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Abstract 

Error Assessment for Height above the Nearest Drainage Inundation 

Mapping 

Lukas Daniel Godbout, M.S.E. 

The University of Texas at Austin, 2018 

Supervisor:  Paola Passalacqua

Floods are natural events that can have disastrous impacts in terms of loss of life 

and damage to property. Flood modelling and mapping allow cities, emergency response 

and individuals to better prepare for and react to these potential disasters. While detailed 

flood models and maps are available at some locations in the U.S., many locations are left 

without. Automatic flood modelling and mapping using remote sensed data allows the 

possibility of providing flood maps on a large scale without the need for field studies on 

each and every river. As of 2016 the National Water Model is using rainfall forecasts from 

the National Weather Service to predict discharge estimates for approximately 2.7 million 

reaches across the entire continental U.S. To use these discharge values for inundation 

mapping, relationships between discharge and stage height known as rating curves are 

used. 

While rating curves are typically derived for river cross sections using detailed field 

studies, the proposed methodology for the National Water Model is to derive rating curves 

purely from remote sensed data. Manning’s equation is applied to derive a relationship 
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between discharge and stage height using topographic data to estimate reach geometry, 

known as “synthetic” rating curves. The focus of this thesis is to assess the accuracy of 

these synthetic rating curves and to propose possible improvements. The synthetic rating 

curves are assessed for 527 reaches across four rivers in Texas, and the effect of terrain 

characteristics such as slope and reach length on accuracy are explored. An approach to 

recalculate the slope for Manning’s equation is proposed and evaluated using our method 

to quantify synthetic rating curve performance. 
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Chapter 1:  Introduction 

MOTIVATION 

Flood maps provide crucial information that can assist in planning for disasters 

before they happen, and can allow emergency responders to react to the disaster with 

knowledge of current and forecasted conditions. Severe floods can occur with very little 

warning, with weather forecasts days in advance often not conveying the level of danger 

that arises. Weather forecasts can also be misleading in situations such as intense rainfall 

upstream which causes flooding far downstream as in the 2015 Memorial Day Flood of 

Austin. Flood models can utilize rainfall forecasts to predict the extent and severity of the 

resultant flooding, and convey this information as a flood map to be used by cities, 

emergency response, and individuals looking to protect life and property. 

Flood inundation maps have traditionally been prepared by cities to build flood 

resilience and better prepare for emergency response. However, these inundation maps 

have generally only been produced for densely populated areas, and are usually not 

produced at all for less populated and rural areas. The agency historically responsible for 

producing and aggregating flood maps is the Federal Emergency Management Agency, but 

their flood maps cover less than half of continental USA. An automatic process using 

remote sensed data and algorithms for flood modelling and inundation mapping would 

allow flood maps to be produced for the entire country, without the need for detailed field 

studies. Producing coverage of flood maps to the entire continental U.S. would be 

incredibly beneficial, providing access to information that can improve disaster resilience 

and emergency response efforts. This thesis can be read in the context of a large scale 

collective effort in flood forecasting to help protect life and property. 
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BACKGROUND 

The National Water Model (NWM), a recent effort of the National Oceanic and 

Atmospheric Administration (NOAA), produces daily and sub-daily discharge forecasts 

for over 2.7 million reaches spanning continental USA. The NWM takes precipitation 

forecasts from the National Weather Service and simulates snowmelt and surface runoff to 

predict discharge values. To convert these discharge values to inundation extent, rating 

curves are used to convert reach discharges into corresponding stage height, and then a 

process called Height Above Nearest Drainage (HAND) is used to convert stage height to 

inundation extent, using elevation data from the National Elevation Dataset (NED). The 

NWM uses a network of rivers and reaches from the National Hydrography Dataset, with 

the current iteration known as NHDPlusV2 (McKay et al., 2012). A snapshot of real time 

river discharge across continental U.S. is shown in Figure 1. 

 

 

Figure 1: Real-time discharge predictions from the National Water Model 

Image credit: NOAA National Water Center 
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While traditional rating curves have related discharge to stage height using river 

cross sections measured in field studies, for automatic flood mapping we use only remote 

sensed data. Hydrodynamic models such as HEC-RAS are often used at the local scale, but 

the field data requirements are prohibitive to produce inundation maps for the entire USA. 

Instead, we derive reach-averaged rating curves using channel geometry and Manning’s 

equation, and call these Synthetic Rating Curves (SRCs) (Zheng et al., accepted). SRCs 

are combined with the HAND method which is a measure of relative elevation, calculated 

as the vertical difference between a given location and the bed of the channel that it drains 

into. HAND has been calculated for continental U.S. as shown in Figure 2. The ability to 

generate inundation maps using HAND and SRCs from a digital elevation model (DEM) 

has recently been demonstrated at the national scale (Liu et al., accepted).  

 

 

Figure 2: Height Above Nearest Drainage relative to NHDPlus channels 

Image credit: Xing Zheng 
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PROJECT OVERVIEW 

The accuracy of the NWM flood maps must be assessed to have confidence in 

releasing them publically. The focus of this thesis is the accuracy of synthetic rating curves 

(SRCs), one of the three key steps in the NWM’s flood mapping process. SRCs use 

Manning’s equation to convert discharge values for reaches into a corresponding stage 

height, and their key advantage is that they do not require any field data and rely only upon 

remotely sensed data. However, this also means that they are likely to be less accurate than 

traditional rating curves. SRCs are used in conjunction with Height Above the Nearest 

Drainage (HAND), a measure of relative elevation between a location and the bed of the 

channel it drains into. We assess SRC accuracy by comparing them to existing, calibrated 

rating curves. The primary aim of this thesis is to produce a method and framework to 

quantify rating curve performance with appropriate metrics to assess SRC accuracy. 

We also look to investigate the relationship between SRC performance and terrain 

characteristics as well as channel features. Channel flow patterns are affected by local and 

overall slope of the channel bed, any form of friction caused by vegetation, rock and soil, 

as well as the geometry of the channel. Narrower and steeper sections of the channel will 

result in different hydraulic conditions than wider and flatter sections. Characteristics of 

the overbank terrain will also affect the discharge to stage height relationship as there can 

be different slopes and aggregate friction. We look to quantify the effect of these different 

characteristics on SRC performance. 

The aim of this thesis is to assess the accuracy of modelling this process using only 

remote sensed data, so all of these complex physical processes and interactions are bulked 

into only a few measurements and one equation. We hope to measure the accuracy of our 

calculated relationships between discharge and stage height in an effort to quantify 
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uncertainty and allow improvements to be made and assessed on the performance of the 

model. 

RESEARCH QUESTIONS 

1. What is the overall accuracy of the synthetic rating curves? 

First we want to characterize the overall accuracy of the SRCs on a large aggregate 

scale and for individual rating curves. We assume that the performance will be worse than 

for rating curves derived from detailed cross sections measured in field studies, and we 

look to quantify this difference in performance. We know that the channel geometry from 

remote sensed data is going to be less accurate, and that the roughness values we use will 

similarly be less accurate. Furthermore, we are assuming a uniform water surface level 

across an entire reach, which can range in length from a meter to over ten miles in some 

circumstances. These issues with flood modelling using remote sensed data will contribute 

to worse rating curve performance, so to improve future SRC performance we look to 

quantify their current performance. 

2. Do terrain characteristics and channel features affect synthetic rating curve 

accuracy? 

We expect terrain characteristics and channel features such as reach length and 

reach slope to have a significant effect on the accuracy of SRCs. We hypothesize that SRC 

accuracy is likely to decrease for reaches that are very short as channel geometry will be 

inaccurate, and similarly for long reaches where the assumption of a uniform water surface 

level no longer holds. We also hypothesize that performance will decrease for extreme 

slope values where Manning’s equation under the assumption that flow is controlled by the 

slope of our reach may no longer be accurate. We would also like to test for roughness and 

stream order, but due to the limited availability of calibrated hydrodynamic models to test 
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our SRCs against we are largely unable to draw conclusions about these terrain 

characteristics and channel features. 

3. How can the performance of synthetic rating curves be improved? 

Since we produce a methodology to quantify SRC performance, we look to apply 

a change to the SRC calculation and test for improvement in SRC accuracy. As the current 

calculation of SRCs uses simple channel geometry from remote sensed data and Manning’s 

equation, we assume that many improvements could be made. Possible improvements 

include utilizing lidar data with a better resolution, varying roughness values and altering 

geometry calculation for applying Manning’s equation. We look to the results of research 

question 2 to identify terrain characteristics or channel features that predict poor accuracy, 

and use these to inform changes to the SRC calculation. We suggest a process to recalculate 

reach slope as a pilot study to demonstrate how future improvements can be evaluated. 
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Chapter 2:  Literature Review 

Hydrological models have improved significantly in the past century and flood 

maps are one of the products of this modelling that can have a significant positive impact 

in our society. Flood inundation maps communicate the severity and spatial extent of the 

disaster in a form that can be quickly and easily understood by emergency response 

[Maidment, 2017]. Predictions of conditions days in advance and estimates of current 

conditions help inform decision making in these time sensitive situations. 

