ 0,
there is a veVt such that

supp v c M. u M-,   and     / v • n ds ^ 0./ v-ni
JM.nM,

The disadvantage of this choice is that in order to find a macroelement partition-
ing of nonoverlapping macroelements with this property, it is often necessary
to use many different kinds of macroelements or macroelements that are big. In
these cases one could claim that the asymptotic stability inequality so obtained
is not valid for most values of the mesh parameter used in practice. In many
cases it is not even evident how such a macroelement partitioning should be ob-
tained. A good example showing these problems is the tetrahedral Taylor-Hood
method. In [15] we analyzed this method with the technique of this paper. The
present technique also shows more clearly that the condition of the space NM
to consist of constants is really the only one that has to be verified.

We now use the above theorem for the analysis of some mixed methods not
earlier analyzed in the literature.

3. TWO FAMILIES OF METHODS

Let Si c R , and let ^ be a partitioning, the elements of which all are
assumed to be either triangles or quadrilaterals. For the index k > 2 we define
the families

yh = {yeH^Si)2\y¡KeRk(K)2, Ke%),

Ph = {peL¡(Si)nC(Si) |p.K eRk_,(K), Ke%},
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where Rm(K) = Pm(K) when K is a triangle, and Rm(K) = Qm(K) when K
is a quadrilateral. Pm(K) and Qm(K) are the usual polynomial spaces on K ;
cf. [8].

For these families we have the following optimal error estimates.

Theorem 3.1. For the solution (uh , ph) of'(1.3) with the method (3.1) we have

II«-Mli +11^ -Mo £ CA*(M*+i + W*)-
For ¿z convex domain Si we additionally have

\\u-nh\\0<Chk+i(\U\k+l + \p\k).

For the triangular case, the verification of the above estimates consists merely
of filling in some gaps; for k > 4 the result is covered by the analysis in [13]
and for k = 2 the result is well known [4, 16], but under the restrictions that
no K e Wh has two edges on the boundary dSi and that Wh is quasi-uniform.
We will prove stability for the case k = 3 . Exactly the same line of reasoning
applies in the case k = 2, and hence the above-mentioned restrictions on the
mesh are unnecessary.

Remark. In [15] we analyzed the corresponding three-dimensional tetrahedral
method for k = 2. There, the restriction on the mesh was that each tetrahe-
dron in Wh has at least one vertex in the interior of Si. An inspection shows,
however, that this restriction cannot be dropped.

Lemma 3.1. Let M be a macroelement consisting of three triangles, and define

\0M^{yeH^(M)2\ylKGP3(K)2, K c M},

PM = {peC(M)\p¡KeP2(K), KcM).

Then the corresponding nullspace NM is one-dimensional, consisting of functions
that are constant on M.

Proof. Let M = Kx U K2 u K} be as in Figure 1, and let t12, t23 and n,2, n23
be the tangents and normals, respectively, to the common edges. Let us first
consider K{ U K2 with the "local numbering" of the vertices as in the figure.
For p g PM we have Vp,^ e Px(Kf) , j = 1, 2, and the component Vp • t12
is continuous in the whole of Kll)K2. Hence, we can write

3

^P-tn)\KJ=T/aUXW J=l>2>
1=1

where X¡ •, i = 1, 2, 3, are the barycentric coordinates of Kj, j = 1, 2. Since
V/7-t12 is continuous in Kl UK2, we have aM = a/2 for / = 1, 2 . Now, choose
u € V0 K uK   (i.e., u = 0 in K3) such that u • n]2 = 0 in i,U K2 and

(■•Wur. =A„A2,(3A,,-1),        7 = 1,2.
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üTi

K:

ni2

n23

Í23

'12
Ä";

Figure 1

Then we have

(tàfu,P)M= -("' v^)aí = ~E / («-t12)(Vp-t12)¿/x
7=1--7

2       3

;_ i     ;_ i ^ A ,y=i /=i

area(íT1) area(A^2)
60

/area^,)     area(/C2)
V      60 + 60 -Ja12>

and the condition (divu, p)M = 0 implies that an = an = 0. By symmetric
reasoning we get q21 = a22 = 0. Next we choose u e V0 K , j = 1, 2, such
that u-n12 = 0 and

(u • Ii2 V, = V2/3, '        7 = 1,2.
If p 6 /V„ then we have

0 = (divu, p)M = -(u,Vp)M

= ~ a3j Ik X^kljkij dX =
2             area(AV)

A, .A, ,A,, dx =-. „„ j q3 ,        7 = 1,2,

that is, a3, = 0, 7=1,2. We have thus shown that

Vp-t12 = 0   inKiuK2.

The same reasoning gives that

V/7 • t23 = 0   in K2 U K3,
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and hence we have
Vp = 0   in K2,

i.e., p is a constant in K2.
Write next

3

(VP-ni2)|/C,=EMl
¡=l

and take u e V0 K uK   such that u ■ t12 = 0 and

("•"12)1*, =*ijt-2j(M\j-l)>        7 = 1,2.

