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We show how correctly to extend known methods for
generating error bands in reduced form VAR’s to
overidentified models. We argue that the conventional
pointwise bands common in the literature should be
supplemented with measures of shape uncertainty, and we
show how to generate such measures. We focus on bands
that characterize the shape of the likelihood. Such bands
are not classical confidence regions. We explain that
classical confidence regions mix information about
parameter location with information about model fit, and
hence can be misleading as summaries of the implications
of the data for the location of parameters. Because
classical confidence regions also present conceptual and
computational problems in multivariate time series
models, we suggest that likelihood-based bands, rather
than approximate confidence bands based on asymptotic
theory, be standard in reporting results for this type of
model.



|. Introduction

In interpreting dynamic multivariate linear models, impulse response functions are of central
interest. Presenting measures of the statistical reliability of estimated impulse responses is there-
fore important. We will discuss extensions of existing methods for constructing error bands that
address some important practical issues.

» It has been conventional in the applied literature to constrietca probability interval
separately at each point of a response horizon, then to plot the response itself with the
upper and lower limits of the probability intervals as three lines. The resulting band is
not generally a region that contains the true impulse response with probabidityand
does not directly give much information about the forms of deviation from the point
estimate of the response function that are most likely. In Section VI we suggest a way to
provide such information.

« While there is a widely used, correct algorithfar generating error bands for impulse
responses in reduced form VAR models, it is not easy to see how to extend it to
overidentified structural VAR’s, and some mistaken attempts at extension have appeared
in the literature. In SectionIW we show how correctly to make this extension and how
to use numerical methods to implement it.

But before we present the details of our proposed methods for dealing with these issues, we
need to take up some conceptual issues. The error bands we discuss are meant to characterize the
shape of the likelihood function, or of the likelihood function multiplied by the type of reference
prior widely used in reporting results to a scientific audience. The importance of characterizing
the shape of the likelihood, because of the likelihood’s central role in any decision-making use of
a statistical model, should not be controversial. The main critiques of likelihood-based inference
(e.g. Loéve (1988)) argue against the likelihpodciple, the claim thabnly the likelihood need
be reported, not against the importance of reporting the shape of the likelihood. Computing and
reporting these likelihood-characterizing intervals is a substantial challenge in itself, and
deserves more attention in applied work.

There are valid arguments for reporting more than the likelihood, and classical confidence
intervals can be thought of as constructed from the likelihood plus additional information about
overall model fit that is needed for model criticism. However, confidence intervals mix
likelihood information and information about model fit in a confusing way: narrow classical
confidence bands can be indicators either of precise sample information about the location of
parameters or of strong sample information that the model is invalid. It would be better to keep
the two types of information separate.

Section Il lays out in more detail the general argument for reporting separately likelihood
shape and fit measures, rather than reporting confidence intervals.

Sectionlll defines “impulse responses” and the class of models we are considering.

! Distributed in the RATS manual since the earliest versions of that program.



Section IV discusses the problems raised by the fact that we are forming measures of
precision of our inference about vector-valued functions of a vector of parameters, with the
dimensionality of both vectors high. For likelihood-describing error bands, these problems are
just the need to make some choices about practical details of implementation. Attempts to
instead form confidence regions run into serious conceptual problems in this situation.

It is not possible, even in principle, for the time series models we are interested in, to
construct classical confidence intervals for impulse responses with exact small-sample
justification. There are a variety of approaches to obtaining approximate confidence intervals
that grow more accurate in some sense as sample size increases. Many of these approaches that
have been used in practice have the same degree of justification in first-order classical asymptotic
theory as the practice of using Bayesian posterior probability intervals as if they were confidence
intervals. There are particular bootstrap methods (little-used in applied time series research) that
have improved second-order asymptotic properties in theory, though not in practice according to
Monte Carlo studies. Section V discusses these methods and the problems in implementing
them.

Examples in Sections VII and VIIl.Bustrate the performance of our suggested methods and
provide some comparisons with other approaches.

[I. Likelihood Shape vs. Coverage Probability

Formal decision theory leads, under some regularity conditions, to the conclusion that
rational decision rules have the form of Bayesian rulé®llowing Hildreth (1963), we might
think of scientific reporting as the problem of conveying results of analysis to an audience that
may have diverse prior beliefs about parameters and diverse loss functions, but accept a common
statistical model. Reporting is not decision-making, and therefore makes no use of subjective
prior beliefs. Instead it relies on ttikelihood principlé: all evidence in a sample about the
parameters of the model is contained in the likelihood, the normalized p.d.f. for the sample with
the data held fixed and the parameters allowed to vary. Scientific reporting is then just the
problem of conveying the shape of the likelihood to potential users of the analysis.

It does not seem reasonable, though, to suppose that very often a wide audience accepts a
statistical model as certainly true, rather than as an interesting hypothesis or plausible
approximation. Readers who are interested in the model and its parameters, but might want also
to consider other models, will need more than the likelihood function. To compare the fit of one
parametric model to another for the same data, one needs to construct the likelihood function for
the grand model made up of the two, with a discrete parameter that chooses between the two
models. To construct this overall likelihood, we need to use both the separate model likelihoods
and their relative levels. If a profdBayesian reference prior is being used, this can be done by
presenting the posterior p.d.f.’s for the two separate models, which will usually be close to their
likelihoods in shape, and the posterior probabilities of the two models. Geweke (1995), for

% Such a result is called a Complete Class Theorem. See Ferguson (1967).
% See Berger and Wolpert (1988)

*|.e. a probability distribution, rather than a “density function” that does not integrate to one.



example, suggests reporting such information. But no use of a prior is necessary to report this
information. The same information is contained in the two separate likelihoods themselves,
together with any statistic that determines their relative heights — e.g. the ratio of p.d.f. values at
some particular point in the sample space. Of course if the set of models to be considered is not
known in advance, then the levels of the p.d.f. values are needed for all the models reported.

The likelihood function contains the sample information about parameters of the model,
while the additional information about level of the p.d.f. contains information about fit of this
model relative to possible competitor models. A classical confidence interval, together with its
coverage probability, does not depend only on the likelihood. Therefore, in decision-making
with a trusted model, use of a classical confidence interval and coverage probability must in
general lead to suboptimal decisions. However, in scientific reporting, as we have just argued, it
may be important to convey information beyond that in the likelihood. Therefore it cannot be
argued that with the likelihood available, confidence intervals are redundant. It can be argued,
though, that with the likelihood and a measure of overall fit both available, confidence intervals
are redundant.

A. Simple Examples

Consider a simple situation where a single random varplideobserved that takes on only

integer values 1, 2, or 3. It is distributed either according to model A or model B in Table 1.
Only X =2 is compatible with both models, though it is a rare observation for either model.
The implications of the model for inference are intuitively clearXI£1 is observed, model A
is true, with certainty; if X =3 is observed, model B is true, with certainty, andXiE=2 is
observed, observing has not told us anything about whether the true distribution is A or B. The
odds ratios in the last column of the table capture these implications of the data precisely. The
implications of observingX are well expressed by a 100% confidence interval, based on
likelihood ratios, which contain& alone if X =1, B alone if X =3, and bottA andB if X =2.
These are also 100% Bayesian posterior probability intervals under any prior distribution that
puts non-zero weight on both models. Because the likelihood ratio (the ratio of the likelihood at
a particular parameter value to the likelihood at its maximum) is always either 1 or O in this
example, this 100% interval is the only likelihood-ratio based confidence interval available for
this example.

Table 1: Empty or Trivial Confidence Sets

A B
X PX|A) LR P(XB) LR LR 100% conf. set Simple 99% conf. set Flat prior odds ratio
1 0.99 1.00 0 0.00 A) A 00
2 0.01 1.00 0.01 1.00 (AB) 0 1
3 0 0.00 0.99 1.00 (B) (B) 0

Confidence intervals based on likelihood ratios have the advantage that they tend to have
nearly the same shape as a minimum-length (or minimum-volume, in multi-parameter contexts)
posterior probability interval under a flat prior. They also can be shown to have some classical
optimality properties. But any collection of tests at a given exact significance lewel
indexed by all the points in the parameter space, implies an exact confidence region. In this
example it might be appealing to test model A and model B, rejecting<A=i8 and B if X =1.

