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ERRORAND EXPECTATION IN LANGUAGE LEARNING:

THE CURIOUSABSENCE OFMOUSES INADULT SPEECH

Michael Ramscar Melody Dye Stewart M. McCauley

University of Tübingen Indiana University Cornell University

As children learn their mother tongues, they make systematic errors. For example, English-

speaking children regularly say mouses rather than mice. Because children’s errors are not explic-

itly corrected, it has been argued that children could never learn to make the transition to adult

language based on the evidence available to them, and thus that learning even simple aspects of

grammar is logically impossible without recourse to innate, language-specific constraints. Here,

we examine the role children’s expectations play in language learning and present a model of plu-

ral noun learning that generates a surprising prediction: at a given point in learning, exposure to

regular plurals (e.g. rats) can decrease children’s tendency to overregularize irregular plurals (e.g.

mouses). Intriguingly, the model predicts that the same exposure should have the opposite effect

earlier in learning. Consistent with this, we show that testing memory for items with regular plural

labels contributes to a decrease in irregular plural overregularization in six-year-olds, but to an in-

crease in four-year-olds. Our model and results suggest that children’s overregularization errors

both arise and resolve themselves as a consequence of the distribution of error in the linguistic en-

vironment, and that far from presenting a logical puzzle for learning, they are inevitable conse-

quences of it.*

Keywords: learning, morphology, prediction, negative evidence, nativism, noun plurals, overregu-

larization

Gregory: ‘Is there any other point to which you would wish to draw my attention?’

Holmes: ‘To the curious incident of the dog in the nighttime.’

Gregory: ‘The dog did nothing in the nighttime.’

Holmes: ‘That was the curious incident.’

(‘Silver Blaze’, by Sir Arthur Conan Doyle)

1. Introduction.Aracehorse vanishes, its trainer murdered. Sherlock Holmes lights

upon a crucial piece of evidence: a dog has remained silent throughout (Gregory 2007).

The fact that an expected event did not occur—the dog never barked—provides Holmes

with a critical clue, enabling him to deduce that the culprit must be familiar with the dog.

Holmes’s deduction is a reminder that much can be learned from the discrepancy be-

tween what is expected and what actually occurs (Wasserman & Castro 2005). Here, we

show how children use these discrepancies as an important source of evidence in learn-

ing, and that often, as in the curious incident of the dog in the nighttime, the nonoccur-

rence of expected events provides a rich and critical source of information.

The information offered by violations of expectation has often been marginalized or

ignored in discussions of language learning (Brown & Hanlon 1970, Marcus 1993). It is

claimed that this kind of ‘indirect’ negative evidence has little to offer a child engaged

in a task as complex as language learning (Pinker 1984, 1989, 2004). There is, however,

reason to believe that evidence acquired by expectation may be of more use to children

than has often been supposed, because it is now commonly accepted that both positive

evidence (the reinforcement of successful predictions) and negative evidence (unlearn-

ing as a result of prediction error) are necessary to account for even the most basic as-

pects of animal learning (Kamin 1969, McLaren & Mackintosh 2000, Pearce & Hall

1980, Rescorla 1968, Rescorla & Wagner 1972, Sutton & Barto 1998). As a result,
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many researchers have wondered whether expectation might not also play a more sub-

stantial role in children’s language learning (Bates & Carnevale 1993, Elman 1991,

Hahn & Oaksford 2008, Johnson 2004, Lewis & Elman 2001, MacWhinney 2004,

Prinz 2002, Pullum & Scholz 2002, Ramscar & Yarlett 2007, Ramscar, Yarlett, et al.

2010, Rohde & Plaut 1999, Seidenberg & MacDonald 1999).

In what follows, we show how a learning model that tunes its expectations according

to the success or failure of its predictions exhibits the same trajectory of linguistic de-

velopment in learning irregular plurals that children do, a pattern that has often been

claimed to be incompatible with learning from the environment (Pinker 1989). More-

over, the model makes a novel empirical prediction: at early stages of learning, expo-

sure to regular plurals can increase children’s tendency to overregularize irregular

plurals, while at a later stage, the exact same intervention will have precisely the oppo-

site effect, such that learning about regulars will cause overregularization rates in older

children to drop. Consistent with this, we find that memory testing for items that have

regular plural labels increases the overregularization of irregular plurals in four-year-

olds, but decreases it in six-year-olds. The model and results we present show how chil-

dren’s overregularization errors can arise as a natural consequence of the distribution of

error in the linguistic environment, and subsequently are resolved as a natural conse-

quence of the same learning mechanisms and the same distribution that give rise to

them in the first place: rather than presenting a logical puzzle for learning, we show that

overregularization errors are inevitable consequences of it.

2. The logical problem of language acquisition. In the course of learning lan-

guage, children often go through phases in which they make predictable errors. For ex-

ample, English-speaking preschoolers often say mouses where their parents and older

siblings would say mice. Because these errors are systematic, and because they are usu-

ally not explicitly corrected, it has been argued that children could never learn to make

the transition to adult language based on experience alone. Accordingly, it is often

claimed that learning even simple aspects of grammar is logically impossible in the ab-

sence of innate constraints on what is learned (this argument is often referred to as the

‘logical problem of language acquisition’, or LPLA; see Baker 1979).

A classical statement of the LPLA is given by Pinker (1984): in attempting to learn

language, he argues, children must ‘hypothesize the grammar of the adult language’

(Figure 1). Strictly speaking, the child’s task is to ‘guess’ the identity of the set of gram-

matical strings that makes up the language (Gold 1967).

a. b. c. d.

Figure 1. Four logical situations a child might arrive at while trying to ‘learn’ a language. Each circle

represents the set of sentences in a language. H: child’s hypothesized language; T: adult target

language; +: grammatical sentence in the language the child is trying to learn; –:

ungrammatical sentence (Pinker 1984).

Pinker depicts languages as circles that correspond to sets of word sequences and offers

four logical possibilities for how a child’s hypotheses might differ from adult language.

In the first possibility (a), the child’s hypothesis language, H, is disjoint from the lan-

guage to be acquired (the target language, T). In terms of noun usage (our focus here),



this corresponds to the state of a child learning English who cannot produce any well-

formed irregular noun plurals (the child might say things like mouses but never mice).

In (b), the sets H and T intersect, corresponding to a child who has correctly learned

some irregular plurals, but not others (the child uses mice alongside incorrect forms like

gooses). In (c), H is a subset of T, which means that the child has mastered usage of

some but not all English noun plurals and never uses forms that are not part of English.

Finally, in (d), H is a superset of T, meaning that the child uses English nouns correctly

and also produces forms that are not part of the English language (i.e. the child uses

both mouses and mice interchangeably).

A core assumption of this statement of the LPLA is that learners can only recover

from erroneous superset inferences if they receive explicit corrective feedback from

their parents or linguistic community (Pinker 1989). In the absence of such feedback, it

is argued that all of the positive evidence children encounter will be consistent with the

superset hypothesis they have made and will thus give them no reason to believe that

this hypothesis is in error (Pinker 1984). Because children do not receive explicit cor-

rective feedback about their mistakes (Brown & Hanlon 1970, but see also Bohannon &

Stanowicz 1988, Schoneberger 2010), and because they do go through stage (d), it is

claimed that children cannot learn the correct target language solely from experience—

that is, on the basis of positive evidence alone.

It follows logically, then, that both the validity of the LPLA and the claim that the

LPLA effectively disproves the idea that language can be learned without innate con-

straints (Baker 1979, Marcus et al. 1992, Pinker 1984, 1989, 2004) hinge on the idea

that the kind of information that would allow children to correct their behavior is sim-

ply not present in the linguistic environment (Johnson 2004, Pinker 2004). Accordingly,

if it can be shown that children can learn to correct themselves solely on the basis of

evidence available in the environment, then clearly the argument does not hold: in that

case, there would simply be no ‘logical’ problem of language learning (Johnson 2004,

Pullum & Scholz 2002, Ramscar & Yarlett 2007).

3. Models of learning influence conceptions of learnability. In his 1989

book, Learnability and cognition, Steven Pinker raises—and dismisses—the possibility

that ‘indirect’ negative evidence could provide a solution to the LPLA over the course

of a single page. In a more recent article devoted to the LPLA (Pinker 2004), the matter

is demoted to a footnote. This approach is not unusual; it reflects a set of beliefs that

have come to dominate the study of children’s language learning over the past half cen-

tury (see Landauer & Dumais 1997 and Schoneberger 2010 for further discussion of

this point).

To understand what is remarkable here, one has to step outside the realm of child lan-

guage learning and venture into the humble world of the laboratory rat, because for the

past forty years, psychologists studying animal behavior have been busy applying a

fully fleshed-out theory of learning strategies to the study of rodents, and have shown

that rats’ expectations provide a critical source of evidence across a wide range of learn-

ing tasks. Strikingly, psychologists studying rats have found it impossible to explain the

behavior of their subjects without acknowledging that rats are capable of learning in

ways that are far more subtle and sophisticated than many researchers studying lan-

guage tend to countenance in human children (Dayan & Daw 2008, Rescorla 1988).