Simulation of the hydrological cycle was first envisioned by Freeze and Harlan 

(1969) with the continual improvement of computing power and understanding of the 

different aspects of the hydrological cycle. While flood modelling has traditionally been 

conducted on local scales, the idea of continental and global scale flood modelling has been 

gaining traction in recent years. Dottori et al. (2016) note that developing high resolution 

flood hazard models is now feasible and present a procedure for flood hazard mapping that 

can be applied globally. The recent wide spread availability of high resolution topographic 

elevation data is key for large scale flood modelling using both hydrological (Liu et al., 

accepted) and hydrodynamic methods [Wing et al., 2017]. 

One key example of using this high resolution topographic data for large scale flood 

mapping is the NOAA National Water Center (NWC) which runs the National Water 

Model (NWM), a real time flood forecasting product (Maidment, 2017). The NWM uses 

WRF-Hydro to convert rainfall predictions from the National Weather Service to discharge 

estimate for approximately 2.7 million reaches for the entire NHDPlus continental channel 

network [Maidment, 2017]. The method used to convert discharge to inundation extent by 

the NWM is a combination of synthetic rating curves (SRCs) (Zheng et al., accepted) and 

the Height Above Nearest Drainage (HAND) [Rodda, 2005; Renno et al., 2008]. The 
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conversions from rainfall to runoff, channel flow and finally to overbank flow and flooding 

are conducted at different resolutions suitable for each individual process. 

A dense network of gauging stations or applying hydrodynamic models such as the 

Hydrologic Engineering Center's River Analysis System (HEC-RAS) for every river in the 

country would provide very accurate flood maps, but would be prohibitively difficult and 

expensive. As Fekete and Vorosmarty (2007) note, while gauging stations produce the 

most accurate values, “they are expensive to maintain and in many cases the sites and 

resulting data can be technically, logistically, and politically difficult to access.” Similarly, 

conducting detailed field studies to produce cross sections along 2.7 million reaches is also 

unrealistic. 

Therefore, the specific methods that the NWM uses to simulate these processes 

such as SRCs and HAND are chosen due to the suitability for remote sensed data and 

efficiency to run on a continental scale. These two methods both use topographic elevation 

data, with SRCs converting discharge to stage height using Manning’s equation, and 

HAND converting stage height to flood extent using relative elevation [Zheng et al., 

accepted]. The HAND is a measure of relative elevation, as the vertical elevation difference 

between some location and the channel bed that it drains into [Rodda, 2005; Renno et al., 

2008]. When the stage height of the reach that a location drains into is greater than the 

HAND value, that location is flooded. The depth of inundation is equal to the stage height 

minus the HAND value. The application of HAND has previously been demonstrated 

(Nobre et al., 2011, Nobre et al., 2016) and is relatively computationally inexpensive which 

is suitable for continental scale inundation mapping. 

The use of rating curves with elevation data as input rather than a series of river 

cross sections is a new application. Rating curves are an approximation of the relationship 

between discharge and stage height for a given cross section or stretch of river (Kennedy, 



 9 

1984), and have traditionally been produced using detailed field studies. Rating curves 

have typically been used in the U.S. by the U.S. Geological Survey (USGS) at gauging 

stations where discharge values are measured (Kennedy, 1984), but the application of 

discharge to stage height relationships has been expanded in recent years. In addition to 

SRCs derived purely from remote sensed data (Zheng et al., 2016), King et al. (2018) use 

rating curves in the reverse manner using stage height from remote sensed data to predict 

discharge with Manning’s equation. Similarly, Kean et al. (2005) produce rating curves 

based on hydrodynamic models, circumventing using Manning’s equation to relate stage 

height to depth. 

As the application of rating curves of SRCs in conjunction with HAND relative 

elevation for flood mapping is still new, the accuracy of this process has not yet been 

thoroughly tested [Zheng et al., accepted]. The focus of this thesis is to assess SRC 

accuracy in addition to test for relationships between terrain characteristics or channel 

features and SRC performance. Factors that affect SRC performance include terrain 

characteristics like slope, channel features such as channel geometry and roughness from 

vegetation, as well as the accuracy of the elevation data used. 

Terrain characteristics and channel features play a significant role on the flow of 

water through channels and floodplains. Fleischmann et al. (2016) examine the effect of 

floodplain characteristics on hydrograph skewness, where regions with larger floodplains 

and more vegetation produce higher aggregate friction and therefore attenuate the 

hydrograph. Montgomery et al., (1997) find that characteristic slope, grain size, shear stress 

and roughness ranges for different reaches affect flow patterns and sediment transport. The 

relationship between terrain characteristics or channel features and SRCs at this point has 

not been investigated. 
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The accuracy of models based on topographic data are strongly tied to the resolution 

and accuracy of the elevation values. Remote sensed topographic data has played an 

increasing role in hydrological simulation over recent decades. A simplistic algorithm 

using digital elevation grids to extract channels and calculate flow accumulation was 

introduced by Tarboton et al. (1991) in the form of TauDEM.  The fundamental idea is that 

water will flow in the direction of steepest descent, initially in the D8 model (O’Callaghan 

et al., 1984) to one of eight flow directions such as north or northwest. This was later 

extended by Tarboton et al. (1997) to a model where the flow can be in any direction, and 

the role of topographic data in hydrological modelling and flood mapping has only 

increased since then. 

The increasing availability of lidar provides new opportunities for improvements 

in flood inundation mapping using SRCs and HAND. The hyper-resolution detail that lidar 

provides allows for identification of topographic features that would otherwise be 

indistinguishable [Roering et al., 2013]. Lidar has been used to analyze terrains and more 

accurately extract channel networks using channel extraction tools such as GeoNet 

[Passalacqua et al., 2010]. More accurate channel networks and channel geometry have 

significant potential for application in flood modelling. Utilizing lidar can be used to 

improve HAND inundation mapping and also validate flood models as in a study by Chen 

et al (2017) where lidar was used to measure the inundation extent of the 2008 Iowa floods. 

Lidar can also be used to assess terrain characteristics and channel features, which 

are shown in this thesis to predict SRC performance. Ozdemir et al. (2013) use hyper-

resolution lidar measurements to evaluate the effect of roughness in urban flood modelling. 

This idea can be applied to SRCs, where lidar is used to better approximate inputs used in 

Manning’s equation such as roughness and reach slope. 
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Finally, it should be stated that the approximations used for global and continental 

scale flood mapping as by the NWM should be validated by more detailed hydrodynamic 

models. Fatichi et al. (2016) stress the importance of continuing to improve physically 

based hydrological models, and comparisons between efficient, less accurate methods and 

less efficient, more accurate measures can lead to insights into how much inaccuracy 

approximations introduce and in which situations they tend to fail. 
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Chapter 3:  Study Areas1 

Data used for each study area is in the form of a HEC-RAS model, where for each 

of the rivers we have detailed cross section geometry information at many points along the 

river. The study areas were chosen primarily due to the availability of these HEC-RAS 

models which have been provided by the U.S. Army Corps of Engineers (USACE). The 

initial aim was to choose a set of rivers that were located in areas with very different terrain 

characteristics, but HEC-RAS models are only available for a small subset of U.S. rivers. 

We study four rivers in Texas, located within three HUC6 units. We use HEC-RAS models 

provided by USACE for the Lower Colorado river, the Guadalupe river, and the Blanco 

river. For the San Antonio river we use HEC-RAS models provided by the San Antonio 

River Authority. 

The terrain characteristics which we were looking to capture were a mixture of high 

relief and low relief, a mixture of coastal and inland, and a mixture of main stem rivers and 

tributaries. While all of the rivers are located near the Texas coast, we have three main 

stem rivers and one large tributary, and some variations in overall slope. The Blanco river 

has particularly different characteristics to the three major rivers as a tributary of the 

Guadalupe river. The Blanco has a far smaller drainage basin, is much shorter, and also has 

a higher overall relief. The rivers and their drainage basins are presented in Figure 3. Due 

to the limited availability of HEC-RAS models, we are not able to capture a mixture of 

coastal and inland terrains, nor do we have any mountainous regions of particular high 

relief to compare. 