This leads to the exact 99% confidence region listed intheolimn of Table 1. This interval



agrees with the 100% interval except wh&n=2, in which case the 99% interval is empty,
instead of containing the whole parameter space.

How can we interpret a statement, having s&¥en 2, that “with 99% confidence” the model
is neither A nor B? If we seriously believe that possibly neither model is correct, this kind of
statement might make sense. The confidence interval has been constructed from likelihood ratios
between each model A and B and an implicit third model — that which puts equal probability on
all three values oK. This is just a way of describing what has been done here — for each
parameter value (A or B) collecting the points in the sample space with lowest probability
density (relative to an equal-weight probability measure over the three possible observations) to
form the rejection region. The empty confidence interval wKen?2 is observed does suggest,
if we take this implicit third model as a serious possibility, that abandoning both models A and B
might be justified.

If one wants information about the possibility that no parameter value in the model or models
being considered performs well, the fact that a confidence interval can provide this, and no
likelihood-based interval (such as a Bayesian posterior probability interval) can do so, may be an
advantage of a confidence interval. However, it is nearly universal in applied work that
confidence intervals are interpreted mainly as informing us about the location of the parameter
values, not about the validity of the model. An empty confidence interval is only an extreme case
of a narrow confidence interval. Confidence intervals can turn out to be misleading as indicators
of the precision of our knowledge about parameter location because they confound such
information with information about overall model fit.

Consider the example of Table 2, in which there is again a single, integer-valued observed
random variabl& for which there are two candidate probability models, A and B. This time, the
two models are very similar, with the probabilities of each of the 3 possible valXediftéring
by no more than .001. A likelihood-ratio based confidence set, displayed in column 6 of the
table, produces a hard-to-interpret amalgam of information about fit and information about
parameter location. It is never empty, but it contains only model B wher2 and only model
A whenXis 3. A statement, on observing =3, that “with 99% confidence the model is A”
makes no sense as a claim about the precision of our ability to distinguish between models A and
B based on the observation. The interval is “short” because of poor overall fit of the model, not
because of precision of the data’s implications about choosing beMarelB.

Table 2: Spuriously “Informative” Confidence Sets

X P(X|A) LR P(X|B) LR LR 99% conf. set Flat prior odds ratio
1 0.979 1.00 0.979 1.00 (A,B) 1.00
2 0.01 0.91 0.011 1.00 (B) 0.91
3 0.011 1.00 0.01 0.91 (A) 1.10

The likelihood in these simple two-model cases is information equivalent to the flat-prior
odds ratio in the last column of the tables. Reporting it would correctly show for the Table 2
case, no matter whatwere observed, that seeikghad provided little information about which
model, A or B, is the truth. But if we se¢ =3 and simply cite the odds ratio of 1.1 in favor of
A, we fail to convey the fact thak =3 was unlikely under either model A or B. It would be
better to report the two separate p.d.f. values .011 and .01, or the odds ratio 1.1 and the
marginalized likelihood ( the sum of the p.d.f. over the two models, .021).



The confidence intervals in these examples give misleading information about shape of the
likelihood only in low-probability samples. This reflects a general proposition, that an exact
(1—a)% confidence interval must have Bayesian posterior probability greatefl tham on a

set of sample values with probability, under the marginal distribution over observations implied
by the prior distribution and the model jointly, of at le@st-1)/n, for any n>1. In other

words, a stochastic interval with high confidence level must in most samples also have high
posterior probability. The proposition is symmetric: a stochastic interval that has posterior
probability 1-a in every sample must have a coverage probability greater than or equal to
1-na for a set of parameter values that has prior probability of at(laaét)/n >

Thus if confidence intervals or regions with confidence levels near 1 are easy to compute,
they can be justified as likely to be good approximations, with high probability, to direct
characterizations of likelihood shape. But where, as in the models we consider, direct
characterizations of likelihood shape are easier to compute, there seems to be little reason to
undertake special effort to compute confidence regions rather than direct measures of likelihood
shape. Also, for characterizing likelihood shape, bands that correspond to 50% or 68% posterior
probability are often more useful than 95% or 99% bands, and confidence intervals with such
low coverage probabilities do not generally have posterior probabilities close to their coverage
probabilities.

B. A Time Series Example

To show how these points apply in a time series model we consider the simple model
y(t) = py(t-1)+ (1), t=1,...,T . (1)

We assume is i.i.d. N(0,1), independent ofs dated earlier. Suppose a sample prodice®5
and 6,3 =046, both likely values whep =.95. An exa&finite-sample 68% confidence interval

> The proof of these propositions follows from the observation that the following two things are
the same: i) the expectation over the prior distribution of the (classical) conditional coverage
probabilities given parameter values, and ii) the expectation over the marginal distribution of the
data (with parameters integrated out using the prior) of the posterior probability that the
parameter is in the set given the data. These are two ways to calculate the probability, under the
joint probability measure on parameters and data, of the event that the parameter lies in the
random set.

® Since the classical small sample distribution was calculated by Monte Carlo methods on a grid
with spacing .01 on thp-axis and with 2000 replications, "exact" should be in quotes here, but
the accuracy is good enough for these examples. The method was to construct, dp2eaéh
artificial samples foy generated by (1) withi=60, variance of equal to 1, ang(0)=0. (The

same sequence a@fs was used for alb's on each draw of aa sequence.) For eagh an

empirical distribution of the log likelihood ratio (LF{f)—p)2 EE y(t-1)* was constructed and

the 16% and 84% quantiles of the empirical distribution calculated. Then a classical 68%
confidence interval can be constructed in a particular sample as the sep’sffatl which the



for p, based on the distribution (Qb—b)z/of) (the log likelihood ratio), is (0.907, 0.998). A

Bayesian flat-prior posterior 68% probability region is (.904, .996). Here the confidence region
is not very misleading. It has flat-prior posterior probability .67 instead of .68, which is not a big
error, and is shifted upward by .003 at the lower end and .002 at the upper end, which is a shift of
only about 5% of its length. The likelihood levels at the upper and lower bounds of the interval
differ by only about 6%.

The difference between confidence intervals and integrated-likelihood intervals becomes
somewhat larger if we consider 95% intervals. For this probability level, the Bayesian interval is
(0.860, 1.040), while the LR-based exact confidence interval is (0.865, 1.052). This interval
shows noticeable distortion at the upper end. The likelihood is twice as high at the lower end of
the interval as at the upper. The interval therefore is representative of the shape of posterior
beliefs only for a prior with p.d.f. increasing over the interval so thatl.052 is twice as likely

as p=.865. The interval does have posterior probability under a flat prior of .95 (to two-figure
accuracy), however.

The LR-based exact confidence interval we consider here is intuitively attractive and has
some justification in classical theory, but as usual there is no unique classical confidence interval.
It is commonly proposed, (see Rothenberg and Stock (1998), e.g.), that intervals be based instead
on the signed likelihood ratio (the signed difference in log likelihoods). Such intervals tend for
this model to be more sharply asymmetric than ordinary LR intervals. In this simple case the
confidence intervals based on signed LR are (0.917, 1.013) for 68% confidence and (0.869,
1.064) for 95% confidence. Though these intervals are further biased upward as likelihood
descriptions than the LR-based intervals, they have flat-prior posterior probabilities of .68 and
.95.