Moreover, not only is it the case that animal learning models have been fleshed out in

ways that embrace the idea that animals make extensive use of indirect evidence in

learning, but the computational properties of these models have also been extensively

explored (Dickinson 1980, Mackintosh 1975, Pearce & Hall 1980, Rescorla & Wagner
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1972; see Danks 2003 for a review), and much progress has been made in understand-

ing the biological underpinnings of these mechanisms (Daw & Shohamy 2008, Mon-

tague et al. 1996, Montague et al. 2004, Niv 2009, Schultz 1998, 2006, Schultz et al.

1997, Schultz & Dickinson 2000, Waelti et al. 2001).

Accordingly, while it is often claimed that animal models are insufficient to explain

language learning and that some kind of domain-specific module or specialized set of

learning principles is necessary to account for linguistic development, it is clear that

many unlearnability arguments rely on inaccurate or outdated characterizations of learn-

ing (see also Pereira 2000). This is important, because questions about whether language

is learnable from the environment (or whether animal models can offer insight into lan-

guage learning) are best answered empirically (Gold 1967), by testing the predictions of

well-specified learning models that have been trained on well-defined tasks and accu-

rately characterized representations of the learning environment.

This is the approach to understanding the development of children’s noun pluraliza-

tion taken here: we show how a model of learning developed in the animal literature can

be used to specify—and, critically, predict—the circumstances that can prompt a child to

‘conclude that a nonwitnessed [form] is ungrammatical’ (Pinker 1989:14). Explaining

how children come to learn that some forms are more grammatical than others does not

‘[take] the burden of explaining learning out of the environmental input and [put] it back

in the child’, as has sometimes been claimed (Pinker 1989:14–15). Instead, we show how

a proper understanding of both learning and context—that is, the distribution of error in

the child’s environment—is critical to explaining how children learn language and un-

derstanding why they exhibit the characteristic patterns of linguistic development that

they do.

We begin this explanation by briefly describing the picture of learning that has

emerged from the study of animals.

4. The roles of expectation and error in animal learning. Although much of

our contemporary understanding of animal learning has its origins in Ivan Pavlov’s

(1927) conditioning experiments, it is critical to note that the ideas about learning that

people typically take from Pavlov’s work are, in most ways, the opposite of the under-

standing of animal learning that has developed in the century since Pavlov’s initial dis-

coveries (Rescorla 1988). As is well known, Pavlov discovered that if he rang a bell as

food was presented to a dog, the dog would later salivate upon hearing the bell, even if

no food was on offer. This finding gave rise to a view of learning based on associa-

tion: animals were thought to learn to ‘associate’ previously unrelated things, such as

bells and meals, by tracking the degree to which a stimulus (a bell) and a response

(salivation brought on by food) were paired.

Empirically, the naive view of Pavlovian conditioning, which sees learning as a sim-

ple process of recording cooccurrences that ‘computes nothing more than correlations’

(Santos et al. 2007:446), has been shown to be deeply mistaken (Rescorla 1988), as

have two stubbornly popular—yet empirically false—beliefs pertaining to the neces-

sary and sufficient conditions for learning: first, that explicit ‘rewards’ or ‘punishments’

are necessary for learning; and second, that a simple cooccurrence between a ‘stimu-

lus’ and a ‘response’ is sufficient for learning (i.e. if a bell is paired with food often

enough, a dog will always learn the association). Although the results of animal experi-

ments have long since shown these ideas to be wrong (Rescorla 1988), they still per-

vade the literatures in linguistics and cognitive science.

Rescorla (1968) provided one of the first clear demonstrations that these ideas are in-

adequate to explain the learning that occurs in animal conditioning: in a variant of the



classic Pavlovian paradigm, a group of rats learned to associate a tone with a mild elec-

tric shock, according to the schedule of tones and shocks depicted in Figure 2.

764 LANGUAGE, VOLUME 89, NUMBER 4 (2013)

Figure 2. Schematic of a conditioning schedule used in Rescorla 1968. The rate of tones absent

shocks here is zero.

Figure 3. A training schedule with an increased background rate of tones without shocks: although the

absolute number of tones leading to shocks is identical, approximately 70% of the tones are not

followed by shocks, and the degree to which rats condition to the relationship between the

tones and the shocks diminishes proportionally.

Like Pavlov’s dogs, these rats quickly learned to associate the tones with the shocks,

freezing when a tone later sounded. However, a second group of rats that was exposed

to an identical number of tone–shock pairings as the first group, but into which a num-

ber of tones that were not followed by shocks were interpolated (Figure 3), exhibited a

very different pattern of learning.

As the number of tones without shocks increased, rats came to associate the tones with

the shocks less and less. Indeed, the degree to which the rats froze upon hearing the tone

decreased in direct proportion to the background rate of tones absent shocks. As the

background rate increased, conditioning decreased, despite the fact that the rate at

which the tones cooccurred with the shocks remained exactly the same.

This finding cannot be explained by the naive ‘associative’ conceptions of learning

that we described above (Rescorla 1988). Given that there was no change in the

tone–shock association rate between the groups of rats—only the background rate var-

ied—it follows that the difference in what was learned must be due to the ‘no shock’ tri-

als. The nonoccurrence of expected shocks after certain tones influenced the degree to

which the rats conditioned to the tones that did precede shocks. It follows then that learn-

ing cannot simply be a process of tracking positive cooccurrences of cues and events.

Indeed, it has long been well established that there is more to learning than simply

counting successful and unsuccessful predictions. The results of numerous experiments

have revealed that animal learning is a process that can be seen, informally, to reduce

uncertainty in an animal’s developing understanding of the predictive structure of its

environment (Rescorla 1988). Because uncertainty is reduced as cues are learned and

reliable expectations are formed, learning is best understood as a competitive process: if

an animal learns to predict an outcome from one cue, there will be less uncertainty to

drive the learning of another. Cue competition is thus a simple statistical consequence

of uncertainty reduction and can be illustrated by the results of blocking experiments

(Kamin 1969), in which learning about the predictive value of a novel cue is effectively

‘blocked’ by the presence of an already well-learned cue.

For example, if a rat has learned that it will be shocked when it hears a tone, and a

light is subsequently paired with the tone in training, any learning of the light as an ad-
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ditional predictive cue will be inhibited. Because the tone is already fully informative

about the upcoming shock, the information provided by the light is redundant and is

therefore ignored. Prior learning about the tone blocks subsequent learning about the

light. As numerous results like this demonstrate, rats do not learn simple ‘associations’

between stimuli and responses; rather, they learn the degree to which individual cues

are systematically informative about the environment.

In cases where the informative cues to an event (or other aspect of the environment)

have not yet been established, potentially predictive cues compete for relevance. As a

result, cues that are more reliably informative are discriminated from cues that are less

informative (Rescorla 1988). Cue competition uncovers positively informative relation-

ships within an animal’s environment by eliminating the influence of less informative

relationships. Since there are invariably far more uninformative coincidences in the en-

vironment than informative ones, it follows that expectations that are wrong have more

influence on the shape of learning than expectations that are right (for discussion, see

Ramscar et al. 2011).

Given the logic of the foregoing discussion of error and expectation, one might ask:

What expectations?Which errors? Since the rats in Rescorla’s experiment had no a pri-

ori knowledge about the relationship between the tones and the shocks, it is natural to

wonder why it was only the background rate of the tones that mattered in predicting the

upcoming shock. The answer is that, in principle, everything in the rat’s local environ-

ment mattered (Rescorla 1988). However, just as the rat will learn to discount tones as

predictive cues the less they appear with shocks, so it will have learned to discount the

myriad other aspects of its environment that have often been present in the absence of

shocks. Prior learning thus influences—and, indeed, is integral to—subsequent learning.

What the rat learns in a given context can only be understood against the backdrop of

what it has learned already. For the sake of simplicity, models and explanations tend to

focus on informative cues, while ignoring cues whose high background rates are likely

to render them largely irrelevant in competitive terms.1 It is important to understand,

however, that the novelty of a given cue is entirely relative and can only be computed in

relation to the other potential cues that are available to a learner (Ramscar, Yarlett, et al.

2010, Rescorla 1988). (This helps clarify why learning is often related to a ‘stimulus

complex’, rather than to individual stimuli; Rescorla &Wagner 1972.)

Finally, it is worth noting that the logic of discrimination learning suggests that at the

outset, what a young learner encounters is best conceptualized as a large, undifferenti-

ated set of cues connected to little or no environmental knowledge,2 and that the percep-

tible variances and invariances in the environment, along with the learner’s developing

expectations about them, drive discrimination of the combination of the predictors that

best capture that environment (Rescorla 1988). Interestingly, this is conceptually very

similar to William James’s (1890:488) suggestion that an infant first experiences the

world as a ‘blooming, buzzing confusion’, and that the perception of variance leads her

to learn to discriminate its contents:

the undeniable fact being that any number of impressions, from any number of sensory sources, falling

simultaneously on a mind which has not yet experienced them separately, will fuse into a single

undivided object for that mind. The law is that all things fuse that can fuse, and nothing separates except

1 In Rescorla’s (1968) experiments, rats exposed to a high, random base rate of tones did not condition to

the tone, but did condition to the experimental chamber.
2 For modeling purposes, one might initially idealize this as making up no more than ‘the environment’,

that is, n = 1.



what must. … Although they separate easier if they come in through distinct nerves, yet distinct nerves

are not an unconditional ground of their discrimination … The baby, assailed by eyes, ears, nose, skin,

and entrails at once, feels it all as one great blooming, buzzing confusion; and to the very end of life, our

location of all things in one space is due to the fact that the original extents or bignesses of all the sensa-

tions which came to our notice at once, coalesced together into one and the same space. (emphases in

original)

Although James’s ‘blooming, buzzing confusion’ is frequently mischaracterized in the

literature—perhaps because the specifically discriminative conception of learning in

which James situated these remarks is often ignored—for animals, at least, learning

from expectation and error offers a fleshed-out account of the process through which

the perception of variance can lead to learning about the world.