Now, since Vp,K = 0, the condition for NM yields

0 = (divu,/>)^ = -(u, Vp)K]

= -E^7^nA2i(3A11-l)Aíl¿/x = -^|^L)^1,

i.e., /?, = 0, and analogously we get ß2 = 0. Upon choosing u e V0 ^   such
that u-t12 = 0 and (u-n12),£ = A,,A2,A31, we get

0 = (divu, p)M = (divu, />)*, = -t^jj^ßi,

i.e., ß} = 0 in K{ .  We thus have Vp • n12 = 0 in Kx, and hence p is a
constant in K{. Analogously, p € NM has to be a constant in AT3.

Since p G TVjy is a constant in 7Â'/., i = 1, 2, 3, and continuous, it is constant
in the whole of M.   u

When applying Theorem 2.1, we now use only one class of macroelements,
and the partitioning Jfh can be obtained by, e.g., taking one macroelement for
each element edge in the interior of Q. Then the assumptions of Theorem
2.1 are valid, and standard approximation theory gives the first estimate of
Theorem 3.1. The L -estimate for the velocity follows by the standard Aubin-
Nitsche trick.

Let us turn to the quadrilateral family. To our knowledge, only the lowest-
order method in this family has earlier been analyzed [4, 14].

Lemma 3.2. Let M be a macroelement consisting of two quadrilaterals, and
define

V0M = {yeHc\(M)2\vlK€Qk(K)2, K c M},

PM = {peC(M)\plKeQk_l(K), KcM}.

Then the corresponding nullspace NM is one-dimensional, consisting of functions
that are constant on M.
Proof. Let M = Ky\jK2 and M = £, u K2 be the macroelement and the ref-
erence macroelement, respectively, and denote by F = (F,, F2) the continuous
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Figure 2

piecewise bilinear mapping from M onto M as in Figure 2. For u 6 V0 M
and p € NM , we now have

0= -(divu,/>)M = (u, Vp)M
2

= ¿ Í û(x)TJF T(x)Vp(x)\JF(x)\dx,
~1 Jk,1=1

where JF is the Jacobian matrix of F, JF is the transpose of JF , and
\JF\ is the determinant of JF . Above, u(x) and Vp(x) are considered to be
column vectors. We now have

(3.2)
-T,~, d2F2(x) -dxF2JF(*)\JF   (*)- l-lÂ(x)    Ô,k(

(x)\
i) y

Since 77. and F2 are bilinear, this shows that

[\JF(x)\JF T(x)Vp(x)]^ eQ^kf,        i= 1, 2,

and hence

[û(x)TJF r(x)V/5(x)|7f(x)|]|^ e ß2fc_,(^),        /=1,2.

This means that the integrals

f ù(x)Tj;T(x)Vp(x)\JF(x)\dx,        i =1,2,k
are exactly evaluated by the composite (k + l)-point Gauss-Lobatto formula.

On the other hand, we can for the nodal degrees of freedom of u choose the
values at the (k + l)2 Gauss-Lobatto points in K¡, i =1,2.

Denote by 0 = a0, ax, ... , ak = 1 the Gauss-Lobatto points in the unit
interval, so that the Gauss-Lobatto points in the two squares are given by

xu = (fl;,a7),        i, j = 0, I, ... ,k,
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and
x2j = (ai + 1, aß ,        i,j = 0,\,...,k.

If we now choose û such that its only nonvanishing degree of freedom is suc-
cessively one of the components at the Gauss-Lobatto points in the interior of
K{ and K2, we get

JßT(x™)Vp(x™)\JF(*?ß\=Q,        i,j=l,2,...,k-\,  m =1,2.

Since \JF(x)\ ¿0 for all x, this shows that

(3.3) V/3(x™) = 0,        i,j=\,2,...,k-\, m=l,2.

Next, by choosing û so that the only nonvanishing degree of freedom is one of
1 2the components at x. • = Xq ., j = 1, 2,..., k — 1, we get the condition

(3 4)        'fT(*IjW(*Íj)\Jf (*í;)l + ÍXWWI = °>
j=\,2,...,k-\.

Here, the values at the points x,   , j = 1, 2,..., k - 1, are the limits

lim  j;T(x)Vp(x)\JF(x)\,

and analogously for x0;, 7 = 1, 2, ... , k - 1. At the common edge K{r\K2,
d2p is continuous, and an inspection shows that this is also the case with d2Fl,
i = 1,2. Hence, using (3.2), the condition (3.4) reduces to

(35)      ( ¿W*I,0     -^2(*l)-^2(*o,A (dMß + dMj)
l-w*;,) w*i,)+Vi(*o,) A    ö2/j(x|7)

Further, at a point x € Tí, U AT2 , the vectors

(ô27/2(x),-92F,(x))r   and   (-d,F2(x), d.F^x))7

are the normals to (<92F,(x), d2F2(x)) and (^^(x), dxF2(x)) respectively.
Hence, since AT, and K2 are regular, the determinant of the coefficient matrix
in (3.5) is nonvanishing, and we get

dxp(x[ß + d,p(x\ß = 0,        ; = 1, 2, ... , k - 1,

and

(3.6) d2p(xlkß = 0,       j=\,2,...,k-\.