Cases of empty confidence intervals or misleadingly short confidence intervals are likely to
arise when the parameter space is restricted 0,1 . If the confidence interval is based on
the distribution of the signed difference between the log likelihogdaaid the log likelihood at
the unrestricted MLED (which can exceed 1, of course), and is built up from equal-tailed tests,
empty 68% confidence intervals have a probability of 16% and empty 95% confidence intervals
have a probability of 2.5% whep=1." If instead the distribution of the ratio of the likelihood
at p to the likelihood at its maximum on [0,1] is used to generate the interval, the interval will
never be empty, but it will be shorter than can be justified by the likelihood shape in these
samples where the unrestricted MLE lies above 1, because of the same kind of phenomenon
displayed in Table 2 above. When the tmes 1 for example, an observation as high as

log LR statistic lies between the 16% and 84% quantiles appropriate fop.thdhe same
method was applied in the other example calculations in this section.

" This is an exact result, by construction. The confidence interval lies entirely @botein
samples for which(p-p) J/Z yo. is negative and below the lowdn/2)% tail of its

distribution conditional onpo=1. But by construction this occurs in jugt/2)% of samples
when in factp =1.



p=10387 has about a 1% chance of occurring, and a typical assagiaied0394. With such

a sample, the exact classical 68% confidence interval based on the signed LR, calculated
numerically on a grid witlp's spaced at .001, includes only three points, defining the interval
(.998,1), and the 95% interval expands only to (.966,1). But the likelihood has the form
displayed in Figure 1, which clearly does not concentrate as sharply near 1 as these confidence
intervals would suggest. Such a highis unlikely for anyp in [0,1], but not as much more

likely for p's of .97 compared tp's of 1 as the confidence interval would suggest. A flat-prior
posterior 68% interval fgo is (.975,1) and the 95% probability interval is (.944,1).

Figure 1: Likelihood over (0,1) with p=10387, 0, =.0394
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The conclusion these examples are meant to illustrate is that flat-prior Bajesian
probability intervals, based purely on the likelihood, are often very close to éxaat)%

confidence intervals, and that in those samples where they differ, confidence intervals can be
quite misleading as characterizations of information in the sample about parameter location.

[ll. Multivariate Dynamic Models
Consider a model of the form

g(¥(1), W(t=1),..., y(t= K)B) = &( ) )

where

a9(y(). (=D, (= KB)|, ®)
| oy(t) |

so that the equation definegt) as a function ofe(t), y(t-1),...,y(t- k),8. We assume that
£(t) is independent of(t— 9, all s>0, and has p.d.h([]Q). Under these conditions (3) allows
us to write a p.d.f. fory(2),..., y(T) conditional ony(0),...,y(—k+1),8,Q, which we will label




(YD, Y(T) YO),..., ¥y k+ 1)B Q) . 4)

It is common but not universal practice to treat (4) as the likelihood function. It is actually
the likelihood function only if the distribution of(0),...,y(—k+ 1) does not depend on unknown
parameters, or depends only on unknown parameters unrelgdedndQ. If (2) is consistent
with y being ergodic, then it is natural to take the ergodic marginal distribution of
y(1),...,y(t— k), which of course in general depends Brnand Q, as the distribution for
y(0),...,y(-k+1). This is then combined with (4) to produce a p.d.f. for the full vector of
observationsy(-k+1), y(— k+ 2),..., y(T). There are three reasons this is not often done: it
often makes computations much more difficult; it requires that we rule out, or treat as a separate
special case, non-stationary (and thus non-ergodic) versions of the model; and it may not be
plausible that the dynamic mechanism described in (2) has been in operation long enough, in
unchanged form, to give/(0),...,y(-k+1) the ergodic distribution. The last two points are
related. A non-stationary model has no ergodic distribution. A near-non-stationary model may
have an ergodic distribution, yet it may imply that the time required to arrive at the ergodic
distribution from arbitrary initial conditions is so long that imposing the ergodic distribution on
y(0),...,y(- k+1) may be unreasonable.

Bayesian inference would ideally use the ergodic distribution for the initial conditions at pa-
rameter values well within the stationary region of the parameter space, then shift smoothly over
to a distribution less connected fcandQ as the non-stationary region is approached. Such a
model is likely to be application-dependent, however, and in the remainder of this paper we treat
(4) as the likelihood. We also hold initial conditions fixed in generating Monte Carlo samples of
y(),...,y(T) when we evaluate classical coverage probabifities.

Much of our analysis will focus on the case whegtie linear in its firsty argument with an
identity coefficient matrix and also linear finandh is Gaussian. Under these conditions the log
likelihood is quadratic inB3, so the likelihood itself is Gaussian in shape, in small and large
samples, for stationary and non-stationary models.

For a general model of the form (2), there is ambiguity about how “impulse responses” ought
to be defined. Here, though, we consider only models sucly thdinear in itsy arguments, so
that the response;(s) of y,(t+9) to g;(t) is easily and unambiguously defined. By solving (2)

8 On this latter point we differ from Kilian (1998a). Conditioning on initial data values in
forming the likelihood or in constructing estimators (on which point Kilian’s practice matches
ours) amounts to ignoring potential information in the initial observations. Conditioning on them

in doing Monte Carlo simulations of the data-generation process amounts to recognizing the
distinction between initial conditions that generate more and less informative samples. If the
initial y's show unusually large deviations from their steady-state values, the sample is likely to
generate unusually sharp information about the parameters. It does not make sense to calculate
coverage probabilities that average across informative and uninformative samples when it is easy
to take account of the fact that we have been lucky (or unlucky) in the initial conditions of the
particular sample at hand.



recursively, we can solve fory(t+s) as a function ofg(t+s),e(t+s-1),....£(t) and
y(t=2),...,y(t—K). Then

WGE)

de (1) ®)

Gj (

depends only o, noty or &, and can be calculated by elementary matrix operations. Note that,
though the impulse responses as defined here coincide with the coefficients of the moving
average representation (MAR) for stationary, linearly regular models, they are also defined for
nonstationary models where no MAR exists.

If we write the linear model in terms of the lag operator, as
AL)y(t) =&(1), 6)
then the impulse responses are the coefficients in the infinite-order polynomial in the lag operator

C(L)= A™(L), where the inverse is restricted to involve only positive powerk ahd is

interpreted as an operator on the field of finite-order polynomials in the lag operator. Such an
inverse exists for any finite-ordérwith A, full rank, regardless of the characteristic rooté\of
though of course it may imply coefficient matric€s that fail to converge to zero as— .

The mapping from the coefficients & the autoregressive form of the model, to thos€,is
one-one. Becauskis finite-order (in the models we consider) dhds not, there is a sense in
which A is a more economical characterization of the model thal iOn the other hand,
because the elemends(t) of the C; matrices tend to behave, as functiort,dike the data that

is being modeled, the properties of the model are often more easily grasped intuitively by
viewing plots ofg; (t)’s than by viewing tables o (t)’s.

Though the mapping from the full operator to the fulC operator is one-one, the mapping
from the g; 's to a particular; (t) is complicated. Generally the mapping is not one-one, even if
we consider a collectior; (t), t=1,...,H in whichH is the same as the dimension of the vector

of all the free parameters m° This engenders some complications in defining error bands, and
(especially) in defining confidence intervals, f(t) .

V. Dimensionality

Because impulse responses are high dimensional objects, describing error bands for them is
challenging. The best approaches to describing them will differ to some extent across
applications, but we describe some widely applicable approaches in Section VI below. In this

® To see this point, consider a first-order model wiklx | - AL and A mxm. If A has
Jordan decompositiod, = PAP*, with A diagonal, therr; (J) depends on thiéth row of P, the

j’'th column of P, and all the elements of the diagonal/gfbut on no other aspects @.
Clearly this leaves room for mans to deliver exactly the samg (IJ.

10



section we discuss the difficulties created by the fact that multivariate time series models have
high-dimensional parameter spaces.

A complete characterization of a subset of a parameter space in a 150-dimensional parameter
space (which would not be unusually large for a multivariate time series model) would be too
complicated to be useful. Instead we try to capture substantively important characteristics of
error band sets with a few lower-dimensional statistics and plots. For example, we may focus
attention on a few impulse responses that are important for characterizing the effects of a policy
action on the economy. With a given Bayesian prior distribution, characterizing the probability,
given the data, of a set of possible values for a given impulse response — e.g. the probability that
c(t)U[a b, t=1...,4 —is a straightforward exercise: One integrates the posterior p.d.f. with

respect to all the parameters of the model over the set of parameter values thatcgaiver
satisfying the restrictions.