5. Prediction and language learning. The discovery that animals are perfectly

capable of learning about predictive relationships evenwhen they have no explicit access

to the locus of their predictions contrasts with a critical assumption in the LPLA—and

much of the language learning literature—that learned inferences can only be unlearned

when explicit correction is provided (Baker 1979, Brown &Hanlon 1970, Marcus 1993,

Marcus et al. 1992, Pinker 1984, 1989, 2004). If the logic of the LPLAwere applied to

rat learning, it would predict that rats could only learn about the relationship between a

tone and an absent shock if they were provided with additional, explicit information

about this relationship. Rescorla’s—and countless other—experiments make clear that,

for many species of animals, at least, this prediction is simply false.

Learning from prediction error is, of course, not the sole preserve of rats, pigeons,

and dogs. Outside the domain of language, models that make assumptions similar to

those just described have been successfully applied to the study of decision making, ex-

ecutive function, habitual learning, and response selection in humans (McClure 2003,

Montague et al. 2004, Montague et al. 1996, Niv 2009, Schultz 1998, 2006, Waelti et al.

2001). Numerous behavioral studies have shown that human learning is sensitive to

background rates at a high level of abstraction (for reviews, see Miller et al. 1995,

Siegel & Allan 1996). In addition, a growing body of evidence provides compelling

reason to believe that human children are sensitive to background rates in language

learning tasks (Ramscar, Dye, & Klein 2013, Ramscar et al. 2011, Ramscar, Yarlett, et

al. 2010; see also Saffran 2001, Saffran et al. 1996, Saffran et al. 1999).

Perhaps just as compellingly, there is now a substantial body of research showing

that prediction is ubiquitous in language processing. As people listen to or read lan-

guage, they build up a wealth of linguistic expectations, anticipating upcoming linguis-

tic material at numerous levels of abstraction based on the structure and semantics of

prior discourse (Altmann & Mirković 2009, Altmann & Steedman 1988, Balling &
Baayen 2012, Chang et al. 2006, Kutas & Federmeier 2007, Levy 2008, MacDonald et

al. 1994, MacDonald & Seidenberg 2006, Otten & Van Berkum 2008, Ramscar, Mat-

lock, & Dye 2010, Tanenhaus & Brown-Schmidt 2008, Tanenhaus et al. 1995, Wicha et

al. 2003). These findings suggest that indirect negative evidence is available to chil-

dren, and thus that it may well play the same kind of role in their learning as it does in

that of animals. Importantly, these findings suggest that paying closer attention to the

predictive nature of children’s learning can help us gain insight into the way linguistic

understanding develops in learners.

6. A model of plural learning.

6.1. Overview. Given that children make linguistic predictions, and given too that

they learn in response to prediction errors, an obvious question arises: are the mecha-
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nisms we have described sufficient to provide an account of the patterns of overregular-

ization that have been observed in plural noun learning? To formally address this ques-

tion, we constructed a model of the way a child might learn to name singular and plural

objects.

6.2.Why plurals present a problem. The question of what governs the inflection

of linguistic forms has been a topic of heated debate in relation to the question of lan-

guage learnability (McClelland & Patterson 2002, Pinker & Ullman 2002; see also Al-

bright & Hayes 2003, Baayen & Moscoso del Prado Martín 2005, Clahsen 1999,

Ernestus & Baayen 2004, Harm & Seidenberg 1999, Haskell et al. 2003, Joanisse &

Seidenberg 1999, Justus et al. 2008, MacWhinney & Leinbach 1991, Marslen-Wilson

& Tyler 2007, Pinker 1991, 1999, Pinker & Prince 1988, Plaut & Booth 2000, Plunkett

& Marchman 1991, 1993, Prasada & Pinker 1993, Ramscar & Dye 2011, Ramscar &

Yarlett 2007, Rumelhart & McClelland 1986, Taatgen & Anderson 2002, Tabak et al.

2010, Woollams et al. 2009). In the case of plural nouns, English-speaking children

tend to overregularize irregulars—saying, for example, mouses instead of mice—and

this behavior is rarely explicitly corrected. As children grow older, however, they come

to produce only the adult form: mice. Since there is no obvious reason for them to stop

saying mouses, it has been argued that this presents a logical puzzle: how could they

learn to do this without feedback (Baker 1979, Pinker 1984, 2004; see also Clahsen

1999, Huang & Pinker 2010, Marcus 1993, 1995, Marcus et al. 1995, Pinker 1991,

1999, Pinker & Prince 1988, Prasada & Pinker 1993)?

In English, correct irregular plural marking is particularly difficult to acquire (Ram-

scar & Dye 2011), even in comparison to past-tense marking, another source of youth-

ful error and the object of much prior study. This likely reflects the nature of the input.

While irregular verbs are rare as types, they tend to have high token frequencies, such

that in the Corpus of Contemporary American English (Davies 2009), the forty most

frequent verb forms are all irregular. Moreover, in the Reuters corpus (Rose et al. 2002),

just three irregular verbs (be, have, and do) account for fully a quarter of the attested

verbs forms, with past-tense verb forms outnumbering base or present-tense verb

forms. In learning the past tense, then, children are likely to encounter more past-tense

verbs forms than uninflected forms, and more irregular past-tense forms than regular

past-tense forms. Plurals are different: children generally encounter singular noun

forms, and when they do encounter plural forms, they are highly likely to be regular. In

the Reuters corpus, only around 30% of nouns occur in their plural form, and of these,

the overwhelming majority in terms of both types and tokens are regular. This makes

the learning problem substantively more difficult. However, the two problems may not

be different in kind: as with the past tense, children’s irregular plural production follows

a U-shaped developmental trajectory, such that children who have been observed to

produce mice in one context may still frequently produce overregularized forms such as

mouses in another (Arnon & Clark 2011). Given the nature of the learning problem,

there is much scope for experimental interventions to be made, and their effects to be

measured, as children engage in the lengthy process of mastering plural forms (Ram-

scar & Yarlett 2007).

6.3. The rescorla-wagner learning rule. The model described here was in-

tended to have sufficient detail to allow predictions to be derived from the error-driven

learning mechanisms we have outlined above, while being simple enough for the rela-

tionship between the mechanisms and the predictions to remain transparent. Plural

learning was simulated using the learning rule from Rescorla and Wagner (1972),



which treats learning as a process that enables a learner to better predict events in the

world and, in particular, to weigh and assess the informativity of various cues in pre-

dicting relevant outcomes.

While the Rescorla-Wagner model cannot account for all of the phenomena observed

in ‘associative’ learning, the model provides an accessible formalization of the basic

principles of error-driven learning, and is sufficiently detailed to allow a straightfor-

ward testing of the analysis we present here. It should be noted, however, that the analy-

sis is consistent with similar principles embodied in a wide range of learning models, in

which equivalent simulations could be implemented (see e.g. Barlow 2001, Courville et

al. 2006, Danks 2003, Dayan & Daw 2008, Gallistel 2003, Kruschke 2008, McLaren &

Mackintosh 2000, Pearce & Hall 1980, Sutton & Barto 1998). Furthermore, because the

model is mathematically very similar to a perceptron (Rosenblatt 1959), our employ-

ment of it allows for ready comparison with a popular discriminative approach in ma-

chine learning (e.g. Brill 1995, Collins & Koo 2005, Roark et al. 2007).

The Rescorla-Wagner model simulates changes in the associative strengths between

individual cues C and an outcome as the result of discrete learning trials. If the presence

of a cue or outcome X at time t is defined as present(X, t) and its absence as absent(X, t),

then the predictive value V of a cue Ci for an outcome Oj after a learning event at time

t + 1 can be stated as in 1.

(1) V ij
t+1 = V tij + ∆V tij

The change (∆) in the predictive value of Ci after t can be defined as in 2.

0 if ABSENT (Ci,t)

(2) ∆V tij = !αiβ1(λ – ∑PRESENT(Cj,t) Vij)if PRESENT (Cj,t) & PRESENT(O,t)αiβ2(0 – ∑PRESENT(Cj,t) Vij)if PRESENT (Cj,t) & ABSENT(O,t)

Thus, learning is governed by a discrepancy function where λ is the total value of

the predicted event (i.e. the maximum amount of associative strength that an outcome j

can support; here it is simply set to 1, indicating that an event is fully anticipated), and

Vj is the predictive value for outcome j given the set of cues present at time t.

In trials in which there is positive evidence—that is, in which expected outcomes

do occur—the Rescorla-Wagner learning rule produces a negatively accelerated learn-

ing curve (the result of events being better predicted, which reduces the discrepancy be-

tween what is expected and what is observed) and asymptotic learning over repeated

trials (as events become fully predicted). Conceptually, this happens because the model

embodies the idea that the function of learning is to align our expectations with reality,

and the better that alignment becomes over time, the less we need to learn (Anderson &

Schooler 1991, Ebbinghaus 1913).