Now (3.3) and (3.6) shows that d2p vanishes at the points x(.,, / = 1, 2, ... ,

k, j = 1, 2,..., k - 1, and xu, i = 0, 1, ... , k - 1, ; = 1,2,...,
k - 1.   Since d2p.^ e Qk_l k_2(K¡),  i = 1,2 (i.e., ¿72/3.-   is of the form
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S/Jo' S/=o aij^i^i > x = (*i, ^2) )' an(*tne aDove set 0I" points are unisolvent
m Qk-\ k-2$¡), / = 1, 2, we conclude that

(3.7) d2p = 0   in£,u£2.

As a consequence, p.? , / = 1, 2, is a polynomial of degree k - 1 in the
x,-variable alone. This mean that (3.3) also implies

(3.8) 3,p = 0   in^,U/?2.

Owing to the continuity of p , (3.7) and (3.8) imply that p is a constant in M.
The assertion is thus proved.   D

In the macroelement partitioning we now again choose one macroelement
for each element edge in the interior of Si. Hence, Proposition 1.1 and the
Aubin-Nitsche trick gives the estimates of Theorem 3.1.

4. TWO LOW-ORDER METHODS

Let again flcR , and let &h be a regular finite element partitioning of Si
into triangles or quadrilaterals. (It will become clear that one also could use a
mesh with both triangles and quadrilaterals.) The finite element method is now
defined through

Ph = {peL2Q(Si)\plKeP0(K), Ke<ë?h}

and

Vh = {v = (vi,v2)eH!)(Si)2\vilK€R[(K), v2¡KGS(K), Ke%},

where RX(K) = PX(K) if K is a triangle, and RX(K) = QX(K) for a quadrilat-
eral. For triangles we let S(K) — P2(K), and for quadrilaterals we define

S(K) = {g I g(x) = g(F~l(x)),  g G Q2(k)},

where FK is the bilinear mapping from the reference square k onto K and
Q2(k) is the space of "reduced biquadratic polynomials" (i.e., the quadratic
serendipity element) as defined in, e.g., [8, p. 63]. For a macroelement, we
analogously define

vo,A/ = {v = (Vw2)e//ö(M)2K|Ke*i(*)> v2lKeS(K), KcM}
and

PM = {peL2(M)\plKeP0(K), KcM}.
Let us now verify the following

Lemma 4.1. Let M be a macroelement consisting of elements which all have
one common vertex in the interior of M. Then NM consists of functions that
are constant on M.
Proof. Let K¡, i = 1, 2, ... k , be the elements of M, and denote pj = p,K ,
i = 1, 2, ... , k . Further, let x¡ and n;, i = 1, 2, ... , k , be the midpoints

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ERROR ANALYSIS FOR THE STOKES PROBLEM 507

Figure 3

and normals, respectively, to the edges in M. The common vertex we denote
by x0 , see Figure 3 for the triangular case.

The natural degrees of freedom for u e V0 M are the values of both com-
ponents of u at x0 and the values of «2 at x;, i = 1, 2,... , k . By taking
ueVOÍÍ such that the only nonvanishing degree of freedom is u2(x¡), the con-
dition (divu, p)M = 0 implies that pt = pj+i (with pK+i = p0 ) if nj. • e2 ^ 0,
where e2 = (0, 1). Hence, the space A^ can be at most two-dimensional,
and this happens only if two of the edges are parallel to e2. But in this case
one chooses u such that the only nonzero degree of freedom is u,(x0). The
condition for N^ then forces p to be constant on the whole of M.   o

If we now impose the restriction on Wh that every K € ^ has at least
one vertex in the interior of Si, then we can easily construct a macroelement
partitioning JKh satisfying (Ml )-(M4): For each interior vertex of the mesh one
takes one macroelement consisting of all the elements which have this vertex in
common.

Hence we get the following

Theorem 4.1. Suppose that every K eWh has at least one vertex in the interior
of Si. Then we have

l|u-Mi + llP-Mlo^CA(lul2 + K)-
For a convex domain Si we additionally have

||u-uj0< C/t2(|u|2 + |p|,).

Remark. The elements we have presented here are rather similar to two ele-
ments by Fortin [10]. In Fortin's methods, piecewise constants are used for the
pressure, whereas the basic velocity spaces of linear/bilinear functions are aug-
mented with quadratic functions which have as degrees of freedom the normal
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components of the velocity at the midpoints of the element edges. Hence, our
methods are simpler to implement. The calculation of the element matrices is
faster and the resulting linear system is more sparse. This property could be an
advantage when iterative solution methods are used.
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