For confidence intervals, the high dimensional parameter space raises a different kind of
problem. The same impulse response functprecan arise from two differenf\(L) operators.

The coverage probability of any stochastic set in the spacg’sf now matter how generated,
will depend not just ong; itself, and will therefore be different for different(L)’s
corresponding to the saneg. Therefore no exact confidence setdpris possible.

This point, that coverage probabilities often depend on nuisance parameters and that this
causes problems, is an old one. Some writers define the confidence level of a random interval as
the minimum over the parameter space of the coverage probdbilityis corresponds (because
of the duality between confidence regions and hypothesis tests) to the standard definition of the
size of a statistical test as the maximum over the parameter space of the probability of rejection
under the null. However, as has recently been emphasized in work by Dufour (1997), Faust
(1996), and Horowitz and Savin (1998), this approach is unsatisfactory, as it leads often to a
situation where there are no non-trivial confidence intervals, even asymptotically. In practice,
researchers use confidence intervals or regions justified by asymptotic theory, in the sense that
the coverage probability converges to its nhominal level as sample size increases, pointwise at
each point in the sample space. Often this can be accomplished by simply computing coverage
probabilities at estimated values of nuisance parameters.

In small samples, though, this approach can lead to serious distortion of the shape of the
likelihood. For example, there can be a wide range of values of a nuisance paramiéigith
high likelihood, with widely different implications for the coverage probability of a confidence
set. If we replace by a single estimated value, we may obtain an unrepresentative value for the
coverage probability. In this same situation, Bayesian posterior probability intervals would
involve integration ovew, rather than choice of a single which better represents the actual
implications of the data. With the likelihood spread evenly ok&with different implications,
Bayesian results could be sensitive to the prior. But a thorough description of the likelihood,
including if necessary consideration of more than one reference prior, can make this situation

10 Zacks (1971), e.g. defines confidence level this way, while Wilks (1962) seems to consider in
small samples only cases of coverage probabilities uniform over the whole parameter space.
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clear. Furthermore, often the likelihood dominates the prior, so that over the rangeobf
interest most readers would agree that the prior is nearly flat.

V. Asymptotics, Approximation, the Bootstrap

We have already cited the fact that Bayesian posterior probability intervals have asymptotic
justification as confidence intervals in time series models of the type we consider. This result,
like many on which confidence intervals for these models have been based, actually applies only
to situations where the model is known to be stationary. The result is easiest to see in the special
case of an unrestricted reduced form VAR, i.e. a model Wjtk 1. In that case the likelihood

conditioned on initial observations is Normal-Inverse-Gamma in shape, centered at the OLS
estimate, with a covariance matrix that even in finite samples is exactly the covariance matrix of
the asymptotic distribution of the estimates. The marginal distribution fohtiseis then easily

seen to converge to the shape of the same limiting normal distribution to which the sampling
distribution of the OLS estimates converges. Of course this then implies that all differentiable
functions of the coefficients of\, including the C;’s, have posterior distributions that are

asymptotically normal, and match the sampling distributions of the same functions of the OLS
estimate ofA.

For more general stationary linear models a maximum likelihood estimator of the coefficients
in A, or a pseudo-maximum likelihood estimator based on a Gaussian likelihood when the
disturbances are not Gaussian, or another GMM estimator, will each converge, under mild
regularity conditions, to a joint normal distribution. The posterior distribution of the parameters,
conditional on the estimators themselves and their estimated asymptotic covariance matrix (not
conditional on the full sample, outside the Gaussian case), should in large samples be well
approximated by taking the product of the prior p.d.f. with the asymptotic normal p.d.f. as an
approximate joint p.d.f. from which to construct the posterior. But since in large samples the
likelihood dominates the prior, we can treat the prior as constant in this approximation. The
computation of the posterior amounts to fixing the estimator and its estimated covariance matrix,
then treating the asymptotic p.d.f. of the sample as a function of the coefficieAtsnin
constructing the posterior p.d.f. f&c This will make the posterior distribution have the same
shape as the asymptotic sampling distribution of the estimator. Because the asymptotic
distribution is symmetric and affected by the parameters only via a pure location shift, confidence
regions then coincide with posterior probability intervals. Proofs of these results, with careful
specification of regularity conditions, are in Kwan (1998).

The mappings fromA; coefficients toC; coefficients can be analytically differentiated, so

that normal asymptotic distributions for thke coefficients can be translated into normal
asymptotic distributions for th€ coefficients. Details have been provided, e.g., in Lutkepohl.
(1990) and Mittnik and Zadrozny (1993) However the mapping frosh to C, is increasingly

nonlinear asg increases, so that the quality of the approximation provided by this type of
asymptotic theory deteriorates steadily with increagiimgany given sample. Eventually ps
increases (and this occurs for fairly Igvin practice) the norm of the variance 6f begins to

1 This approach has been used by, e.g. Poterba, Rotemberg and Summers (1986).
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behave as\™!, whereA is the root off A(L)| =0 that is smallest in absolute value. This means

that when the point estimate bfexceeds one, error bands shrink at the Aatefor largej, even

when there is in fact substantial uncertainty about the magnitude dfhis is an important
source of inaccuracy, and results in poor behavior in Monte Carlo studies of error bands
generated this way. (See Kilian (1998b)).

Another way to generate confidence intervals with the same first-order asymptotic
justification as use of Bayesian intervals as confidence intervals is to use simple bootstrap
procedures. Perhaps because Bose (1988) has shown that bootstrap calculations provide a higher
order of asymptotic approximation in the distribution of the estimator in a stationary finite-order
autoregressive model, some researchers have the impression that simple methods for translating
an estimate of the distribution of the estimator at the true parameter value into a confidence
interval must improve the accuracy of confidence intervals, but this is not the case. Some
applied studie$ have used what might be called the “naive bootstrap”, but which Hall (1992)
and we in the rest of this paper will call the “other-percentile” bootstrap interval. An initial

consistent estimatéA is generated, and Monte Carlo draws are made from the model with
A=A, to generate a distribution of estimatgsaboutA. To generate a confidence band for
G (1), the A's are mapped into a distribution of correspondigdt)’s, and the( +a)%
“confidence interval” is formed by finding the upper and lo@f2) % tails of the distribution
of the ¢;(t)’s. This procedure clearly amplifies any bias present in the estimation procedure. In
our simple time series example of section II.B, the procedure would produce intervals shifted
downwardrelative to the Bayesian intervals, instead of the slight upward shift produced by exact
classical intervals.

In a pure location problem, where we obseXe- f(X - ) and the p.d.ff is asymmetric,
the standard method of generating a confidence interval is to find the upper anddg@)ét
tails of the p.d.ff, saya andb, and then use the fact that, wjttiixed andX varying randomly,

Pla< X-p<f=Hf X- cu< X 3=1-a. (7)

If we used the other-percentile bootstrap and made enough Monte Carlo draws to determine the
shape off exactly, we would use not theX —b, X a) interval implied by (7), but instead

(X +a, X+ b— that is, the interval in (7) “flipped” around the observed pXintlt may seem
obvious that, having made our bootstrap Monte Carlo draws, we should use the interval in (7),
not the other-percentile bootstrap interval. Indeed, the intéxalb, X - & implied by (7) is

called the “percentile interval” by Hall (1992) and treated by him as the most natural bootstrap
interval. In the pure location-shift context, it produces an interval with flat-prior Bayesian

12 This approach has been used by Runkle (1987). Blanchard and Quah (1989) and Lastrapes and
Selgin (1994) use a modification of it that makes ad hoc adjustments to prevent the computed
bands from failing to include the point estimates.
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posterior probability equal to its nominal coverage probability, and is therefore a useful
descriptor of the likelihood function.