                                                 
1 Part of study to be submitted as Godbout et al.  

to JAWRA (in preparation) 
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Figure 3: Study area consisting of the San Antonio, Guadalupe, Lower Colorado and 

Blanco rivers in Coastal Texas. 

 

The total area of the San Antonio River basin is approximately 10,863 square 

kilometers. The San Antonio River is approximately 390 km or 240 miles, converging with 

the Guadalupe River before finally flowing into the Gulf of Mexico. The measure of the 

river extent covered is approximately 76% or 182 miles from downstream. The portion of 

the river included in our study area contains 96 reaches or unique COMIDs, and the overall 

relief is approximately 0.04%. 

The entire extent of the Guadalupe river is approximately 370 km or 230 miles. The 

portion of the river extent analyzed in this study downstream of Canyon Lake is 
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approximately 183 miles or 295 km. This portion of the river contains 126 reaches or 

unique COMIDs, and the average slope or overall relief is approximately 0.08%. For the 

downstream portion of the Guadalupe River, the HUC06 basin area is approximately 

10,000 square kilometers.  

The Colorado River is approximately 1,387 km or 862 miles. It flows southeast 

from its source on the Llano Estacado to Matagorda where it empties into the Gulf of 

Mexico. The extent of the river covered in this study is considered part of the lower 

Colorado River and is approximately 666 km or 414 miles. The lower region extends from 

San Saba (upstream of Lake Buchanan) to Matagorda Bay. The portion of the river depicted 

as our study area contains 275 reaches, and the overall relief is approximately 0.033%. The 

area of the HUC04 river basin covering the lower region of the Colorado River is 

approximately 28,904 square kilometers. 

The Blanco river is approximately 90 km or 56 miles. It flows east from its source 

near Fredericksburg through the town of Blanco until it flows into the San Marcos river 

which itself flows into the Guadalupe river. It has a much smaller watershed of 

approximately 1,000 square kilometers, and for our study consists of 30 reaches with an 

overall relief of 0.19%. It has been chosen for its different river and basin characteristics, 

in addition to the significance to this study of the deadly flood of 2015 where at Wimberley 

the river rose over 30 feet in less than three hours with fatalities involved. 

HEC-RAS models for the San Antonio River were obtained from the San Antonio 

River Authority, while the models for the Guadalupe, Lower Colorado and Blanco rivers 

were provided by the USACE. 
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Chapter 4:  Synthetic Rating Curve Accuracy Assessment2 

OBJECTIVE 

To quantify the overall accuracy of synthetic rating curves and assess whether 

terrain characteristics and channel features affect synthetic rating curve accuracy. 

METHOD 

In this part of the study we detail a process to compare a SRC for a reach and a 

HEC-RAS rating curve which is valid for a particular cross section, the HEC-RAS rating 

curves must be aggregated into reaches for comparison. We discuss possible ways to 

aggregate these cross section rating curves to calculate the difference between the SRC and 

HEC-RAS rating curve. We compare the SRC stage height to the median of the HEC-RAS 

stage heights for the cross sections contained within that reach, and then use statistical 

measures of mean normalized RMSE and mean absolute depth difference to evaluate our 

SRCs. Synthetic rating curve calculation is first conducted as previously discussed in the 

introduction (Zheng et al., accepted) and is outside the scope of this thesis. 

As can be seen in Figure 4, the SRC has a value of stage height for every discharge 

value, and at a set of discharge values along the rating curve we compute the median of the 

HEC-RAS rating curve stage height values. We compare the SRC stage height to the 

median of the HEC-RAS stage heights at the set of discharge values, and take the vertical 

difference as the error. Median HEC-RAS values were assumed to be more representative 

of reach averages than their mean (Zheng et al., accepted). We then have a set of error 

values which describe the difference between the SRC predicted stage height and the 

median of the stage heights of the HEC-RAS cross sections contained within that reach. 

                                                 
2 Part of study to be submitted as Godbout et al.  

to JAWRA (in preparation) 
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To calculate overall rating curve performance rather than rating curve performance for a 

single discharge value, we then aggregate these values by taking the mean of the 

normalized RMSE or absolute depth difference. 

Currently there is no standardized method for statistics in rating curve comparisons. 

The SRC performance can be assessed by a variety of statistical measures, each with their 

particularly biases. A variety could be used including mean absolute error, root mean 

square error, coefficient of determination, range and percent bias. The primary metric used 

to assess accuracy in this study is normalized root mean square error (RMSE) as it provides 

a measure of deviation for the SRCs from the calibrated rating curves that is not affected 

by the size or scale of a river. The normalized RMSE is defined as  

𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝 𝐑𝐌𝐒𝐄 =  √∑ (𝒚�̂�−𝒚𝒊)𝟐𝒏𝒊=𝟏 𝒏𝒚𝒎𝒂𝒙−𝒚𝒎𝒊𝒏                (Equation 1) 

Where 𝒚�̂� represents the estimated or predicted stage height obtained from the 

SRCs, 𝒚𝒊 is the measured depth from HEC-RAS derived rating curves, n is the number of 

samples or HEC-RAS measurements in a given reach. The normalized RMSE is then the 

square root of the sum of squares of the difference in depths normalized by the range of 

the measured depths. We developed an automatic process to compare SRCs to these HEC-

RAS reach averaged rating curves.  

We calculate synthetic rating curve accuracy or deviation of the SRC from the 

HEC-RAS median rating curve for all reaches in our study area. We calculate statistics for 

each of the three rivers, and then look to test whether terrain characteristics and channel 

features affect SRC performance. We produce plots for the three rivers of rating curve error 

against reach slope, and use symbology to display the relationship between error and slope. 

Reaches are separated into bins based on slope, where low slope is defined as less than 

0.01% and steep slope is defined as greater than 0.1%. These bin values are defined 
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arbitrarily with the aim of having a roughly equal amount of observations in each bin, and 

using cutoff values that highlight the difference in performance that corresponds with 

different slope values. 

 

 

Figure 4: Example comparison between synthetic rating curve in blue and HEC-RAS 

average rating curve in red. Error is calculated at each point of discharge 

shown and aggregated into a mean single value. 

RESULTS 

We evaluate the performance of SRCs by their difference to calibrated HEC-RAS 

models. First we analyze basic statistics as presented in Table 1. We find that the mean 

normalized RMSE ranges from 20.6% to 31.2% which shows that the SRCs produced stage 

height values somewhat similar to the HEC-RAS cross section rating curves, although there 

is still significant deviation. The Blanco river sees the best performance while the Lower 

Colorado river has the most deviation of its SRCs to the HEC-RAS median rating curves. 
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We also see that three of the rivers have a positive percent bias, with only the Guadalupe 

overall under-predicting the stage height for a given discharge with a percent bias value of 

-9.5%. The bias is particularly large for the Colorado river of 35.5%, showing that for this 

river the SRCs are vastly over-predicting stage height for a given discharge. 

We then show two types of plots to highlight trends in the results. We first show 

scatter plots with length on the x axis using three symbols for low, medium and steep 

slopes, and then show box plots with reach length or reach slope binned into five bins of 

equal counts of measurements.  

The scatter plots of SRC performance are shown for the San Antonio river, the 

Guadalupe river, the Lower Colorado river and the Blanco river in figures 5, 6, 7 and 8 

respectively. Reaches are separated into bins based on slope, where low slope is defined as 

less than 0.01% and steep slope is defined as greater than 0.1%. These bin values are 

defined arbitrarily with the aim of having a roughly equal amount of observations in each 

bin, and using cutoff values that highlight the difference in performance that corresponds 

with different slope values. The aim of using these bins is to highlight the effect of low and 

steep slopes, while in this next set of plots we bin the measurements in a more statistically 

sound way. 

There are a number of similarities and differences in the rating curve performance 

for the four rivers. All three rivers exhibit worse performance for shorter reaches, and worse 

performance for reaches with low slope values. The trend between slope and error is most 

clear for the San Antonio river. Low slope values tend to have a normalized RMSE of 

greater than 30%, while medium and steep slope reaches tend to have a normalized RMSE 

of less than 30%. This trend is less visible for the Guadalupe river, where the most visible 

trend is that short reaches tend to have low or steep slope values which correspond to larger 

error, while long reaches often have medium slope and perform well. In the Lower 
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Colorado river the most visible trend is that short slope reaches perform very poorly, while 

medium slope reaches perform very well and low slope values tend to be somewhere in the 

middle. Overall, the main trend of the four plots are that short reaches and extreme slope 

values, particularly low slope, correspond strongly to poor SRC performance. 