In trials in which there is negative evidence—that is, in which an expected out-

come fails to occur—λ j (the expected outcome) takes a value of zero because it did not

occur. In such cases, the discrepancy function (λ j – Vj) produces a negative value, re-

sulting in a reduction in the associative strength between the cues present on that trial

and the absent outcome j. Conceptually, these prediction errors can be thought of as vi-

olations of expectation that allow the model to learn from negative evidence.

The total amount of predictive (cue) value any given outcome can support in learning

is finite. (Informally, we can think of this as capturing the idea that if predictive confi-

dence keeps rising, it must eventually reach a point of relative certainty.) As a result,

cues compete with one another for relevance, and this produces learning patterns that

often differ greatly from those that would arise by simply recording the correlations be-

tween cues and outcomes (i.e. simply tracking base rates—a common misconstrual of

learning); see Figure 4.
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The rate of change (∆) at t is determined by two factors: the overall learning rate β
(where 0 ≤ β ≤ 1), and the individual saliency of cues αi (where 0 ≤ α ≤ 1). Because we
were interested in how learning affects the relative value of cues, αi was set to 1, elimi-

nating its influence on our simulations. Lambda was set at λ = 100% for each word, and

the beta βj learning rate took the default value in the Rescorla-Wagner implementation

contained in the ndl package (a library of the R statistical programming language).

Figure 4 (bottom).Asimulation of error-driven learning of the relationship between bell and food and

light and food in this scenario. The graph shows the cue values developing in the Rescorla-Wagner (1972)

model. The errors produced by light cause it to lose out in cue competition with bell so that the associa-

tion between bell and food is emphasized, while the association between light and food is devalued.

Though bell and food cooccur with exactly the same frequency as light and food in this scenario, learning

effectively dissociates light as an uninformative cue.

Figure 4 (top). Consider a rat being conditioned to expect either shocks or food. A light shines just be-

fore both food and shocks (A, B, C), while an accompanying bell only ever sounds before food (B), and

an accompanying tone only ever sounds before shocks (A, C). In order to best anticipate when shocks and

food will be forthcoming, the rat must learn to attend to the cues that are most informative about each out-

come. In trial (A), it learns that both the tone and the light predict shocks. Because the light indiscrimi-

nately predicts both shocks and food, the rat incorrectly predicts a shock in trial (B). As a result, the

strength of the association between light and shock decreases, even though no shock is present on this

trial. The converse occurs in trial (C), when light incorrectly predicts food. In this trial, the strength of

the light–food association decreases.



6.4. Implementation of the model. Our simulations make three key assumptions

about the learning environment.

• Children do not learn their native languages in formal teacher-pupil settings

(Chomsky 1959, Pinker 1984).

• Children learn words, at least initially, by hearing them used in context (Smith &

Yu 2012, Tomasello 2003).

• The distribution of error in the early linguistic environment—that is, the com-

bined value of both positive and negative evidence—favors the appropriate map-

pings. For example, a child learning the word mice will hear the word used in a

way that makes it most informative about mice, or depictions of them, and must

learn to associate the appropriate cues in the environment—mouse-things—with

the word (Quine 1960, Wittgenstein 1953). Conceptually, this assumption reflects

the idea that adult speakers use language in informative ways, and hence, that a

mouse ought to be more informative about the English word mouse, and mice

more informative about the wordmice, than they are about other words such as rat,

chair, moon, or allele.

Notably, the way our model learns from this environment differs markedly from many

previous models, which envisage a child as learning to transform a ‘word stem’—cat—

into an inflected form—cats (cf. MacWhinney & Leinbach 1991, Plunkett &Marchman

1991, 1993, Rumelhart & McClelland 1986). By contrast, our model learns to predict

word forms from semantics (i.e. the environment), a process that much more closely ap-

proximates the situation of the child learner (see also Ambridge et al. 2009, Andrews et

al. 2009, Cottrell & Plunkett 1994, Durda et al. 2009, Goldberg 2011,Moscoso del Prado

Martín et al. 2004, Ramscar 2002, Ramscar &Yarlett 2007).

In addition, our simulations were shaped by a number of working assumptions about

the nature of the learning task:

(i) The model assumes that when a child is asked to name a picture of mice, the

child has some prior experience of mice, and this results in activation of the

word mice, because this is the phonological form the child has learned to as-

sociate with the semantic representation of mice (Meyer & Schvaneveldt

1971, Ramscar & Yarlett 2007). What the child actually says, however, is

contingent on both the strength of the representation of mice, and the degree

to which other forms interfere with mice production.3

(ii) The model assumes that a child must learn to discriminate between single

and multiple items in naming, and that set size serves as a cue to whether

forms are singular or plural (Ramscar et al. 2011).

(iii) The model assumes that the phonological forms of regular singular and plu-

ral (+S ) nouns are distinguished temporally, by the occurrence (in plurals) or

nonoccurrence (in singulars) of a sibilant after a common form (see Ramscar

& Dye 2011 for converging evidence). While this ignores the many differ-

ences between the single and plural forms of regular nouns—such as differ-

ent sibilant allomorphs, coarticulation effects, and so forth—it captures the

idea that regular plurals resemble one another with respect to their key pho-

3 Recent discussions of reinforcement learning distinguish between model-based learning, in which a

model—or map—of the states that best predict relevant environmental information is acquired, based on an

intermediate representation of candidate actions, and model-free learning, in which learning simply reflects

the difference between actual and expected events (see e.g. Gläscher et al. 2010). We assume that language

learning is a model-based process.
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Figure 5. Four cues that will all be supported by a child’s exposure to the word mice in the context of mice.

Although these cues always cooccur with the word mice, their covariance with other singular and plural

nouns—and thus the distribution of error associated with them—differ such that the balance of

evidence favors the multiple-mouse-items→ micemapping. (Note that while the cues are
separated out for explanatory convenience here, they could be ranges of values on

continuous perceptual dimensions as far as the model is concerned.)

netic indicator of plurality (the sibilant), whereas irregular plurals resemble

neither regular plurals nor one another (Ramscar & Dye 2011). For a child

who has heard a large number of regular plurals and relatively few irregulars,

and who is still learning to discriminate many of these items, this knowledge

will support the expectation of a sibilant after a common form, leading to

correct regular plural production (rats), but interfering with irregular plural

production (mouses).

(iv) The model assumes that the strength of this expectation arises out of two fac-

tors:

• the degree to which the other word forms the child knows about are acti-

vated by the cues present on mice trials (as Fig. 3 shows, learners will

come to ignore these cues over time as they better discriminate specific

items).

• the overall learned values of those other forms.

These assumptions reflect the idea that children will be learning to categorize objects at

the same time that they are learning to name them (Swingley & Aslin 2007), and that

early exposure to mice in the context of hearing mice will not only support mice as an

informative cue to mice, but will also support less well-discriminated cues (such as

stuff, or multiple-items, or mousiness). Until these alternatives are discriminated, they

will interfere with the production of mice, as they will serve to cue other, competing

forms the child has learned (such as other plurals, or the singular form mouse).

6.5. Simulating plural learning. The model simulates how cues to the irregular

plural mice, its singular form mouse, and a set of twenty-eight other nouns that have

regular plural forms are learned and discriminated. These forms were represented in

proportion to the frequency distribution of singular and plural noun forms in English,

such that mouse was twice as frequent as mice, and the proportion of singular to plural

forms of the regular nouns was 10 : 6 (see Ramscar & Dye 2011 for detailed analyses).



Figure 5 illustrates the four environmental cues that consistently covarywithmice, and

that are most relevant to (and informative about) plural mouse naming. These cues rep-

resent the idea that over the course of learning, information about the world—initially a

mass of undifferentiated stuff—is gradually discriminated, as learning uncovers the rel-

evant cues to objects, events, affordances, and so forth. At the outset of learning, all and

any kind of ‘stuff’in theworld is potentially informative about concrete nouns likemouse

and mice, such that learning to discriminate the correct cues tomouse and mice involves

discriminating the ‘mousey stuff’ associated with mouse and mice from the other kinds

of stuff associated with nouns. At the same time, learning to discriminate mice from

mouse requires discriminating the specific mousey stuff that best predicts mice as op-

posed tomouse (i.e. the presence of multiple mouse objects as opposed to a single mouse

object). Finally, learning to use mice correctly simultaneously also involves learning to

discriminate the appropriate kind of multiple items associated with mice (mouse-items)

from other sets of items in the world.4

Crucially, because all four of these cues—stuff, multiple-items, multiple-mouse-

items, and mousiness—are present whenever mice are seen and mice is heard, all of

these cues will receive identical support, meaning that a child could never hope to dis-

criminate the cue(s) appropriate to naming mice on the basis of positive evidence alone.

Because the distribution of error associated with each cue differs, however, chil-

dren should still be able to learn the correct association between mice and multiple

mouses. This becomes clear when we consider the background rates of each cue. Since

mice is frequently heard when mouse-items are present (e.g. ‘look at those mice!’) and

infrequently when they are not, there will be little error in the relationship between

mouse-items and mice. Conversely, since there will be many occasions when stuff and

other items are present in the child’s environment and mice is not heard (e.g. cups or

daddy might be heard instead), these cues will generate a great deal of error as cues to

mice. Similarly, whenever a single mouse is present, and mouse is heard, the presence

of mousiness in the absence of multiple-mouse-items will generate erroneous expecta-

tions of mice, which will allow the meaning of mice to be discriminated from the mean-

ing of mouse. Thus from a discriminative learning perspective, the fact that stuff,

multiple-items, mousiness, and mouse-items provide identical positive evidence for

mice is not an impediment to learning because their background rates—and thus, the

negative evidence each provides—differ dramatically (Figure 6).