But we can also imagine a setting in which we do not have a location shift problem with non-
Gaussian distribution, in which instead there is an underlying Gaussian (or otherwise
symmetrically distributed) location-shift problem, that has become non-Gaussian through an
unknown nonlinear transformation. That is, we obs&reed wish to form a confidence interval

for u, as before, but nowX = g(Z) and = g(6), whereZ ~ N(G,oz), g is monotone, and we

do not know necessarily knog. It can be shown that in this situation the other-percentile
bootstrap interval would give exactly the right answer, in the sense that it would produce an
interval with flat-prior Bayesian posterior probability matching its nominal coverage probability.

In time series problems, for parameters that imply stationary data, estimates of the
coefficients inA(L) are asymptotically normal, but biased in small samples. The coefficients in

C; are functions of the coefficients iA( L), with the degree of nonlinearity in the mapping

increasing witlj. One might expect then that bias considerations could domingtadar zero,
making Hall's percentile intervals work best, while the effects of nonlinear transformation would
dominate for large, making “other-percentile” intervals work best. But there is no obvious,
general method of using bootstrap simulations to produce confidence intervals whose length and
skewness accurately reflect asymmetry in sample information aboG} the

Kilian in several papers (Kilian (1998a), Kilian (1998b), e.g.) has argued for use of other-
percentile bootstrap intervals with bias correctionWhile there is no argument available that
such intervals are more accurate in coverage probability asymptotically than other bootstrap
approaches or than Bayesian probability intervals, the bias-correction does tend to remove the
most important source of bad behavior of other-percentile intervals in time series models.

There are ways to construct bootstrap confidence intervals that make them asymptotically
accurate to second order, instead of only to first order. One such method is that presented in Hall
(1992) as “symmetric percentite- Another is that presented in Efron and Tibshirani (1993) as
“BC, "1 The Hall intervals are symmetric about point estimates, so they cannot provide

information about asymmetry in the likelihood. The Efron and Tsibshirani estimates are
burdensome to compute. Both have behaved badly in Monte Carlo studies of multivariate time
series models (Kilian (1998b)).

As should already be clear, we believe error bands that are descriptive of the likelihood are to
be preferred, in scientific reporting, to classical confidence regions with known coverage
probabilities, even when the latter can be constructed. Nonetheless we report in our examples
below some measures of the behavior of bootstrap-based approximate confidence intervals. We
use Kilian’s bias-adjusted bootstrap method (Kilian (1998a)) and the commonly applied other-

13 But note that Kilian is primarily just correcting the initial estimator for bias. See Hall (1992),
p.129 for some elaboration of the point that what is called “bias correction” in the literature of
bootstrapped confidence intervals is not correction of the bootstrapped estimator for bias.

 This interval is an other-percentile interval adjusted for “bias” and “acceleration”.
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percentile method. As we have noted, both can be justified as good approximations to Bayesian
intervals under particular assumptions on the way the distribution of the observed statistics
depends on the parameter. Both are relatively straightforward to compute.

VI. Better Measures of Uncertainty about Shape of Responses

Common practice is to compute a one-dimensional error tﬁ?}lﬁtjtdij (t) for each
t=0,...,H , then plot on a single set of axes the three functions oftfife-J; (t), ¢ (t), and
¢;(t)+9; (1), attempting to show the reader both the point estimate of the response and an

indication of the range of uncertainty about the form of the response. It is extremely unlikely in
economic applications that the uncertainty abql(lt) is independent acrossand indeed this is

probably a good thing. Readers probably tend to think of the plotted upper and lower confidence
band points as representimg([)] functions at the boundaries of likely variation dp. If the

uncertainty about were in fact serially independent acrosthe smoothly connected upper and
lower confidence bands would represent extremely unlikely patterns of deviatipnfraim ¢; .

But in models fit to levels of typically serially correlated economic time series, uncertainty about
c is usually itself positively serially correlated, so thinking of d?(at)t 9 (t) plots as possible

draws from the distribution afis not as unreasonable as it might seem.

Nonetheless, models are sometimes fit to data that is not very smooth, or to differenced data,
and even for data in levels the “connect the dots” bands can turn out to be misleading. To better
characterize the uncertainty, one can turn to representin@ij(lﬁ)]a functions in a better co-

H
ordinate system than the vector of their valueg a0,....H . If the {cij(t)}t_0 vector were

jointly normal with covariance matrif, the obvious coordinate system would be formed by
projections on the principal component<pfand one can use this coordinate system even if the
c's are not jointly normal.

To implement this idea, one computes a pseudo-random sample from the distribujon of

using it to accumulate a first and second moment matrix. From these, one computes the
estimated covariance matr@ of the H-dimensionalc; matrix and calculates its eigenvector

decomposition

WAW =Q, (8)
whereA is diagonal andW'W= 1. Any ¢; can now be represented as
H
G =G + ZVka , 9)
k=1

where we are treating; as anH-dimensional column vectol; is the estimated mean of ,
and W, is thek'th column (i.e.k'th eigenvector) ofW. Random variation inc;, which
represents our uncertainty abayt given observation of the data, is generated by randomness in
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the coefficients{y, }. By construction, the variance ¢f, is thek'th diagonal element of the
matrix A in (8), i.e. th&k'th eigenvalue of2.

In models of economic data, it is likely that the largest few eigenvalusaotount for most
of the uncertainty inc; . We can, in such a case, give a much more complete description of
uncertainty about; than is available in a “connect-the-dots” error band by presenting just a few

plots, displaying, sayg; (t)iWk(t)M to represent an approximate 68% probability band for

the K'th variance component, d (t) =W, (1196, for approximate 95% intervals. Unlike
the functions ot plotted in connect-the-dots error bands, these plots shofunctions that lie
in the boundary of the Gaussian confidence ellipsoid, when the distributgnisGaussian.

This method, though possibly useful in practice as a time-saver, is still unsatisfactory, as we
know that thec; 's are often not well approximated as jointly normal, particularly for their values

at larget. The linear eigenvector bands we have described will always be symmetriccabout

for example, while the posterior distribution usually is not. It is often important to know when
the posterior is strongly asymmetric.

So we can improve on the above method by conducting another round of Monte Carlo
simulation, or, if the first round, used to fof» has been saved, by making another pass through
the saved draws. This time, we tabulate the 16%, 84%, 2.5% and 97.5% (say) quantiles of the
¥\ corresponding to the largest eigenvalueQ ofThe y, for a particular draw o€; is easily

computed a¥\i. G;, whereW, is thek'th row of W. The two functions df, ¢; +y, ;¢ and

Cj * Vi s4: If Ay is One of the largest eigenvalues, will each show a likely direction of variation
in ¢; , and their different magnitudes of deviation frémwill give an indication of asymmetry

in the likelihood or posterior p.d.f.

One further step up in sophistication for these measures is possible. Often it is important to
the use or the interpretation of a result how sevgral, for differenti andj, are related to each

other. For example, it is often thought that plausible patterns of response of the economy to a
disturbance in monetary policy should have interest rates rising, money stock falling, output
falling, and prices falling. When we look at the error band for the response of output to a
monetary shock and see that, say, it looks plausible that the output decline could be much greater
than the point estimate, we really need to know whether the stronger output decline implies any
violation of the sign pattern that implies the shock is plausibly treated as a policy shock.

This kind of question can be answered by stacking up seg€minto a single vector, then

applying eigenvalue decomposition methods suggested above. It may not be as widely useful to
apply these methods g 's jointly as it is to apply them to singlg 's, because there is not as

strong a presumption of high correlationsqj)(t) values acrossandj as there is across

However, where it turns out that a few eigenvalues do dominate the covariance matrix of a
substantively interrelated set gf's, this sort of exercise can be very helpful.
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Before proceeding to examples, we should note that the ideas in this section are not limited in
application to impulse responses. They apply wherever there is a need to characterize uncertainty
about estimated functions of an indeand there is strong dependence acrasshe uncertainty
about the function values. This certainly is the case when we need to characterize uncertainty
about the future time path of an economic variable in a forecasting application, for example. It
also will apply to some cases in which non-parametric kernel estimates of regression functions,
p.d.f.’s, or the like are being presented.