 

River Mean normalized RMSE Percent Bias 

Guadalupe 23.1% -9.5% 

San Antonio 29.0% 21.6% 

Lower Colorado 31.2% 35.5% 

Blanco 20.6% 15.7% 

Table 1:  Statistical measures for the four rivers detailing mean normalized RMSE 

and overall percent bias 

 

Figure 5: The departure of HAND SRCs from HEC-RAS reach averaged rating 

curves as a function of reach length and slope for the San Antonio River 
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Figure 6: The departure of HAND SRCs from HEC-RAS reach averaged rating 

curves as a function of reach length and slope for the Guadalupe River 
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Figure 7: The departure of HAND SRCs from HEC-RAS reach averaged rating 

curves as a function of reach length and slope for the Lower Colorado River 
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Figure 8: The departure of HAND SRCs from HEC-RAS reach averaged rating 

curves as a function of reach length and slope for the Blanco River 

In addition to scatter plots we have produced box plots to display the significance 

of the relationship between terrain characteristics or channel features and SRC accuracy. 

We separate the measurements into five bins by reach length or reach slope, where bin 1 

contains the 20% of reaches with the smallest length or slope and bin 5 contains the 20% 

of reaches with the largest length or slope. The relationship between error and reach length 

is shown in figures 9, 10, 11 and 12 for Blanco, Guadalupe, San Antonio and Lower 

Colorado rivers respectively, while the same plots are produced for reach slope in figures 

13, 14, 15 and 16. The box plots have been produced by splitting the reaches into five bins 
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of an equal number of observations, ranging from shortest reach length or lowest slope to 

longest reach length or steepest slope. 

We see that the relationship between error and reach length as well as reach slope 

is most significant for the Blanco river but present for the three other rivers. Short reaches 

and reaches with low slope exhibit particularly poor performance, while long reaches and 

reaches with steep slope also perform slightly worse than reaches with medium values. 

Figures 15 and 16 are particularly interesting since both the San Antonio and 

Colorado rivers have many reaches with a slope value of approximately zero. The bins 

which represent these zero slope reaches with a minimum value of 0.001% have much 

larger errors than the other bins. The bins that perform the best for both rivers are the ones 

immediately following the zero slope bins. These are the set of reaches that have a low but 

non-zero slope, similar to the overall average relief for the entire river. 
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Figure 9: Box plot of the relationship between reach length and SRC accuracy for 

Blanco river 
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Figure 10: Box plot of the relationship between reach length and SRC accuracy for 

Guadalupe river 
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Figure 11: Box plot of the relationship between reach length and SRC accuracy for San 

Antonio river 
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Figure 12: Box plot of the relationship between reach length and SRC accuracy for 

Lower Colorado river 
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Figure 13: Box plot of the relationship between reach slope and SRC accuracy for the 

Blanco river 
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Figure 14: Box plot of the relationship between reach slope and SRC accuracy for the 

Guadalupe river 
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Figure 15: Box plot of the relationship between reach slope and SRC accuracy for the 

San Antonio river 
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Figure 16: Box plot of the relationship between reach slope and SRC accuracy for the 

Lower Colorado river 

 

We also test for the effect of other terrain characteristics and channel features 

including bankfull width, bankfull depth and geographical location of the reach such as 

distance downstream or upstream. None of these terrain characteristics or channel features 

are found to have any significant effect on SRC accuracy. Figure 17 is an example plot of 

this, where for the Blanco river we do not find a relationship between bankfull width and 

performance.  
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Figure 17: Box plot of the relationship between bankfull width and SRC accuracy for 

Blanco river 

 

DISCUSSION 

The accuracy of the SRCs depends strongly upon the bed slope as was demonstrated 

in the previous section. A relevant observation is that reaches with medium slope values 

relative over a given channel network reflect, overall, SRCs that more accurately resemble 

verified HEC-RAS rating curves. It is important to note that the figures support the overall 

idea that both slope and reach length are good indicators of rating curve performance. It is 

also worth noting that for reaches with shorter lengths there is a poorer performance with 

the SRCs due to higher variability in slope values. Furthermore, depth calculated from 
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Manning’s equation is particularly sensitive to changes in slope. Thus, more accurate 

values for local bed slope allow for the improvement of SRCs for small reaches. 

We see significant differences between the performance of the Blanco river and the 

three other rivers. The most visible difference is that the SRCs perform particularly well 

for the medium length and medium slope reaches for the Blanco river, while they do not 

for the other three rivers. Short and long reaches as well as low slope and steep slopes 

perform poorly across all rivers. The Blanco river is steeper generally compared to the 

other rivers, and it may be this higher overall relief that allows for impressive performance 

of the reaches with regular characteristics in terms of length and slope. Flood inundation 

mapping, particularly using Manning’s equation is more difficult in flat, coastal terrains. 

A significant assumption in this analysis is uniform water depth over a reach length. 

A prospective research topic to pursue and that may augment rating curve comparisons is 

the extent of which non-uniform water surface level from variability in channel geometry 

causes poor rating curve performance. Results for this analysis would suggest an advisable 

upper limit to reach length, which could be used by reorganizing the channel network to 

something more appropriate for hydraulic modelling. 
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Chapter 5:  Moving Window3 

OBJECTIVE 

To propose changes to synthetic rating curves and quantify their improvement in 

performance. 

METHOD 

We look to test this framework for quantifying performance and suggest potential 

changes for the SRC calculation to improve performance. Due to the observation from the 

previously discussed plots that reaches with low slope have significantly higher mean error 

than other reaches, we look to recalculate slope for the application of Manning’s equation 

that will reduce the mean error. An initial slope value for each reach was obtained from 

elevation values from the digital elevation datasets. The slopes were computed by taking 

the difference in elevation values between the grid cells along each reach of the main stem 

rivers. These values were compared to averaged slopes from the current version of the 

National Hydrography Dataset (NHDPlus) attributes table and were found to align 

accordingly (McKay et al., 2012). In an effort to produce more accurate SRCs by 

recalculating slope we developed a moving window approach. For reaches shorter than the 

moving window, the new slope value is calculated as a distance-weighted average of the 

slope of the short reach itself and the slopes of upstream and downstream reaches to the 

ends of the moving window, as 

 𝑺𝒏𝒆𝒘 =  𝟏𝑳𝒕𝒐𝒕𝒂𝒍 ∑ 𝑺𝒊𝑳𝒊𝑵𝒊=𝟏                   (Equation 2) 

                                                 
3 Part of study to be submitted as Godbout et al.  

to JAWRA (in preparation) 
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Where S represents the reach slope and L represents the reach length. For the 

reaches at the ends of the moving window, the reach length is taken from the previous 

reach to the end of the moving window rather than the total reach length. Ltotal is by 

definition the moving window length, and Snew is the new slope that is the weighted average 

slope over the N reaches that are within the moving window. 

To find the ideal moving window length for each river we used a scaling analysis 

approach. We found the optimal length of the moving window for each river by calculating 

the mean normalized RMSE over all reaches in the river for a variety of moving window 

lengths and then taking the value that improved the SRC performance most.  

Averaging the normalized RMSE over all reaches in the main stem of the river 

allowed us to assess the effect of moving window length on accuracy, and an ideal 

minimum length or set of lengths was found for each river. The approach is generalizable 

for any river and allows for the calculation of an optimal moving window length for SRCs 

wherever more accurate rating curves are available. An ideal moving window length can 

be calculated for locations near USGS gage stations and where calibrated HEC-RAS 

models are available. 

RESULTS 

The proposed methodology for improving SRC performance using the moving-

window approach with recalculating slope was conducted for the Blanco, Guadalupe, 

Colorado and San Antonio Rivers. The scaling analysis of the moving-window approach 

of slope recalculation for application in Manning’s equation is shown for the Blanco river 

in Figure 18. The initial performance is shown in a dashed line, while the measure of error 

is plotted as the length of the moving window increases. The improvement is very 

significant with an improvement from 20.7% to 7.8% at 1.25km, corresponding to a 
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decrease of 38% of the initial mean SRC error. It is important to remember that the Blanco 

river has different terrain characteristics and channel features to the other three rivers, being 

a smaller tributary with steeper overall relief. 

 

 

Figure 18: Scaling analysis for comparison of reach-averaged normalized RMSE 

against moving window length for the Blanco river 

 

However, the performance of the slope recalculation for the other three rivers is not 

nearly so impressive. These are presented in Figure 19 with the initial performance with 

no slope recalculation shown in a dashed black line. For the Guadalupe River in green plus 

signs, the initial average normalized RMSE is 29.00% while the optimal value is found to 

be 26.43% for a moving window length of 2.25km. For the San Antonio River in blue 

asterisks, the initial average normalized RMSE is 23.14% while the optimal value is found 
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to be 21.61% for a moving window length of 1.25km. For the Colorado River in red x 

signs, the initial average normalized RMSE is 30.15% while the optimal value is found to 

be 29.17% for a moving window length of 0.75km. 