In the model, overregularization occurs on mice trials because the cues to stuff and

multiple-items, which gain support when mice is heard in the presence of mice, also

gain support whenever the (usually regular) labels for other plural items are learned.

Because of this, further encounters with mice will lead not only to the expectation of the

label mice, but also to the expectation of other noun forms (Figure 7; see also Ramscar

& Yarlett 2007), leading to competition between the responses. This competition yields

an initial bias toward overregularization errors, a product of the distribution of regular

and irregular plural forms in English and the cues to them in the environment.

To simulate how response competition will affect the production of correct irregular

forms over learning, we examined the likelihood that the model would produce the

label mice when presented with mice at each point in learning (thereby allowing for a

4 It is worth noting that while for the purposes of exposition, we describe these different dimensions in dis-

crete terms, we assume that these dimensions will be largely undifferentiated prior to learning. The degree to

which they are actually experienced as discrete (i.e. the degree to which they are actually discriminated from

one another) will depend on what has actually been learned up to that point. The current learned status of any

‘discrete’ response can only be evaluated in relation to an overall system of responses.
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c.

Figure 7. The relative strength of each response across learning (learned strengths are represented by the

height of each line): (a) mouse, (b) +S, and (c) mice. Early in learning, less specific cues that are

shared across the responses generate interference that then diminishes as these uninformative

cues are unlearned over cue competition.

Figure 6. The relative specificity of the four cues: while the generality of the less specific cues (stuff and

mousiness) will support their positive reinforcement early on in learning, that generality will also

generate a high degree of error relative to the more uniquely informative cues. As a result,

the influence of less specific cues on more specific responses will wane over time.

a. b.



fully incremental evaluation of the model’s predictions to be made; cf. McCauley &

Christiansen 2011). To estimate these response propensities, we calculated the activa-

tion each response received from the cues tomice and then calculated an interference

value—the activation of mouse plus the activation of +S at the end of a common

form—which was subtracted from the activation of the appropriate response, mice. If

the interference value is greater than the activation of mice, this subtraction yields a

negative value, indicating a bias toward overregularization. Conversely, when the acti-

vation of mice is greater than the summed activations of the competing responses, the

bias is to produce the correct form (Figure 8).

Although this simple model ignores a range of factors that will influence specific in-

stances of overregularization (e.g. linguistic context also influences the predictability—

and overregularization—of irregular forms; Arnon & Clark 2011), it successfully

captures how the tendency toward overregularization first arises as a result of the fre-

quency of different word forms and the frequency and distribution of the cues to them,

and then later diminishes as a function of the distribution of error among those same

cues. (The R code required to implement this version of the model is included in the ap-

pendix; exploration will reveal that so long as a representation of the learning problem

respects the distribution of cues and lexical outcomes, this pattern of performance is ro-

bust.) This developmental trajectory exhibits the classic U-shaped learning pattern—

where production mixes correct and incorrect forms prior to settling on the correct

form—previously noted in the development and resolution of children’s overregulariza-

tion (Brown 1973, Marcus et al. 1992).

6.6. Simulating plural learning with naturalistic input. In order to test the

scalability of the model as well as its performance when exposed to naturalistic input,

we extracted nouns from a corpus of child-directed speech taken from the CHILDES
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Figure 8. Panel (a) plots development of irregular plural production in the model, showing its response

propensity at each point in time when the cues to mice are present. Negative values favor overregularized

responses; positive values favor correct irregular plural responses. To illustrate the relative robustness of this

result, panel (b) plots the same pattern of development in a second implementation of the model in which the

ratio of regular singular forms to plurals was 70 : 30, as observed in the Reuters corpus.

Consistent with U-shaped learning, both models produced initial periods in which

correct forms precede overregularizations.
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database (MacWhinney 2000). In order to compensate for data sparsity resulting from

the low frequency of irregular nouns in individual corpora, the entire American English

portion of CHILDES was aggregated after being reordered chronologically by the age

of the target child in each recording session.5 To maintain a naturalistic developmental

trajectory, files that included speech directed to multiple target children of different

ages were excluded. Each noun token was extracted from the resulting aggregated cor-

pus and lemmatized, using the CELEX database (Baayen et al. 1995), and then attached

to a corresponding cue bundle. For example, the singular noun cat was attached to the

cue bundle of stuff, single-item, cattiness, and cat-item, while the plural noun mice was

attached to stuff, multiple-items, mousiness, and mouse-items.

With the order of the aggregated corpus preserved, each utterance was treated as a

separate learning trial, with the cue bundles corresponding to each noun in the utterance

treated as a single compound conditioned stimulus, and each noun’s word form treated

as a separate unconditioned stimulus. As an example, the utterance ‘the cat chases the

mice’would result in the compound stimulus of stuff, single-item, multiple-items, catti-

ness, cat-item, mousiness, mouse-items, which the word forms cat and mice would be

conditioned to. The alpha, beta, and lambda parameters of the model were identical to

those used in the initial simulations.

5 The idea of an aggregated CHILDES corpus, ordered by the target child age in each recording file, was

originally proposed by Morten Christiansen in the context of a different modeling project.

Figure 9. Response propensity of the model during a single pass through the entire American English

portion of the CHILDES database. Negative values favor overregularized responses; positive values

favor correct irregular plural responses. The first 250 production attempts are shown

(one trial every 1000th utterance).

This version of the model allowed for fully incremental predictions to be made. At

each point in learning, attempts to produce the plural form mice were simulated by cal-

culating the difference between the activation of mice (given the cues stuff, multiple-

items, mousiness, and multiple-mouse-items) and the activation ofmouse and +S (given

the same cues), based on the learned values of the cues and responses at any given point



in time. A negative value on this difference measure represents a higher association for

mouse and +S than for mice, indicating a propensity to overregularize (i.e. produce the

singular form + sibilant combination mouses).

When trained on a naturalistic data set, the model again produces the U-shaped pat-

tern of learning observed in the idealized simulation (Figure 9). Here again, the initial

tendency to overregularize arises out of the frequency of different word forms and the

frequency and distribution of the cues to them, before resolving itself as a result of the

distribution of error among these same cues.

6.7. Generating novel predictions from the model. The formal properties of

the model allow for detailed predictions to be made about the circumstances that might

lead to an increase or decrease in the rate of overregularization in young children, de-

pending on their prior learning. Figure 10 illustrates the effect of exposure to the same

mixture of regular and irregular plurals at different junctures in the model’s training:

early in learning and then later on in learning.

Conceptually, these interventions might be expected to have a broadly similar effect:

given that children are initially learning to discriminate between the semantic cues to

regulars and irregulars, they should have some expectation of irregulars on regular tri-

als. Thus whenever children incorrectly expect an irregular form, this will result in pre-

diction error (negative evidence), which will raise the error rate of unreliable cues (such

as stuff and multiple-items). Over the long run, this will help young speakers discrimi-

nate the appropriate semantic cues to irregulars. This is the big picture. Importantly,

however, because discrimination learning is always systematic—that is, the overall ef-

fects of learning and unlearning can only be established in relation to whatever else a

learner knows—the local effect of such interventions can differ dramatically depend-

ing on how they interact with the learner’s prior knowledge. This idea is easily captured

by looking at how exposure to regular plurals can have different effects on overregular-

ization at different stages in learning.

In the model, production of a given form is the result of a competitive process based

on the degree of support for each possible response given the evidence available, and the

overall degree to which a given response has already been learned. Because of the dif-

ferent frequencies of regular plural forms, and irregular singular and plural forms, irreg-

ular plurals are learned and discriminatedmore slowly than the forms they compete with.

Early in plural learning, the rate at which support for the +S regular response is growing

far outstrips that at which the (erroneous) cues supporting that response are weakening,

resulting in an increase in the likelihood that an overregularized form will be produced

(Fig. 10a).As learning about these other responses begins to asymptote, however, and as

the cues to mice become better discriminated, the exact same sequence of training trials

will yield the opposite result, and exposure to regulars will actually increase the likeli-

hood of a correct irregular response (Fig. 10b). Finally, at the point that cue competition

has effectively eliminated the influence of the erroneous cues, the trial-to-trial effects of

learning will have little impact on the likely response, as support for the +S response is

now so weak that local fluctuations will not affect production (Fig. 10c).

It is worth noting that this pattern of learning can potentially arise in any situation

where the items that need to be discriminated from one another differ greatly in their

frequency. It also further underlines the point that learning is systematic, and depends

not only on the information currently available to the learner but also on the information

the learner has accrued through previous experience. Talking about the ‘information’

available to a learner makes sense only in relation to what the learner already knows,

because it is that prior knowledge that determines both how informative any new ‘in-

formation’ is and in what way it is informative.
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Figure 10. The effects of learning about mice (i.e. the effect of positive evidence about the cues to mice) at

different stages of the simulation depicted in Fig. 6. The sequence of training trials is identical across all three

plots and comprises a regular plural trial, followed by a mice trial, followed by an additional twenty-eight

regular plural trials. Each plot line represents the strength of cues on each trial (the summed value of the cues

normalized by the learned strength of each response) and thus represents the relative likelihood of a

particular response at each point in learning.

a.

b.

c.