VII. Application to Some Bivariate Models

We consider two examples of bivariate models based on economic time series. Though they
are unrealistically simple, they make it feasible to do a wide range of checks on the methods, in
order to give a clearer impression of the feasibility of the methods we suggest, their value in
transmitting information, and the degree to which they give results resembling or differing from
other possible methods for generating error bands.

First we consider a triangularly orthogonalized reduced-form VAR with four lags fitted to
qguarterly data on real GNP and M1 over 1948:1-1989:3. Figure 2 shows pointwise flat-prior
posterior probability intervals for this mode’s impulse respohsEer both the response Wfto
its own shocks, in the upper left, and the responddlofo its own shocks, in the lower right,
there is notable skewness in the bands, with the 95% bands especially extending farther up than
down. Figure 3 shows 68% other-percentile intervals, without bias-correction. Note that for the
responses of GNP and M1 to their own innovations, these other-percentile bands are quite
asymmetric, shifted down toward 0. This reflects bias in the estimator, and it does not make
sense to treat these intervals, which accurately reflect the shape of the distribution of the
estimates about the truth, as characterizing reasonable beliefs about parameter location. With
bias-adjustment, as displayed in Figure 4, other-percentile bootstrap intervals show the same
gualitative pattern as the Bayesian intervals, but are more skewed, somewhat wider, and with a
tendency to splay out at the longer time horiz6ns.

15 For both these models we use 1000 Monte Carlo draws in generating Bayesian or bootstrap
intervals for a given data set, and 600 draws of data sets in constructing coverage probabilities.

16 Note that our implementation of bias-adjusted other-percentile intervals does not follow Kilian
in his ad hoc adjustments of sample draws to eliminate non-stationary roots. Our view is that
mildly non-stationary estimates may be realistic, so that it is usually inappropriate to truncate the
parameter space at or just inside the boundary of the stationary region. We also condition on
initial observations in generating bootstrap draws, which Kilian does not.

17



Figure 2: Pointwise .68 and .95 Posterior Probability Bands,
Y-M Model

Responses to
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Figure 3: 68% and 98% Other-Percentile Bootstrap
Bands, Y-M Model

Responses to

Figure 4: 68% and 95% Bias-Corrected Bootstrap Bands, Y-M Model
Responses to
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Table 3, computed for the posterior implied by the actual data, shows that the bias-corrected
other-percentile bootstrap intervals have posterior probability that substantially exceeds .68. This
results from an even greater excess length for these intervals, as indicated by Table 4. Treating
the point estimates of this model as true parameter values, we can examine coverage
probabilities. As can be seen in Table 5, Bayesian .68 intervals have classical coverage
probability systematically lower than .68, though never lower than .50. The bootstrap intervals
have coverage probabilities less than .68 for short horizons, above .68 for long horizons, but the
discrepancies are smaller than for the Bayesian intervals at most horizons.

Table 3: Bootstrap Intervals as Likelihood Descriptors, GNP-M1

Model

Posterior Probability of Bootstrap Int  erval

t YtoY MtoY YtoM Mto M
1 .613 .685 .000 .809
2 723 722 .680 .799
3 716 .697 .683 .780
4 742 713 .678 .760
6 729 751 732 725
8 726 .769 .765 .702
12 778 .790 .818 671
16 .788 .822 .841 .675
24 .801 .831 .868 716
32 .809 .832 .883 776

20



Note: Monte Carlo standard error of a .68 frequency with 1000 draws is .015. Bootstrap
intervals have nominal coverage probability of .68. The samples are random draws with
initial y's both 1.

Table 4: Comparison of Interval Lengths, GNP-M1 Model

Ratios of Mean Lengths: Bayesian/Bootstrap

t YtoY MtoY YtoM M to M
1 1.022 1.016 1.000 1.020
2 .995 .988 1.015 .983
3 .967 .961 .982 .949
4 .938 .929 .945 .918
6 .895 .880 .892 .872
8 .841 .829 .836 .828

12 .759 762 .750 .756

16 716 .730 .708 721

24 .652 .691 .644 677

32 .603 .661 .599 .647

Table 5: Bayesian and Bootstrap Intervals as Confidence Regions,

GNP-M1 Model
Bootstrap Interval Coverage Proba bilities Bayesian Interval Coverage Proba bilities
YtoY MtoY YtoM M to M t YtoY MtoY YtoM Mto M
432 .687 .000 .360 1 .595 .668 .000 .595
.540 .678 717 .502 2 .618 672 .685 .543
.603 .692 .685 .592 3 577 .687 .643 .557
.625 .670 .688 .622 4 .593 .690 .613 518
.657 .702 .687 .653 6 .585 677 .618 .523
.650 713 .685 .655 8 .560 .670 .610 .510
.682 717 .697 .675| 12 .555 .642 .627 518
.703 732 707 .687| 16 .557 .623 .608 513
712 .730 742 712) 24 .570 .642 .617 517
.725 742 .748 .750] 32 .602 .632 .610 .520

Note: Monte Carlo standard error of a .68 frequency with 600 draws is .019. Bootstrap intervals have
nominal coverage probability of .68. Bayesian intervals are flat-prior, equal-tail, .68 posterior
probability intervals.

For this model, the pointwise bands carry nearly all shape information, because the first
component of the covariance matrix of each impulse response is strongly dominant. We can see
this in Figure 5, which displays error bands for the first component of variation in each impulse
response. The bands in this figure are very similar to the pointwise bands shown in Figure 2.
The main difference is a tendency for the component bands to be tighteloee to 0. For each
of the four response functions in these graphs, the largest eigenvalue accounts for over 90% of
the sum of the eigenvalues. The second eigenvalue accounts for between 2.3% and 32%, and the
third for no more than 1.1%. Figure 6 shows the second component, which in this case seems to
correspond to uncertainty about the degree to which the response is “hump-shaped”. We do not
display the third component because it is quite small. In this model, use of pointwise bands,
together with what we guess is the usual intuition that uncertainty about the level, not the shape,
of the response dominates, would lead to correct conclusions.
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Figure 5: 1* Component: .68 and .95 Probability Bands, Y-M Model

y M1
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Figure 6: 2nd Component: .68 and .95 Probability Bands, Y-M Model

M1

We turn now to the bivariate VAR with 8 lags fitted by Blanchard and Quah (1989) to quar-
terly data on real GNP growth and the unemployment rate for males 20 and over, for 1948:1-
1987:4. We construct error bands for the structural impulse responses under the Blanchard-Quah
identification, which relies on long-run restrictions. The original article presented what were
meant to be other-percentile intervals, with an ad hoc correction to prevent their lying entirely to
one side of the estimated resporiSeSVe were able to duplicate those results, but realized in the
process that there were some errors in the paper’s implementation of the bootstrap. The very
strong asymmetry in the intervals displayed in the article resulted mostly from the'®rrors.
Figure 7 shows Bayesian flat-prior intervals. They are only modestly asymmetric, but they are
rather wide for the responses to a supply shock. The uncorrected other-percentile intervals in
Figure 8 are similar to the Bayesian intervals, except for strong skewness fdrihothe
responses to demand shocks. The first few periods show 68% bands lying entirely below the
point estimates, and we know from Figure 7 that this does not reflect the shape of the likelihood.

" This same general procedure was followed also by Lastrapes and Selgin (1994). For the
Blanchard-Quah model, Koop (1992) computed Bayesian error bands and noted how different
they were from the original (numerically mistaken) published bands.

18 See the more detailed discussion in an earlier draft of this paper, Cowles Foundation
Discussion Paper Number 1085.
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Bias correction has slight effects on these bands, as can be seen from Figure 9; in particular the
strong bias toward zero in the bands for responses to demand taisletill present after bias-
correction.