Between these three rivers we see some minor improvement in performance. We 

see particularly minor improvement for the Lower Colorado river with a short moving 

window, which may be related to the very low overall relief of the river. The Guadalupe 

and San Antonio see approximately a decrease of 10% of their initial mean normalized 

RMSE, with a similar moving window length of approximately 2km. These two rivers have 

a similar overall relief, approximately double that of the Lower Colorado river. 
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Figure 19: Scaling analysis for comparison of reach-averaged normalized RMSE 

against moving window length for the rivers. 

 

DISCUSSION 

The SRCs for the Blanco, Guadalupe, San Antonio and Lower Colorado rivers are 

improved by the moving window approach to varying levels of success. This variation may 

be due to terrain characteristics and channel properties such as overall relief, the 

distribution and spread of reach lengths and reach slopes, in addition to the bulk channel 
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roughness. Estimating the discharge to stage height relationship using purely remote sensed 

data as in SRCs is not expected to be as accurate as using rating curves derived from 

detailed field studies, but this framework has been demonstrated to allow performance 

improvements to be quantified. 

The poor performance of the three major rivers may be due to the low overall relief 

and long flat stretches of river. The channel bed elevation of the Guadalupe River along 

the thalweg is presented in Figure 20. The three highlighted areas show stretches of the 

Guadalupe river that are flat for long areas. There are many stretches that are flat or even 

slightly uphill along the thalweg over five kilometers or more, significantly longer than the 

length of many reaches. The channel bed elevations of San Antonio river and Lower 

Colorado show similar trends, while the channel bed elevation of Blanco does not have any 

flat stretches longer than a kilometer. These long flat sections may be the reason for the 

relatively minor performance improvements, where to improve slope values the moving 

window would have to be made so long that the information contained in local slope values 

would be largely unused by taking an average slope over such a long distance. 

  

 



 40 

 

Figure 20: Elevation profile along the Guadalupe river thalweg 

Other improvements to the National Flood Interoperability Experiment (Maidment, 

2017) could be made, such as introducing a new hydraulic network where reaches in the 

NHDPlus network are recalculated according to some uniform or optimal reach length. The 

NHDPlus network was not designed for hydraulic modelling, and both short and long 

reaches pose a significant difficulty to accurate SRCs and inundation mapping, an issue 

that could be sidestepped by combining short reaches and splitting long reaches. 

Using the moving window approach on other study areas or introducing new 

changes to the SRC calculation would be useful considering the framework applied here to 

quantify improvements.   
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Chapter 6:  Discussion and Conclusion 

RESEARCH QUESTIONS 

1. What is the overall accuracy of the synthetic rating curves? 

We presented a framework to validate the performance of SRCs by comparing 

SRCs computed for a reach to HEC-RAS rating curves for individual cross sections. The 

results of this comparison for SRCs as they currently exist quantify their current 

performance. The four rivers are found to have mean normalized RMSE values ranging 

from 20.6% to 31.2% showing that the SRCs are somewhat close but still have significant 

room for improvement. The percent biases range from -9.5% to 35.5%, with an overall 

trend of the SRCs over-predicting stage height for a given discharge compared to the HEC-

RAS rating curves. 

As previously mentioned, the performance of the SRCs are heavily influenced by 

the quality of the topographic data from which the rating curves are derived. There is 

therefore assurance in the notion that improvements in the resolution of topography data 

may address issues related to the reliability of SRCs. Higher resolution DEMs, which may 

better represent the shape and length of channels as well as the underlying thalweg, can 

serve to strengthen the information displayed by synthetic rating curves and adjust to an 

extent their alignment with calibrated HEC-RAS rating curves (Zheng et al., accepted). 

The employment of better-quality can improve the quality of the SRCs. 

2. Do terrain characteristics and channel features affect synthetic rating curve 

accuracy? 

We find that from our study the two terrain characteristics and channel features that 

predict SRC accuracy are reach length and slope. We suggest that these two are related as 

the plots of error by reach length show that in particular short reaches with very low slope 
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perform the worst. Similarly, short reaches with very high slope values also perform 

poorly. Reaches with extreme slope values are unlikely to perform well because Manning’s 

equation is sensitive to slope, and reaches that are flat or slightly uphill are not going to 

have no flow or flow backwards along the river. Intuitively we know that water will 

continue to flow down the river even for these sections where the slope is different to the 

majority of the river. We propose a moving window approach to recalculate slope, but a 

variety of approaches to account for this issue are possible. 

Other terrain characteristics and channel features that were not present in our study 

area may also have an effect on rating curve accuracy. We know that roughness has a 

significant effect on Manning’s equation, but in this study we assume a uniform roughness 

for all reaches since we do not have data to take as ground truth for roughness. Rivers or 

reaches with more or less vegetation may perform worse than areas with a moderate 

amount of roughness. This issue remains difficult to solve since in channel roughness is 

difficult to estimate from remote sensed data and changes from year to year in addition to 

throughout the year. 

3. How can the performance of synthetic rating curves be improved? 

We suggested a method to recalculate the slope for every reach and tested the effect 

of this on the overall SRC accuracy. The SRC accuracy assessment was successful, 

although the increase in performance from the slope calculation was relatively minor. We 

found that the moving window and scaling analysis was very successful for the smaller 

Blanco river which is steeper and a tributary, while for the longer flatter major rivers there 

was less improvement. We hope that the framework for quantifying SRC performance 

continues to be used in an effort to make SRCs as accurate as possible for inundation 
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mapping. Further suggestions for improvements to SRCs and to the NWM inundation 

mapping process as a whole are discussed in the following section. 

RECOMMENDATIONS FOR IMPROVING HAND INUNDATION MAPPING 

We have seen the ability of the HAND method using SRCs to produce automatic 

real time inundation maps, and here we suggest improvements to be made to this process. 

There are many possible improvements that could be made for the second iteration of 

HAND, some of which are more promising than others. Improvements to SRC calculation 

and the application of HAND will produce more accurate inundation maps. Some of the 

inaccuracies stem from terrain differences, some stem from the elevation data used, and 

other inaccuracies stem from how assumptions are handled by the model. 

Recommendations are suggested here to reduce or remove these sources of inaccuracy.  

Any of these SRC changes can be tested using this framework for SRC accuracy 

assessment, allowing for improvements to be quantified and tracked. 

One simple improvement to the NWM process is using higher resolution 

topography data as previously mentioned. While lidar is not available everywhere, where 

it is available it can be used in conjunction with advanced channel detection techniques. 

The automatic feature extraction tool GeoNet (Passalacqua et al., 2010) could be used to 

automatically map flow paths that more accurately align with the channelized terrain using 

a nonlinear filtering technique. Lidar will therefore allow both improved channel geometry 

approximations from the elevation data as well as a more accurate channel network. 

Other improvements to the National Flood Interoperability Experiment (Maidment, 

2017) could be made, such as introducing a new hydraulic network where reaches in the 

NHDPlus network are recalculated according to some uniform or optimal reach. The 

NHDPlus network was not produced with inundation mapping or hydraulic modelling in 
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mind, and contains reaches shorter than ten meters as well as reaches over ten kilometers. 

The NHDPlus network was not designed for hydraulic modelling, and both short and long 

reaches pose a significant difficulty to accurate SRCs and inundation mapping, an issue 

that could be sidestepped by combining short reaches and splitting long reaches. A new 

reach network that contains uniform length or some optimal length of reach for inundation 

mapping would likely lead to improvements in accuracy for the NWM predicted inundation 

maps. 

One assumption that we can look to challenge is that of a uniform water surface 

level for each catchment, or all the area that flows into a given reach. While this problem 

will be improved by the new hydraulic network with uniform or optimal reach lengths, 

there may still be some locations where the water surface level elevation of two adjacent 

reaches is drastically different. There are different ways to approach this problem. First, 

you could enforce a maximum difference in water surface level elevation between adjacent 

catchments and take a weighted average of the two elevations such that the maximum is 

never exceeded. Second, you could add an extra step where you use a 2D moving window 

where the water surface elevation is smoothed out such that it will gradually change from 

one water surface elevation to another rather than abruptly. Finally, you could leave the 

system as it is and implement a check where if the water surface elevation difference 

between two adjacent catchments is more than a specific value such as one meter, a warning 

will flag, allowing for further investigation. 