7. Training experiment.

7.1. Overview. Our learning model predicts that as a result of the distribution in En-

glish, learning about regular plurals will have different behavioral consequences for

children’s irregular plural production, depending on each child’s prior experience.

Training on regular plurals will increase overregularization rates for irregular plurals

early in learning, but decrease rates of overregularization later on. To test this counter-

intuitive prediction, we recruited four- and six-year-old children to take part in a simple

training experiment. We employed a semantic old-new task to expose children to plural

forms, and a test-train-test paradigm to compare baseline rates of overregularization

with posttraining rates (Ramscar & Yarlett 2007).

7.2. Participants. Thirty-eight four-year-old and forty six-year-old children were

recruited from a database of volunteers living in the vicinity of Palo Alto, California.

The average ages were four years and six months for the four-year-olds, and six years

and seven months for the six-year-olds. Children of these ages have fully mastered reg-

ular plural inflection (Brown 1973, de Villiers & de Villiers 1973), but often overregu-

larize irregular plural nouns (Graves & Koziol 1971, Ramscar & Yarlett 2007). The

children were randomly assigned to two groups: an experimental condition and a con-

trol condition.

7.3.Methods and materials.

Pretest. Both groups of children were pretested on plural production that exposed

them to correct singular forms and established a baseline rate of overregularization for

each child. In the pretest, the children were asked to help a cookie monster puppet learn

to name a series of plural nouns. The children were shown pictures of six regular and six

irregular nouns, first singular and then plural depictions that were presented on a laptop

computer. As each picture was shown, the children were asked to tell the monster the

names of these items (i.e. they were made to retrieve the phonological response to the se-

mantic cue). Regardless of the plural form the children produced, they were provided

with encouraging feedback from the puppet. The six irregular items in the test were

MOUSE-MICE, CHILD-CHILDREN, SNOWMAN-SNOWMEN, GOOSE-GEESE,

TOOTH-TEETH, and FOOT-FEET; the six regular semantic matches were RAT, DOLL,

COW, DUCK, EAR, and HAND. These items were chosen from each of the families of

irregular plurals that young children reliably learn to master. Although children in this

age range tend to overregularize these irregular plurals, they have reliable knowledge of

their correct forms (Ramscar &Yarlett 2007).

Experimental condition. In the experimental condition, children were required to

exercise their knowledge of plural nouns by telling a cookie monster whether depic-

tions of regular plural noun-objects had the same name as items they had previously

named in the pretest. The children were asked to tell the cookie monster ‘yes’ or ‘no’ to

indicate that they had or had not, respectively, already seen these depictions. If the child

saw something that had the same name as an item in the pretest, the child was asked to

say ‘yes’, and if it did not have the same name as an item in the pretest, the child was

asked to say ‘no’. When a set of objects appeared, the experimenter asked the child to

‘Look at those—did cookie monster see any of those before?’. Children who did not

spontaneously respond were prompted ‘Did cookie see any of these? Yes? No?’. If no

response was forthcoming, the experimenter proceeded to the next item. Half of the

presented items were new depictions of the regular items in the pretest, and half were

foils. The children were thus tested on twelve new and twelve old items per block.

Notably, the absence of overt naming responses by children was intended both to re-

duce the effect of perseverative biases on posttest performance, and to subject our hy-
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potheses about the effect of implicit expectation on children’s discrimination learning to

a particularly stringent test (see also Ramscar&Yarlett 2007). By simply having children

provide ‘yes’or ‘no’answers in the training phase, we could increase our confidence that

any changes to children’s underlying representations of the plural forms of the objects

they encountered in training were brought about by the implicit expectations that those

objects evoked (i.e. since we were interested in the development of children’s knowl-

edge, we wished to limit the influence of factors that did not relate to that knowledge as

best we could). All depictions of the ‘old’ items in training were novel, which required

children to make categorization judgments to generate the correct answers, and children

were told to base their category judgments on whether the items would be ‘called by the

same name’as previously presented items. Because words’phonological representations

are cued by their semantics, these measures could be expected to result in reinforcement

of the regular plural forms, as well as prediction errors and latent learning (Meyer &

Schvaneveldt 1971).As Fig. 7 indicates, the behavioral consequences of this latent learn-

ing should vary depending on the prior experiences of learners.

Control condition. In the control condition, children were shown six color slides

after the pretest, and then asked to tell the cookie monster whether they had seen that par-

ticular color, in an old-new task with an equal number of foils. To avoid cuing any notion

of plurality, the colors were presented as solid blocks filling the screen. The total time to

complete this condition was equated to that of the experimental training condition.

Posttest. Both sets of children then completed a posttest identical to the pretest.

7.4. Results and discussion. Children’s performance in these tests supported the

model’s predictions. A 2 (pre- to posttest) × 2 (age) × 2 (condition) repeated-measures
ANOVA analysis of the overregularized forms produced by each child in the pre- and

posttests revealed a significant interaction between age, training type, and pre- to posttest

performance (F(1,58) = 4.701, p < 0.05), and a significant interaction between age and

pre- to posttest performance (F(1,58) = 6.329, p < 0.001). The older children in the ex-

perimental condition improved their irregular production, overregularizing less in the

posttest (M = 1.5 overregularizations out of six) than the pretest (M = 2.25; t(14) = 2.665,

p < 0.01), whereas rates of overregularization increased in the younger children (pretest

M = 2.54; posttestM = 3.27; t(14) = 1.761, p < 0.02).There was little change in the per-

formance of either age group in the control condition (see Figure 11).

The same results were obtained when the data were coded as per Ramscar & Yarlett

2007: 0 = failure to respond, 1 = overregularization, 2 = uninflected form, 3 = correct ir-

regular. The same repeated-measuresANOVA revealed significant interactions between

age, training type, and pre- to posttest performance (F(1,58) = 4.996, p < 0.05), and age

and pre- to posttest performance (F(1,58) = 11.559, p < 0.001). In the experimental con-

dition, older children’s improvement (t(15) = 2.992, p < 0.01) and younger children’s

decline were both significant (t(15) = 2.374, p < 0.05).

Thus testing memory for regular plural nouns led to six-year-olds overregularizing

plurals significantly less in the posttest, whereas the same training had the opposite ef-

fect on younger children. Testing memory for color words had no effect on either group.

In line with the counterintuitive predictions of the model, then, the ability of the older

children to produce plurals like mice and feet improved with training, even though none

of these labels were actually present in the training trials.

8. General discussion. To the extent that the results we present here are surprising,

it may be due to common misunderstandings of the way learning works (Rescorla

1988) and particularly to how prediction error provides a rich source of negative evi-



dence to learners. Overwhelmingly, research into language learning has preoccupied it-

self with the observable: with what a child hears or sees.6 The underlying assumption

has been—and largely remains—that a child can only learn about what is directly in

front of her. This assumption is inconsistent with much of what we understand about

animal (and human) learning.

While the idea that learning about a word can be thought about in terms of a ‘single

exposure’ is common in the language learning literature, in formal theories of learning

there is no such thing as learning in isolation. Discrimination learning is sys-

tematic: it is a property of systems (see also Ramscar, Dye, & Klein 2013). What this

means is that the learning that occurs at any given instant (on a trial in a learning exper-

iment, or from ‘a single exposure’ to a word) is wholly contingent on what has already

been learned in a given system—that is, everything the learner has already been ex-

posed to—and can be influenced by anything else that a learning system might subse-

quently be exposed to (Rescorla 1988).

Because many researchers have assumed that children learn from ‘positive evidence’

alone (e.g. Brown & Hanlon 1970, Pinker 1984, 2004), linguistic theory has been

guided by constraints imposed by the logical problem of language acquisition (Johnson

2004) and Gold’s demonstration of the limitations of learning without negative evi-

dence (Gold 1967). As Gold himself noted, however, his proof applied to an unrealistic

formal model of language (Johnson 2004), which suggested either that only the most

6 This preoccupation is not the preserve of language researchers, but rather it is widespread in cognitive

psychology. For example, the finding that testing for knowledge robustly improves the accuracy of its encod-

ing in students has a clear parallel with the findings we report in children here (Roediger & Karpicke 2006,

Karpicke & Roediger 2008, Karpicke & Blunt 2011). However, the mechanisms that give rise to ‘testing ef-

fects’ are poorly understood (see Roediger & Butler 2010 for a review). We suggest that attempts to explain

testing effects could be much improved by conceiving of the memories under test as related—and even com-

peting—components within larger systems of learned knowledge (i.e. in the same way as children appear to

treat noun plurals).
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Figure 11. Pre- and posttest performance by age and condition. The data are plotted as the number of

correct forms minus overregularized forms averaged across each pair of trials.

Error bars denote standard error of the mean.
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trivial class of languages is learnable or else that children have access to negative evi-

dence ‘in a way we do not recognize’ (Gold 1967:453). Since Gold’s time, it has be-

come clear that language processing involves prediction at every conceivable level (see

Ramscar, Yarlett, et al. 2010 for a review) and that processes responsive to prediction

error are ubiquitous in learning. It is also clear that the information available to children

in the structure of linguistic distributions is evidently far richer than has traditionally

been supposed (see Baayen et al. 2011, Landauer & Dumais 1997, McCauley & Chris-

tiansen 2011, Ramscar & Dye 2011, Reali & Christiansen 2005). Our results suggest

that these predictive processes, in conjunction with the learning mechanisms that they

drive, enable children to correct their own mistakes in learning language. It would seem

that there simply is no logical problem in the way that children who say mouses man-

age, without explicit correction, to grow into adults who say mice.