Figure 7: Pointwise: .68 and .95 Posterior Probability Bands, B-Q Model
Responses to

Supply Demand
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Figure 8: 68% and 95% Other-Percentile Bootstrap Bands, B-Q Model
Responses to

Supply Demand
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Figure 9: 68% and 95% Bias-Corrected Bootstrap Bands, B-Q Model
Responses to

Supply Demand

In contrast to the implications of Table 3 for the Y-M model, Table 6 shows that the bias-
corrected bootstrap intervals are for the B-Q model not bad as indicators of posterior probability,
except for a tendency to hold too little probability at low the responses to demand shocks.

This reflects the spurious skewness already noted for those responsealaed. In this model,

in contrast to the Y-M1 model, the Bayesian intervals and bias-corrected bootstrap intervals have
almost the same average lengths, as can be seen from Table 7. The lower posterior probability
for the bootstrap intervals at lowfor responses to demand comes from the intervals being
mislocated, not from their being too short.
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Table 6: Bootstrap Intervals as Likelihood Descriptors,

Blanchard-Quah Model

Posterior Probabilities of Bootstrap Int  ervals

t YtoS Uto S Y toD UtoD
1 .710 .696 452 .644
2 .706 715 .583 .616
3 .701 717 .655 .611
4 .688 712 .700 .661
6 .693 .696 712 .673
8 .703 .698 .705 731
12 .687 .718 .700 .692
16 .693 713 .689 .684
24 .668 714 .670 .676
32 .655 721 707 .718

Note: Monte Carlo standard error of a .68 frequency with 1000 draws is
.015. Bootstrap intervals have nominal coverage probability of .68.
The samples are random draws with inigfalboth 1.

Table 7: Comparison of Interval Lengths, Blanchard-Quah Model

Ratios of Mean Lengths: Bayesian/Bootstrap

t YtoS Uto S Y to D UtoD
1 1.009 1.004 .996 1.008
2 1.005 1.001 .985 1.006
3 .997 .999 .979 .993
4 .990 .992 .979 .984
6 .972 .981 .997 .984
8 .962 .975 .991 .994

12 .972 .985 .995 .999

16 .979 .983 1.005 1.016

24 .976 .942 .984 1.001

32 .963 .886 .958 .969

Note: Monte Carlo standard errors of these figures vary, but none are over .06.

If we take the estimated coefficients of the Blanchard-Quah model as the truth, we can check
coverage probabilities for bootstrap and Bayesian intervals. Table 8 shows similar behavior for
Bayesian and bootstrap intervals by classical criteria. Both intervals tend to undercover for the
GNP-to-demand response at short horizons, though the undercoverage is considerably worse for
the bootstrap interval. Both tend to overcover at long time horizons, with the tendency slightly
worse for the Bayesian intervals.
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Table 8: Bayesian and Bootstrap Intervals as Confidence Regions,
Blanchard-Quah Model

For this model, the first component of the covariance matrix accounts for much less of the
overall variation, especially for the responses to demand, as is shown in Table 9. Bands on the
first component are shown in Figure 10. These bands have the same general shape as those in
Figure 7, but are for the most part narrower, reflecting the fact that they describe only one, not
completely dominant, component of variation. It is interesting that the Y-to-supply response has
a wider band on this first component for latghan one sees in the pointwise bands of Figure 7.

Bootstrap Interval Coverage Proba hilities Bayesian Interval Coverage Proba bilities

t YtoS Uto S YtoD UtoD t YtoS Uto S Y toD UtoD

1 .657 .650 .050 632 1 .653 .662 273 672
2 .648 .653 .108 425 2 .658 .655 270 .618
3 .647 .642 .225 295 3 .650 .668 372 462
4 .657 .642 .337 297 4 .658 .660 445 448
6 .678 .647 .550 452 6 .642 .637 .615 .505
8 .670 .672 .593 525 8 .647 .623 .652 .600
12 .687 .705 .630 .635| 12 .690 705 .658 .632
16 .728 775 .645 .707| 16 752 792 .693 725
24 747 .845 .783 .780| 24 .768 .860 .845 .853
32 737 .910 .928 .865| 32 .760 .923 .952 .920

Note: Monte Carlo standard error of a .68 frequency with 600 draws is .019.

Bootstrap intervals have nominal coverage probability of .68. Bayesian intervals are
flat-prior, equal-tail, .68 posterior probability intervals.

This can only occur because of non-Gaussianity in the posterior distribution.

Table 9: Variance Decompositions for BQ Model Responses

0.7147
0.7487
0.6165
0.4555

0.2029
0.1319
0.2002
0.2117
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0.0492
0.0654
0.0984
0.1835

Y to supply

U to Supply

Y to demand

U to demand




Figure 10: T Component: .68 and .95 Probability Bands, B-Q Model

Supply Demand

1.56

In Figure 11, showing the second component of variation, we see that uncertainty about shape
of responses in this model is quite high, particularly for the response of Y to supply. One might
get the impression from the pointwise bands that the main uncertainty is about the level, not the
shape of the Y-to-supply response, with more uncertainty about the initial than the later levels.
But Figure 11 makes it clear that the very negative initial responses that are quite likely are
associated with stronger positive long run responses. We display the third component of
variation in these responses in Figure 12. These components account for 5-20% of the traces of
the covariance matrices, according to the third column of Table 9. The three component plots
together show that the shape of these responses is quite uncertain. Despite the widths of the
bands being narrower than those in the Y-M1 model, and despite the similar degree of
smoothness in the plotted bands, the data are seen through the decomposition graphs to contain
much sharper information about the shape of the responses in the Y-M1 model than do the data
for the B-Q model. We might have suspected this difference from the fact that the B-Q model is
fit to data on Ygrowth while the Y-M1 model uses Yevels This makes the Y-M1 data
smoother, implying its impulse responses should be smoother. However, in a multivariate model
it is dangerous to assume that impulse responses always inherit the degree of smoothness we see
in plotted data. And there was no way to see, from the plotted pointwise responses alone, that
there was this kind of difference in the information the data carry about the impulse responses of
the two models.
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Figure 11: 2nd Component: .68 and .95 Probability Bands, B-Q Model

Supply Demand

1.39

-.65
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Figure 12: 3rd Component: .68 and .95 Probability Bands, B-Q Model

Supply Demand

With these simple models we hope to have made our case that likelihood-characterizing error
bands constructed as flat-prior posterior probability intervals are feasible and can be a
considerable improvement on bootstrap-based confidence intervals as descriptors of likelihood
shape. We also hope to have demonstrated that information about shape beyond that in
pointwise bands is useful and not reliably obtained by methods based on eyeball and intuition.

We now turn to considering a model closer to the scale now in use in analyzing
macroeconomic policy. For this larger model we have overidentifying restrictions on parameters.
It turns out that this makes computing error bands more demanding, in ways that have not been
recognized in some of the existing literature.

VIll.  Monte Carlo Methods for Posterior Probabilities in Overidentified
Models
A. Theory
We consider linear simultaneous equations models of the form
F(L)y(t) = (1) . (10)
We take
£(t)¥(9, s< t= NOA). 1)
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with A diagonal. We assumnig, to be non-singular, so that (10) provides a complete description
of the conditional distribution of/(t) given y(9s), s< t and can be solved by multiplying through

on the left byl;* to produce the reduced form

B(L) y(t) = u(Y) , (12)
in which B, = | andu(t), while still uncorrelated with pagts, has a covariance matrix which
is not in general diagonal, being given by

=A™t . (13)

We assume the system is a finite-order autoregression, meaning that thdre ¢s guch that
I, =B; =0 forall j>k.