There are further options for SRC improvement by better accounting for terrain and 

channel differences. Roughness is an issue that is hard to address as it is difficult to measure 

and it can change rapidly with vegetation growth and flash floods that remove vegetation 

from the channel. One initial improvement that could be made is to use composite values 

of in channel roughness and overbank roughness rather than a bulk value as roughness is 



 45 

expected to increase past the banks where the flow is shallower and more vegetation leads 

to an increase in friction. A second approach that could be used is to develop an algorithm 

that estimates the changes in roughness due to seasonality and flash floods, such that during 

the seasons when vegetation is minimal the roughness value is lower, during seasons when 

the channel is heavily vegetated the roughness value is higher, and when a flash flood 

occurs the roughness value drops accordingly. Since Manning’s equation is sensitive to 

roughness, more accurate estimates of roughness or Manning’s n may lead to significant 

improvements in SRC performance.  

Another study has been conducted on assessing the overall accuracy of the NWM 

inundation mapping process (Zheng et al, in preparation). The overall accuracy of this 

process depends upon the rainfall forecasts, the runoff models to calculate discharge, the 

SRC conversion to stage height and finally the HAND relative elevation to predict the 

extent of inundation. Zheng et al find that the NWM accurately predicted the bulk 

inundation extent of Hurricane Harvey in 2017. While predictions for specific locations 

had significant variations between the predicted inundation and measured inundation, the 

prediction was relatively unbiased. Further studies for floods in different locations could 

be completed to test whether this assessment of the accuracy and lack of bias for the NWM 

holds for different situations. 

FINAL REMARKS 

The HAND methodology with SRCs has the potential to provide real time 

inundation extents for discharges generated by the National Water Model. The suitability 

of the HAND methodology with SRCs for continental scale inundation mapping warrants 

further attention and study to improve their accuracy.  
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We produced a framework to compare SRC performance to HEC-RAS rating 

curves. SRC accuracy was assessed for the four rivers with significant differences to the 

rating curves from detailed field studies as expected from using purely remote sensed 

information including 10m resolution elevation data.  

We proposed a moving window approach to recalculate reach slope and assessed 

the impact of this change on SRC performance using the proposed framework. The 

improvement was found to be very significant for one river but relatively minor for the 

three others. This method or a similar approach should be used to improve accuracy by not 

simply using only the slope of the individual reach in Manning’s equation. This change 

and other improvements should be used to improve SRC accuracy to provide emergency 

response with better real time inundation maps to better prepare communities for risks 

associated with natural disasters. 

Lastly, the efforts presented in this thesis can be viewed as initial steps or iterations 

to investigate optimal reach length and slope. Further exploration of the proposed moving 

window approach across different terrains and rivers will be necessary for a robust and 

comprehensive basin scale evaluation under various morphological contexts. Furthermore, 

there are a variety of possible changes that can be made for the SRCs and National Water 

Model process that can improve the accuracy of the flood inundation maps, and these 

improvements can be quantified and tracked. 
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Appendix 

This appendix includes four codes used to recalculate the SRCs using a variety of 

moving window lengths that produce new slope values. Aggregate statistics are produced 

using the new SRCs for each moving window length for the four rivers. 

Code 1: Recalculate slope for a range of moving window lengths 

1. import arcpy   

2. import os   

3. import pandas   

4. import numpy   

5. import gc   

6. import time   

7. start_time = time.time()   
8.    

9. # Three input files   

10. # List of COMIDs with their discharge values and maximum station (cross section 
ID)   

11. comid_max_stn_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_
Antonio\SanAntonio_COMID_max_station.csv"   

12. # Hydroprop table from NFIE for the HUC6 that the river is within   
13. hydro_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\hydroprop-

fulltable-121003.csv"   

14. # NHD attributes table of the HUC6 that the river is within   
15. NHD_att_table = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\nhd_12100

3.csv"   

16. # Run this script for each moving window length you want to use, edit only the t
hreshold and output file name   

17. threshold = 1.75 #in km   
18. output_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Antonio

\Intermediate_outputs\hydroprop-121003_1750.csv"   

19.    
20. # Recalculate the slope if the length of the reach is shorter than the moving wi

ndow length   

21. def main():   
22.     hydroprop_df = pandas.read_csv(hydro_file)   
23.     NHD_att_df = pandas.read_csv(NHD_att_table)   
24.     comid_maxstn_df = pandas.read_csv(comid_max_stn_file)   
25.     output_df = pandas.DataFrame()   
26.     # Track how many reaches we change the COMID slope for   
27.     counter_reaches = 0   
28.     counter_us_changes = 0   
29.     counter_ds_changes = 0   
30.    
31.     # Loop through all COMIDs   
32.     for cur_comid in comid_maxstn_df["COMID"]:   
33.         print cur_comid   
34.         cur_length = float(NHD_att_df.loc[NHD_att_df["COMID"] == cur_comid,"LENG

THKM"])   

35.         output_df_tmp = hydroprop_df.loc[hydroprop_df["CatchId"] == cur_comid,] 
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36.         us_skip=0   
37.         ds_skip=0   
38.    
39.         # Only recalculate slope if the length of the reach is shorter than the 

moving window length   

40.         if cur_length < threshold :   
41.             cur_to_node = int(NHD_att_df.loc[NHD_att_df["COMID"] == cur_comid,"T

oNode"])   
42.             cur_from_node = int(NHD_att_df.loc[NHD_att_df["COMID"] == cur_comid,

"FromNode"])   

43.             cur_slope = float(hydroprop_df.loc[hydroprop_df["CatchId"] == cur_co
mid, "SLOPE"].unique())   

44.             us_window = pandas.DataFrame({"Length":cur_length/2,"Slope":cur_slop
e,"LSproduct":cur_length*cur_slope},index=[0])   

45.             ds_window = pandas.DataFrame({"Length":cur_length/2,"Slope":cur_slop
e,"LSproduct":cur_length*cur_slope},index=[0])   

46.             counter_reaches = counter_reaches + 1   
47.    
48.             # Upstream of the reach   
49.             # Continute to iterate until the end of the moving window is reached

   

50.             while (us_window.Length.sum() < threshold/2) and (us_skip == 0):   
51.    
52.                 us_comid = NHD_att_df.loc[NHD_att_df["ToNode"] == cur_from_node,

"COMID"].values   

53.    
54.                 # Fix for if there are multiple upstream reaches such as at a fo

rk   

55.                 # Take the higher stream order or take the mean if they are the 
same stream order   

56.                 if len(us_comid)>1:   
57.                     stream_ord =  NHD_att_df.loc[NHD_att_df["COMID"].isin(us_com

id),"StreamOrde"].values   

58.                     us_slope = hydroprop_df.loc[hydroprop_df["CatchId"] == us_co
mid[stream_ord.argmax()], "SLOPE"].unique()   

59.                     us_length = hydroprop_df.loc[hydroprop_df["CatchId"] == us_c
omid[stream_ord.argmax()], "LENGTHKM"].unique()   

60.                     cur_from_node = int(NHD_att_df.loc[NHD_att_df["COMID"] == us
_comid[stream_ord.argmax()],"FromNode"].unique())   

61.    
62.                 # Trace upstream and record the slope and length of the reach   
63.                 elif len(us_comid)==1:   
64.                     us_slope = hydroprop_df.loc[hydroprop_df["CatchId"].isin(us_

comid), "SLOPE"].unique()   

65.                     us_length = hydroprop_df.loc[hydroprop_df["CatchId"].isin(us
_comid), "LENGTHKM"].unique()   

66.                     cur_from_node = int(NHD_att_df.loc[NHD_att_df["COMID"].isin(
us_comid),"FromNode"].unique())   

67.    
68.                 else:   
69.                     us_slope = hydroprop_df.loc[hydroprop_df["CatchId"].isin(us_

comid), "SLOPE"].unique()   
70.                     us_length = hydroprop_df.loc[hydroprop_df["CatchId"].isin(us

_comid), "LENGTHKM"].unique()   

71.    
72.                 if len(us_comid)>0:   
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73.                     us_mw_new = pandas.DataFrame({"Length":us_length,"Slope":us_
slope,"LSproduct":us_length*us_slope},index=[0])   

74.                     us_window = pandas.concat([us_window,us_mw_new]).reset_index
(drop=True)   

75.                     counter_us_changes = counter_us_changes + 1   
76.    
77.                 # If no changes have been made then skip ahead   
78.                 else:   
79.                     us_skip=1   
80.    
81.             # Recalculate slope across the moving window using a weighted averag

e   

82.             if len(us_comid)>0:   
83.                 us_length_last = threshold/2 + us_window.iloc[-