In light of this, it is worth clarifying several points about the work described here, and

in particular, the learning model used in these simulations.As we noted at the outset, the

model we employed is not a new one. And, while it has limitations, these limitations are

well known and did not prevent the model from serving the purpose of simulating and

successfully predicting behavior in our task, suggesting that even stubbornly puzzling

aspects of language learning may still be consistent with well-understood learning

processes. This last point is important. When it comes to fitting behavioral data, the

Rescorla-Wagner model is arguably more successful than any other learning formalism

in the history of psychology (Miller et al. 1995, Siegel & Allan 1996). Further, as we

noted earlier, there ismuch evidence that themechanisms proposed by themodel are neu-

rally plausible (for a review, see Schultz 2010).

Moreover, the model is not confined to mere data fitting: Roberts and Pashler (2000)

have argued, convincingly, that models need to be evaluated against data that they can-

not be simply fit to, and that the clearest test case is to have the model make falsifiable

predictions that can be evaluated empirically:

Quantitative theories with free parameters often gain credence when they closely fit data. This is a mis-

take. A good fit reveals nothing about the flexibility of the theory (how much it cannot fit), the variabil-

ity of the data (how firmly the data rule out what the theory cannot fit), or the likelihood of outcomes

(perhaps the theory could have fit any plausible result), and a reader needs all three pieces of information

to decide how much the fit should increase belief in the theory. The use of good fits as evidence is not

supported by philosophers of science nor by the history of psychology; there seem to be no examples

of a theory supported mainly by good fits that has led to demonstrable progress. (Roberts & Pashler

2000:358)

The Rescorla-Wagner model has generated a number of successful predictions in regard

to animal learning (Kamin & Gaioni 1974, Kremer 1978), and the simulation and ex-

periments reported not only show that the model (and our theory) can generate and gain

support from this kind of ‘strong testing’ in the domain of human learning, but also that

it can do so in the domain of language learning.

Moreover, this is not the only strong test of the model in this domain: Ramscar,

Yarlett, et al. 2010 shows that the model correctly predicts very different patterns of

performance in category learning, depending on the temporal sequence of category la-

bels and exemplars (see also Ashby et al. 2002). The model has also lent insight into

how to optimally sequence information to facilitate color and number learning in two-

and three-year-olds, and verbal rule learning in a card-sorting task with the same age

group (Ramscar, Dye, et al. 2013, Ramscar et al. 2011, Ramscar, Yarlett, et al. 2010). In

a particularly provocative set of results, Ramscar, Dye, and Klein (2013) show that

while the model successfully predicts toddlers’ behavior in a cross-situational word



learning task, when a sample of developmental psychologists specializing in language

learning were asked to predict the children’s behavior, their intuitive predictions were

consistently wrong. While the psychologists correctly predicted undergraduate per-

formance on the task, this varied systematically from that of the two-and-a-half-year-

olds. These successful tests of the model’s surprising—and falsifiable—predictions on

different aspects of language learning are worth noting both because they serve as an

important check on our intuitions, and because, as Roberts and Pashler (2000) point out,

it is comparatively rare to find instances of models being used to generate novel empir-

ical predictions in psychology and linguistics.

This leads us to another advantage Rescorla-Wagner offers: simplicity. As Roberts

and Pashler (2000) note, the more free parameters a model employs, the less clear its

predictions are: the more the danger of overfitting grows, and the less falsifiable the

model becomes. The implementation of Rescorla-Wagner we used here has one free pa-

rameter: a learning rate, which we held constant throughout the simulations. A number

of recent studies have shown how simple models based on the Rescorla-Wagner learn-

ing rule often outperform more complicated (and more recent) models when it comes to

fitting and predicting human data. For example, Gureckis and Love (2010) present evi-

dence that a simple Rescorla-Wagner implementation produces better fits to human se-

quential learning data than a more complex model designed specifically to simulate this

task (the simple recurrent network; Elman 1990).

Perhaps even more surprisingly, Baayen and colleagues (2011) show that when the

task of learning is analyzed in terms of discrimination, a version of the Rescorla-

Wagner model that allows for a great number of learned weights to be estimated effi-

ciently (Danks 2003), trained on a relatively ‘small’ linguistic corpus (~11 million

two- and three-word phrases), provides good fits to human data on a wide range of ef-

fects documented for lexical processing, including frequency effects, morphological

family size effects, and relative entropy effects. For monomorphemic words, the model

provided excellent fits with no free parameters, and for morphologically complex

words, Baayen and colleagues had only to add a few free parameters to enable the

model to fit a broader range of data more closely and parsimoniously than other models

in the literature that were designed specifically for the task (e.g. Norris 2006). The

model also captures frequency effects for complex words and provides good fits to data

revealing phrase frequency effects, despite it not having explicit representations of ei-

ther complex words or phrases (Baayen et al. 2013).

We suggest that these findings are representative of a more general—and very suc-

cessful—trend emerging in computational approaches to learning: that of focusing on

understanding the structure of the learning task, and then using relatively simple but ef-

fective learning algorithms to discover structure in data (Halevy et al. 2009, Recchia &

Jones 2009), rather than seeking to second-guess the structure of those data in advance.

Our own findings can be seen as illustrating the merits of looking at human development

from the same perspective: seeing a child as equipped by nature to discover the structure

of the world by discrimination learning (for further discussion, see Ramscar 2010).

For this approach towork, it is essential that the relationship between the learner and the

world be properly understood in terms of the way that the information available to learn-

ers is structured. Children acquire language in context, usually without any explicit in-

struction, and as such, theymay never encounter situations in which forms likewalked or

mice are explicitly derived in real time fromwalk andmouse (Tomasello 2003).Yet the as-

sumption that this rote conjugation process will somehow be the outcome of learning is

common to models of all persuasions (e.g. MacWhinney & Leinbach 1991, McClelland
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& Patterson 2002, Pinker 1984, 1989, 2004, Pinker & Ullman 2002, Plunkett & March-

man 1991, Rumelhart &McClelland 1986). Traditional ‘connectionist’models of inflec-

tion (e.g. Rumelhart&McClelland 1986) have simply sought to account for how a partic-

ular conception of languagemight be learned, rather than using the logic of discrimination

learning to reconceptualize the task that actually faces the learner, as in the approach taken

here. It seems likely that it is just this kind of unexamined theoretical presupposition that

makes the task of explaining how language is learned appear far harder than it actually is.

This point also applies to the widespread acceptance by linguists, philosophers, and

psychologists that negative ‘learnability’ arguments warrant the conclusion that various

aspects of our linguistic knowledge are innately specified. Negative learnability argu-

ments do not and cannot warrant this conclusion. All one can conclude from a negative

learnability argument is that its author is unable to conceive of how it is that something

is learned given a particular conception of learning (as, indeed, Gold (1967) explicitly

notes). It is always possible that either the characterization of learning or its outcome—

the knowledge or cognitive ability that it is claimed cannot be learned—is simply

wrong (Johnson 2004).

In the end, questions about whether cognitive capacities are learnable will not be de-

cided by proclamation; they will be resolved by the formulation of convincing scientific

accounts of how those capacities develop, which either explain how the information-

processing architectures that underlie those capacities arise through learning, or explain

how they develop otherwise. The simplicity of the Rescorla-Wagner model is helpful in

this regard precisely because the modeler is forced to attend to the actual predictive and

discriminative relationships that children learn from: the relationships between linguis-

tic gestures and the objects they abstractly come to represent, as well as the systems of

relationships present in linguistic systems themselves. The model predicts that represen-

tations of linguistic forms will become increasingly discriminated over the course of ex-

perience, making it highly unlikely that children process language in the same way as

adults (Stemberger 2004, Stemberger & Middleton 2003, Tabak et al. 2010; see also

Baayen et al. 2011, Bannard et al. 2009, Ramscar, Dye, & Klein 2013), or that younger

adults process language in the same way as older adults (Ramscar, Hendrix, et al. 2013).

In the same vein, it is important to note that while Rescorla-Wagner is a useful model

of a specific implicit-learning process, there is far more to learning than error monitor-

ing. Humans, especially adult humans, are not the passive observers of the environment

that Rescorla-Wagner idealizes them to be. They are agents with goals and desires who

can direct their attention, and rerepresent their views of their worlds, and all of these

cognitive behaviors will in turn have an effect on what they learn and how they learn it.

At the same time, these agentive aspects of cognition appear to develop slowly in hu-

mans (see Ramscar & Gitcho 2007, Thompson-Schill et al. 2009 for reviews). There is

reason to believe that this makes young children and infants more likely to sample the

error in their environments in very similar ways (Ramscar, Dye, & Klein 2013), and

that this makes it more likely that children who are exposed to cultural systems that em-

body probabilistic conventions will come to learn and represent the patterns of infor-

mation in them in appropriate, conventionalized ways (Hudson Kam & Newport 2009,

Newport 1990, Singleton & Newport 2004, Thompson-Schill et al. 2009).