1, a.columns.get_loc('Length')] - us_window.Length.sum()   

84.                 us_window.iloc[-
1, a.columns.get_loc('Length')] = us_length_last   

85.                 us_window.iloc[-
1, a.columns.get_loc('LSproduct')] = us_length_last*us_slope   

86.    
87.             # Downstream of the reach   
88.             # Continute to iterate until the end of the moving window is reached

   

89.             while (ds_window.Length.sum() < threshold/2) and (ds_skip == 0):   
90.    
91.                 ds_comid = NHD_att_df.loc[NHD_att_df["FromNode"] == cur_to_node,

"COMID"].values   

92.    
93.                 # Fix for if there are multiple downstream reaches such as at a 

fork   
94.                 # Take the higher stream order or take the mean if they are the 

same stream order   

95.                 if len(ds_comid)>1:   
96.                     stream_ord =  NHD_att_df.loc[NHD_att_df["COMID"].isin(ds_com

id),"StreamOrde"].values   
97.                     ds_slope = hydroprop_df.loc[hydroprop_df["CatchId"] == ds_co

mid[stream_ord.argmax()], "SLOPE"].unique()   

98.                     ds_length = hydroprop_df.loc[hydroprop_df["CatchId"] == ds_c
omid[stream_ord.argmax()], "LENGTHKM"].unique()   

99.                     cur_to_node = int(NHD_att_df.loc[NHD_att_df["COMID"] == ds_c
omid[stream_ord.argmax()],"ToNode"].unique())   

100.    

101.                 # Trace downstream and record the slope and length of th

e reach   

102.                 elif len(ds_comid)==1:   

103.                     ds_slope = hydroprop_df.loc[hydroprop_df["CatchId"].
isin(ds_comid), "SLOPE"].unique()   

104.                     ds_length = hydroprop_df.loc[hydroprop_df["CatchId"]

.isin(ds_comid), "LENGTHKM"].unique()   

105.                     cur_to_node = int(NHD_att_df.loc[NHD_att_df["COMID"]

.isin(ds_comid),"ToNode"].unique())   

106.    
107.                 else:   

108.                     ds_slope = hydroprop_df.loc[hydroprop_df["CatchId"].

isin(ds_comid), "SLOPE"].unique()   

109.                     ds_length = hydroprop_df.loc[hydroprop_df["CatchId"]

.isin(ds_comid), "LENGTHKM"].unique()   
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110.    

111.                 if len(ds_comid)>0:   
112.                     ds_mw_new = pandas.DataFrame({"Length":ds_length,"Sl

ope":ds_slope,"LSproduct":ds_length*ds_slope},index=[0])   

113.                     ds_window = pandas.concat([ds_window,ds_mw_new]).res

et_index(drop=True)   

114.                     counter_ds_changes = counter_ds_changes + 1   

115.    
116.                 # If no changes have been made then skip ahead   

117.                 else:   

118.                     ds_skip=1   

119.    

120.             # Recalculate slope across the moving window using a weighte
d average   

121.             if len(ds_comid)>0:   

122.                 ds_length_last = threshold/2 + ds_window.iloc[-

1, a.columns.get_loc('Length')] - ds_window.Length.sum()   

123.                 ds_window.iloc[-

1, a.columns.get_loc('Length')] = ds_length_last   
124.                 ds_window.iloc[-

1, a.columns.get_loc('LSproduct')] = ds_length_last*ds_slope   

125.    

126. # pandas.concat([moving_window,aaa]).reset_index(drop=True)   

127. # mw_new = pandas.DataFrame({"Length":cur_length,"Slope":cur_slope},inde
x=[0])   

128.    

129.             if us_slope.size > 0 and ds_slope.size > 0:   

130.    

131.                 # Recalculate slope across the moving window using a wei

ghted average   
132.                 us_avg_slope = float(us_window.LSproduct.sum() / us_wind

ow.Length.sum())   

133.                 ds_avg_slope = float(ds_window.LSproduct.sum() / ds_wind

ow.Length.sum())   

134.                 us_length = float(us_length)   
135.                 ds_length = float(ds_length)   

136.                 new_slope = (us_avg_slope * us_length + ds_avg_slope * d

s_length) / (us_length + ds_length)   

137.                 output_df_tmp["SLOPE"] = new_slope   

138.                 output_df_tmp["Discharge (m3s-

1)"] = output_df_tmp["WetArea (m2)"]*(output_df_tmp["HydraulicRadius (m)"]**(2/3
))*(output_df_tmp["SLOPE"]**(0.5))/output_df_tmp["Roughness"]   

139.    

140.         output_df = pandas.concat([output_df,output_df_tmp])   

141.    

142.     output_df.to_csv(output_file)   
143.     print("Reach counter:")   

144.     print(counter_reaches)   

145.     print("Upslope change counter:")   

146.     print(counter_us_changes)   

147.     print("Downslope change counter:")   

148.     print(counter_ds_changes)   
149.    

150. if __name__ == '__main__':   
151.     main()   
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Code 2: Rating Curve Comparison which takes the median of the HEC-RAS rating 

curves at a set of discharge values to compare to the SRC 

 

1. import numpy   

2. import pandas as pd   

3. import numpy as np   

4. import os   

5.    

6. def interpolation(x, y, X, negative_extrapolate=False):   
7.     if not np.array_equal(x, np.sort(x)):   

8.         y = y[np.argsort(x)]   

9.         x = np.sort(x)   

10.     if X < x[0]:   
11.         if negative_extrapolate == False:   
12.             Y = y[0]   
13.         else:   
14.             Y = y[1]+(y[0]-y[1])/(x[0]-x[1])*(X-x[1])   
15.     elif X > x[-1]:   
16.         Y = y[-2]+(y[-1]-y[-2])/(x[-1]-x[-2])*(X-x[-2])   
17.     else:   
18.         Y = np.interp(X,x,y)   
19.     return int(Y)   
20.    
21. def main():   
22.    
23.     # Four input files   
24.     # Specify this as the output from the previous moving window script   
25.     HydroProp_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_

Antonio\Intermediate_outputs\hydroprop-121003_1750.csv"   

26.     # HEC-RAS rating curve profiles   
27.     HECRAS_RCs_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San

_Antonio\SanAntonio_FinalRCs.csv"   

28.     # Attributes of each HEC-RAS rating curve   
29.     NHD_xs_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Ant

onio\SanAntonio_NHD_xs.csv"   

30.     # List of COMIDs with their discharge values and maximum station (cross sect
ion ID)   

31.     NHD_Max_Station_Input = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analys
is\San_Antonio\SanAntonio_COMID_max_station.csv"   

32.     # Specify an output file for each moving window length   
33.     output = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Antonio\

Intermediate_outputs\SanAntonio_MedianRCs_1750.csv"   
34.    
35.     hydroprop_raw = pd.read_csv(HydroProp_file)   
36.    
37.     NHD_xs_data = pd.read_csv(NHD_xs_file)   
38.     COMID_unique = NHD_xs_data.COMID.unique()   
39.    
40.     output_df = pd.DataFrame()   
41.    
42.     for com_id in COMID_unique:   
43.         # This poart handles the HECRAS reach average RC   
44.         output_df_tmp = pd.DataFrame()   
45.         XS_info = NHD_xs_data.loc[NHD_xs_data['COMID'] == com_id]   
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46.         XS_info = XS_info.reset_index(drop = True)   
47.         HECRAS_RCs_data = pd.read_csv(HECRAS_RCs_file)   
48.         RC_info = HECRAS_RCs_data.loc[HECRAS_RCs_data.Station.isin(XS_info.RIVST

ATION), ["Station", "Profile" ,"Discharge" , "Stage Height"]]   

49.         RC_info = RC_info.reset_index(drop = True)   
50.         output_df_tmp["Discharge"] = RC_info.Discharge.unique()   
51.         output_df_tmp["COMID"] = com_id   
52.    
53.         for cur_discharge in RC_info.Discharge.unique():   
54.             RC_filt = RC_info.loc[RC_info["Discharge"] == cur_discharge, ["Stati

on", "Stage Height"]]   

55.    
56.             output_df_tmp.loc[output_df_tmp["Discharge"] == cur_discharge, "Medi

an Stage Height"] = RC_filt["Stage Height"].median()   

57.             output_df_tmp.loc[output_df_tmp["Discharge"] == cur_discharge, "Mean
 Stage Height"] = RC_filt["Stage Height"].mean()   

58.    
59.         # This part is for interpolationg synthetic rating curve   
60.         SRC_cur = hydroprop_raw.loc[hydroprop_raw["CatchId"] == com_id,["CatchId

","Stage"]]   

61.         SRC_cur["Stage"] = SRC_cur["Stage"]*3.28084   
62.         SRC_cur["Discharge_RC"] = hydroprop_raw.loc[hydroprop_raw["CatchId"] == 

com_id,"Discharge (m3s-1)"] * 35.3147   

63.         output_df_tmp2 = InterpolateRC(SRC_cur,output_df_tmp)   
64.         output_df = pd.concat([output_df,output_df_tmp2])   
65.         print com_id   
66.    
67.     output_df.to_csv(output)   
68.    
69. def InterpolateRC(RC1, RC2):   
70.     # RC1 is SRC, RC2 is HEC-RAS   
71.     # This function caculated the depth as per RC1 for flows from RC2   
72.     RC_comparison = RC2   
73.     RC_comparison["SRC_Depth"] = 0   
74.     for flow in RC2.Discharge:   
75.         if flow<=RC1["Discharge_RC"].max():   
76.             row_index = RC1.loc[RC1["Discharge_RC"]>=flow,"Discharge_RC"].idxmin

()   

77.             Q2 = RC1.Discharge_RC[row_index]   
78.             Q1 = RC1.Discharge_RC[row_index - 1]   
79.             y2 = RC1.Stage[row_index]   
80.             y1 = RC1.Stage[row_index-1]   
81.    
82.             if Q1 == 0 or y1 == 0:   
83.                 # Do linear interpolation   
84.                 depth_interp = (y2-y1)/(Q2-Q1)*(flow-Q1) + y1   
85.                 # Print flow   
86.             else:   
87.                 b1 = (numpy.log10(y2) - numpy.log10(y1))/(numpy.log10(Q2) - nump

y.log10(Q1))   

88.                 b0 = y2/(Q2**b1)   
89.                 depth_interp = b0 * (flow ** b1)   
90.             RC_comparison.loc[RC_comparison["Discharge"]==flow,"SRC_Depth"] = de

pth_interp   

91.         else:   
92.             RC_comparison = RC_comparison.drop(RC_comparison.loc[RC_comparison.D

ischarge == flow].index)   
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93.    
94.     return RC_comparison   
95.    
96. if __name__ == '__main__':   
97.     main()   

 

 

Code 3: Rating Curve Evaluation, calculates the mean normalized RMSE for each pair of 

SRC and HEC-RAS median rating curve 

 

1. import numpy   

2. import pandas   

3. import numpy   

4. import os   
5.    

6. # Use the output of the rating curve comparison   

7. input_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Antonio\

Intermediate_outputs\SanAntonio_MedianRCs_1750.csv"   

8. # Output one csv for each moving window length   

9. output_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Antonio
\RC_Comparisons\SanAntonio_RC_Comparison_1750.csv"   

10. discharge_col = "Discharge"   
11. SRC_depth_col = "SRC_Depth"   
12. Std_depth_col = "Median Stage Height"   
13. RC_ID = "COMID"   
14.    
15. # Calculate a range of statistics for the comparison of the SRC and HEC-

RAS median rating curve   

16. def main():   
17.     data_raw = pandas.read_csv(input_file)   
18.     id_list = data_raw[RC_ID].unique()   
19.     output_df = pandas.DataFrame()   
20.     output_df[RC_ID] = id_list   
21.     for cur_id in id_list:   
22.         cur_data = data_raw.loc[data_raw[RC_ID] == cur_id,[discharge_col,Std_dep

th_col,SRC_depth_col]]   
23.         output_df.loc[output_df[RC_ID] == cur_id,"RMSE"] = ((cur_data[SRC_depth_

col] - cur_data[Std_depth_col]) ** 2).mean() ** .5   

24.         output_df.loc[output_df[RC_ID] == cur_id,"N_RMSE"] = output_df.loc[outpu
t_df[RC_ID] == cur_id,"RMSE"]/max(cur_data[Std_depth_col])   

25.         output_df.loc[output_df[RC_ID] == cur_id,"Max Error"] = max(cur_data[SRC
_depth_col] - cur_data[Std_depth_col], key = abs)   

26.         output_df.loc[output_df[RC_ID] == cur_id,"Range"] = max(cur_data[SRC_dep
th_col] - cur_data[Std_depth_col]) - min((cur_data[SRC_depth_col] - cur_data[Std

_depth_col]))   

27.         output_df.loc[output_df[RC_ID] == cur_id,"PBias"] = sum(cur_data[SRC_dep
th_col] - cur_data[Std_depth_col])/sum(cur_data[Std_depth_col])*100   

28.         output_df.loc[output_df[RC_ID] == cur_id,"R_Squared"] = coefficient_of_d
etermination(cur_data[SRC_depth_col],cur_data[Std_depth_col])   

29.    
30.     output_df.to_csv(output_file)   
31.    
32. def coefficient_of_determination(ys_orig,ys_line):   
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33.     y_mean_line = ys_orig.mean()   
34.     squared_error_regr = sum((ys_orig - ys_line)**2)   
35.     squared_error_y_mean = sum((ys_orig - y_mean_line)**2)   
36.     return 1 - (squared_error_regr/squared_error_y_mean)   
37.    
38. if __name__ == '__main__':   
39.     main()   

 

Code 4: Calculate mean normalized RMSE for all of the moving window lengths 

 

1. import numpy   

2. import pandas   
3. import numpy   

4. import os   

5.    

6. # Point the input to the folder where all outputs from the rating curve evaluati

ons   

7. input_folder = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Antoni
o\RC_Comparisons"   

8. # Final output which shows the scaling analysis of the moving window lengths   

9. output_file = r"C:\Users\Lukas\Miniconda32\HAND_RCs\Scaling_Analysis\San_Antonio

\SanAntonio_Scaling_Analysis_RMSE.csv"   

10.    
11. def main():   
12.     pass   
13.    
14.     file_list = os.listdir(input_folder)   
15.     output_df = pandas.DataFrame()   
16.     output_temp = pandas.DataFrame()   
17.    
18.     for i in range(len(file_list)):   
19.         cur_path = os.path.join(input_folder,file_list[i])   
20.         cur_values = pandas.read_csv(cur_path)   
21.         cur_mean = cur_values.RMSE.mean()   
22.         output_temp = pandas.DataFrame({"cur_mean":cur_mean},index=[0])   
23.         output_df = pandas.concat([output_df,output_temp]).reset_index(drop=True

)   

24.    
25.     output_df.to_csv(output_file)   
26.    
27. if __name__ == '__main__':   
28.     main()   
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Glossary 

 

DEM   Digital Elevation Model, a 3D representation of the surface of the Earth. 

HAND   Height above nearest drainage, a measure of relative elevation between a 

location and the bed of the channel that it drains into. When the stage height exceeds the 

HAND value, that location is flooded. 

HEC-RAS   Hydrologic Engineering Center's River Analysis System, software that uses 

the 1D shallow water equations to simulate channel flow. 

HUC   Hydrologic Unit Code, a sequence of numbers that identify a hydrological feature, 

organized by delineating drainage areas or watersheds in a hierarchical manner. 

Lidar   Light detection and ranging, a similar technology to radar that uses light to 

measure topography. 

NED   National Elevation Dataset, a seamless dataset produced by the USGS that covers 

continental U.S. with 10m resolution. 

NHDPlusV2   The current iteration of the National Hydrography Dataset, a catalogue of 

watersheds, rivers, and lakes produced by the US EPA and USGS. 

NOAA   National Oceanic and Atmospheric Administration, an agency of the U.S. 

Department of Commerce responsible for applications of hydrology and meteorology. 

NWC   National Water Center, the organization responsible for producing and running 

the National Water Model. 

NWM   National Water Model, a hydrological model that predicts discharge for 2.7 

million reaches spanning all of continental USA. 

Rating Curve   A relationship between discharge and stage height that is valid for a 

single river cross section or reach. 
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Reach   A section of river that can be assumed to be level. In our study reaches are 

defined by the NHDPlus network. 

RMSE   Root mean square error, a statistical measure used to aggregate a set of error 

values. 

SRC   Synthetic rating curve, a relationship between discharge and stage height valid for 

a reach that is derived using Manning’s equation and elevation data. 

Stage Height   The vertical difference of the water surface level and the channel bed 

along the thalweg. 

Thalweg   A line that follows the deepest section along the course of a river 

USACE   U.S. Army Corps of Engineers, a branch of the defense force responsible for 

infrastructure. For this thesis they have provided HEC-RAS models of cross section 

geometry for four Texas rivers. 

USGS   U.S. Geological Survey, the federal organization focused on science and 

technology, in particular on earth sciences. 
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