Of course, human infants do not just differ from other animals in the way that they

sample the environment: the social environments that they sample and learn from are

markedly different as well (Akhtar & Tomasello 2000, Tomasello 2003, 2008).Ahuman

infant is not just a qualitatively different learner from an infant rat; she is born into a qual-

itatively different environment as well. While social learning and ‘associative learning’



have often been painted as being in opposition to one another (e.g. Akhtar & Tomasello

2000), it is likely that—as with the LPLA—this opposition hinges on a flawed view of

what learning is. As Quine (1960) noted, learning language does not merely require that

a child master the relationships in a conventionalized system of sound tokens (Gold

1967), but that the child also learn what the tokens and their relationships mean.

Being able to do so appears to hinge on learning to share subjectivity; the child must

somehow master the shared point of view of her community (see also Akhtar & Toma-

sello 2000, Tomasello 2003, Wittgenstein 1953). How human infants come to discrimi-

nate the ‘intersubjectively available cues as to what to say and when’ (Quine 1960:ix) is

an incredibly complex task, yet it is clear that children manage to do this, and that they

do so by learning. As a result, it may be that learning models that sample the environ-

ment in relatively simple ways are particularly well suited to capture the content and

quality of children’s social learning. Triesch and colleagues (2006) demonstrate, for ex-

ample, that gaze following can emerge naturally from domain-general learning mecha-

nisms, provided that a child has access to a caregiver that tends to look at things in ways

that the infant finds informative. A concrete, mechanistic account such as this is scien-

tifically preferable to competing explanations of human social development that as-

sume that gaze following is determined by an unspecified innate mechanism that exists

solely in order to glean information from a caregiver’s gaze (see e.g. Spelke & Kinzler

2007), both because the accuracy of the former is easier to establish, and because this

means in turn that even the discovery that it is inaccurate will advance our scientific un-

derstanding of development.

In this work, we have shown how a ‘simple learning model’ can provide a principled

account of the specific pattern of data associated with children’s learning of a much de-

bated linguistic convention: plural inflection (for compatible approaches relating to

verb argument structure, see Ambridge 2012, Ambridge et al. 2009, Boyd & Goldberg

2011, Goldberg 2011). These results establish that noun pluralization conventions are

not in principle unlearnable, and that accounting for children’s patterns of acquisition of

them does not mandate the positing of innate computational mechanisms. We have also

shown how a formal learning model—the mechanisms of which are well understood

computationally and well supported by other empirical evidence—can make surprising

predictions about children’s overregularization errors and their eventual recovery from

them. We take the success of these predictions as evidence that children do in fact

learn the conventions of plural marking from the language that they encounter, in

much the same way that they learn about many other aspects of the rich cultural envi-

ronments into which they are born.

APPENDIX: R CODE AND TRAINING SET

A. Code required to implement the basic model using the ndl package in the R statistical programming

language.

# load the naive discrimination learning package into R

library(ndl)

# load the file describing the training set (cues, outcomes, and their frequencies) into R

cuesOutcomes<-read.table("singplur.txt",T,stringsAsFactors=FALSE)

# set sampling of the training set to random

randomOrder = sample(1:sum(cuesOutcomes$Frequency))

## Estimate learning in Rescorla-Wagner
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#mice outcome

mouseitems2mice = RescorlaWagner(cuesOutcomes,

traceCue="mouseitems", traceOutcome="mice", randomOrder=randomOrder)

mousiness2mice = RescorlaWagner(cuesOutcomes,

traceCue="mousiness", traceOutcome="mice", randomOrder=randomOrder)

items2mice = RescorlaWagner(cuesOutcomes,

traceCue="items", traceOutcome="mice", randomOrder=randomOrder)

stuff2mice = RescorlaWagner(cuesOutcomes,

traceCue="stuff ", traceOutcome="mice", randomOrder=randomOrder)

#s outcome

mouseitems2s = RescorlaWagner(cuesOutcomes,

traceCue="mouseitems", traceOutcome="s", randomOrder=randomOrder)

mousiness2s = RescorlaWagner(cuesOutcomes,

traceCue="mousiness", traceOutcome="s", randomOrder=randomOrder)

items2s = RescorlaWagner(cuesOutcomes,

traceCue="items", traceOutcome="s", randomOrder=randomOrder)

stuff2s = RescorlaWagner(cuesOutcomes,

traceCue="stuff ", traceOutcome="s", randomOrder=randomOrder)

#mouse outcome

mouseitems2mouse = RescorlaWagner(cuesOutcomes,

traceCue="mouseitems", traceOutcome="mouse", randomOrder=randomOrder)

mousiness2mouse = RescorlaWagner(cuesOutcomes,

traceCue="mousiness", traceOutcome="mouse", randomOrder=randomOrder)

items2mouse = RescorlaWagner(cuesOutcomes,

traceCue="items", traceOutcome="mouse", randomOrder=randomOrder)

stuff2mouse = RescorlaWagner(cuesOutcomes,

traceCue="stuff ", traceOutcome="mouse", randomOrder=randomOrder)

# Calculate the response propensities

sStrength <- (mouseitems2s$weightvector + mousiness2s$weightvector + items2s$weightvector +

stuff2s$weightvector)

miceStrength <- (mouseitems2mice$weightvector + mousiness2mice$weightvector +

items2mice$weightvector + stuff2mice$weightvector)

mouseStrength <- (mouseitems2mouse$weightvector + mousiness2mouse$weightvector +

items2mouse$weightvector + stuff2mouse$weightvector)

interference <- mouseStrength + sStrength

miceoutput <- miceStrength - interference

# Plot the strength of "mouse" when the cues to "mice" are present across training

plot(mouseStrength, ylim=c(-0.8, 0.8), col="blue")

mtext("activation strength for 'mouse'", 3, 1.5)

abline(h=0, col="red")

# Plot the strength of "S" when the cues to "mice" are present across training

plot(sStrength, ylim=c(-0.8, 0.8), col="blue")

mtext(“activation strength for '+S'", 3, 1.5)

abline(h=0, col="red")

# Plot the strength of "mice" when the cues to "mice" are present across training

plot(miceStrength, ylim=c(-0.8, 0.8), col="blue")

mtext("activation strength for 'mice'", 3, 1.5)

abline(h=0, col="red")

# Plot the response propensities for "mice" when the cues to "mice" are present across training

plot(miceoutput, ylim=c(-0.8, 0.8), col="blue")

mtext("production propensity for 'mice'", 3, 1.5)

abline(h=0, col="red")



B. Training set for the basic model in R (‘singplur.txt’).

cues outcomes frequency

items_stuff_arminess_armitems arm_s 120

items_stuff_beakeriness_beakeritems beaker_s 120

items_stuff_beariness_bearitems bear_s 120

items_stuff_bookiness_bookitems book_s 120

items_stuff_bottleiness_bottleitems bottle_s 120

items_stuff_bowliness_bowlitems bowl_s 120

items_stuff_boyiness_boyitems boy_s 120

items_stuff_cariness_caritems car_s 120

items_stuff_catiness_catitems_catitem cat_s 120

items_stuff_chairiness_chairitems chair_s 120

items_stuff_cupiness_cupitems_cupitem cup_s 120

items_stuff_doginess_dogitems dog_s 120

items_stuff_duckiness_duckitems duck_s 120

items_stuff_faceiness_faceitems face_s 120

items_stuff_forkiness_forkitems fork_s 120

items_stuff_froginess_frogitems frog_s 120

items_stuff_girliness_girlitems girl_s 120

items_stuff_handiness_handitems hand_s 120

items_stuff_houseiness_houseitems house_s 120

items_stuff_leginess_legitems leg_s 120

items_stuff_plateiness_plateitems plate_s 120

items_stuff_ratiness_ratitems rat_s 120

items_stuff_spooniness_spoonitems spoon_s 120

items_stuff_stooliness_stoolitems stool_s 120

items_stuff_toyiness_toyitems toy_s 120

items_stuff_traininess_trainitems train_s 120

items_stuff_truckiness_truckitems truck_s 120

items_stuff_tviness_tvitems television_s 120

item_stuff_arminess_armitem arm 120

item_stuff_beakeriness_beakeritem beaker 200

item_stuff_beariness_bearitem bear 200

item_stuff_bookiness_bookitem book 200

item_stuff_bottleiness_bottleitem bottle 200

item_stuff_bowliness_bowlitem bowl 200

item_stuff_boyiness_boyitem boy 200

item_stuff_cariness_caritem car 200

item_stuff_catiness_catitem cat 200

item_stuff_chairiness_chairitem chair 200

item_stuff_cupiness_cupitem cup 200

item_stuff_doginess_dogitem dog 200

item_stuff_duckiness_duckitem duck 200

item_stuff_faceiness_faceitem face 200

item_stuff_forkiness_forkitem fork 200

item_stuff_froginess_frogitem frog 200

item_stuff_girliness_girlitem girl 200

item_stuff_handiness_handitem hand 200

item_stuff_houseiness_houseitem house 200

item_stuff_leginess_legitem leg 200

item_stuff_plateiness_plateitem plate 200

item_stuff_ratiness_ratitem rat 200

item_stuff_spooniness_spoonitem spoon 200

item_stuff_stooliness_stoolitem stool 200

item_stuff_toyiness_toyitem toy 200

item_stuff_traininess_trainitem train 200
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item_stuff_truckiness_truckitem truck 200

item_stuff_tviness_tvitem television 200

items_stuff_mousiness_mouseitems mice 100

item_stuff_mousiness_mouseitem mouse 200
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