The p.df. for the datay(d),...,y(T), conditional on the initial observations
y(-k+1),...,y(0), is proportional tg as defined by

q(B,2) = |Z|_% exp{-%trace{ St 52'1)] (14)
G(t; B)= B(D XY (15)

T
S(B=>UtB¢tH . (16)

t=1

For a given sample, (14) treated as a function of the parantetersl Z is the likelihood
function. Its form is exactly that of the likelihood for a regression with Gaussian disturbances
and strictly exogenous regressors, a classic model for which Bayesian calculations are well-
discussed in the literatut®.The RATS program includes routines to implement Monte Carlo
drawing from the joint distribution d andZ and use of those draws to generate a Monte Carlo
sample from the posterior distribution of impulse respoffses.

19 See, e.g., Box and Tiao (1973), Chapter 8 for the theory.

20 Box and Tiao (1973) recommend using a Jeffreys priorZprwhich turns out to be

m+1 m+v+1
proportional to|Z| 2 . The packaged RATS procedure uses instEad 2 , wherev is the
number of estimated coefficients per equation. Phillips (1992) suggests using the joint Jeffreys
prior onB andZ, which in time series models (unlike models with exogenous regressors) is not
flat in B. The Phillips suggestion has the drawback that the joint Jeffreys prior is
computationally inconvenient and changes drastically with sample size, making it difficult for
readers to compare results across data sets. We therefore prefer the Box and Tiao suggestion in
principle, though they point out (p. 44) that even in models with exogenous regressors
mechanical use of Jeffreys priors can lead to anomalies. In this paper, to keep our results as
comparable as possible to the existing applied literature, we have followed the RATS
procedure’s choice of prior.
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The impulse responses for the model , defined by (5) above, are in this case the coefficients
of

B(L)rg A, (17)

where the A factor scales the structural disturbances to have unit variance, or equivalently
converts the responses so they have the scale of a response to a disturbance of “typical” (one-
standard-deviation) size. Equation (13) gives us a relation alohgand/A. Because is
symmetric, [, and/\ have more unrestricted coefficients tHan An exactly identified VAR

model is one in which we have just enough restrictions available to make (13) a one-one
mapping fromz to 'y, andA. In this case, sampling from the impulse responses defined by (17)

is straightforward: sample from the joint distributionBbindZ by standard methods, then use

the mapping defined by (13) and the restrictions to convert these draws to draws from the
distribution of impulse responses. The most common use of this procedure régtrictbe

triangular, solving fon'o‘ll\% by taking a Choleski decompositionXaf

When the model is not exactly identified, however, reliance on the standard methods and
programs that generate draws from the joint distribution of the reduced form parameters is no
longer possible. A procedure with no small-sample rationale that does use the standard methods
has occurred independently to a number of researchers (including ourselves) and been used in at
least two published papers (Gordon and Leeper (1994), Canova (1991)). We will call it the naive
Bayesian procedure. Because the method has a misleading intuitive appeal and may sometimes
be easier to implement than the correct method we describe below, we begin by describing it and
explaining why it produces neither a Bayesian posterior nor a classical sampling distribution.

In an overidentified model, (13) restricts the behavior of the true reduced-form innovation

variance matrix=. It remains true, though, that the OLS estimaBesand > are sufficient
statistics, meaning that the likelihood depends on the data only through them. Thus maximum

likelihood estimation oB, Iy, andA implies an algorithm for mapping reduced fo(ré,i)
estimates into structural estimat@SD, FOD,/\D) that satisfy the restrictions Often there are no

restrictions that affeds, so thatB = B”. The naive Bayesian method proceeds by drawing from
the unrestricted reduced form’s posterior p.d.f. Br), then mapping these draws into values

of (B,ly,AA) via the maximum likelihood procedure, as if the parameter values drawn from the
unrestricted posterior oB( %) were instead reduced form parameter estimates. The resulting

distribution is of course concentrated on the part of the parameter space satisfying the
restrictions, but is not a parametric bootstrap classical distribution for the parameter estimates,

because the posterior distribution f&; £) is not a sampling distribution fc(ré,i). It is not a

true posterior distribution because the unrestricted posterior distributiom,f@) (s not the
restricted posterior distribution, and mapping it into the restricted parameter space via the
estimation procedure does not convert it into a restricted posterior distribution.

The procedure does have the same sort of asymptotic justification that makes nearly all boot-
strap and Bayesian methods of generating error bands asymptotically equivalent from a classical
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point of view for stationary models, and it is probably asymptotically justified from a Bayesian
viewpoint as a normal approximation even for non-stationary models. To see this, consider a
simple normal linear estimation problem, where we have a true para@eder unrestricted
estimate distributed alil(3,Q), and a restrictiorRB =y with Rkxm. The restricted maximum

likelihood estimate is then the projection on tR8 =y manifold of the unrestricted ML
estimatef?, under the metric defined 1§y, i.e.

-1

Bz o(v' Q7o) QB+ M(MQ M)y, (18)

where M =QR’' and® is chosen to be of full column ramkk and tosatisfy RO =0. The
sampling distribution off?D is then in turn normal, since it is a linear transformation of the

normal B In this symmetrically distributed, pure location-shift problem, the unrestricted
posterior ongB has the same normal p.d.f., centered?atas the sampling p.d.f. cﬁ? aboutp.
We could make Monte Carlo draws from the sampling distributioﬁDoby drawing from the

sampling distribution o{f?, the unrestricted estimate, and projecting these unrestricted estimates
on the restricted parameter space using the formula (18). But since in this case the posterior

distribution of B and its sampling distribution are the same, drawing from the posterior
distribution in the first step would give the same correct result. And since in this case the

restricted posterior has the same normal shape ef}t?otnat the sampling distribution (f)‘D has

aboutf, the simulated distribution matches the posterior as well as the sampling distribution of
the restricted estimate.

The naive Bayesian method for sampling from the distribution of impulse responses rests on
confusing sampling distributions with posterior distributions, but in the case of the preceding
paragraph this would cause no harm, because the two kinds of distribution have the same shape.

For stationary models, distribution theory fotand B is asymptotically normal, and
differentiable restrictions will behave asymptotically as if they were linear. So the case
considered in the previous paragraph becomes a good approximation in large samples. For
stationary or non-stationary models, the posterioZas asymptotically normal, so the naive
Bayesian method is asymptotically justified from a Bayesian point of view.

But in this paper we are focusing on methods that produce error bands whose possible
asymmetries are justifiably interpreted as informative about asymmetry in the posterior distribu-
tion of the impulse responses. Asymmetries that appear in bands generated by the naive
Bayesian method may only turn out to be evidence that the asymptotic approximations that might
justify the method are not holding in the sample at hand.

It is important to note that, though the naive Bayesian method will eventually work well in
large enough samples, meaning in practice situations where the sample determines estimates
precisely, it can give arbitrarily bad results in particular small-sample situations. For example, in
a 3-variable model that is exactly identified by the order condition, via three zero restrictions on
I, in the pattern shown in Table 10 (where x’s indicate unconstrained coefficients) it is known

that the concentrated or marginalized likelihood function, as a functidg, 6f, generically has
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two peaks of equal height. (See Bekker and Pollock (1986) and Waggoner and Zha (1998).)
This pattern is perhaps well enough known that if an applied three-variable model took this form,
the model would be recognized as globally unidentified. But the fact that it is globally
unidentified does not mean that the data are uninformative about the model. A correct sampling
from the likelihood or posterior p.d.f., using the method we have proposed will combine
information from both peaks. If the peaks are close together in impulse response space, their
multiplicity may not be a problem. If they are far apart, the averaged impulse responses will have
wide error bands, correctly traced out by the integrating the likelihood. The naive Bayesian
algorithm, however, would simply pick one of the peaks for each draw arbitrarily, according to
which peak the equation-solving algorithm converged to. This could easily turn out to be the
same peak every, or nearly every, time, so that uncertainty would be greatly undereétimated.

Table 10: Example Identification
1 0 x
x 1 0
0 x 1

Note: x's are unconstrained coefficients.

This pattern of identifying restrictions also creates another difficulty for the naive Bayesian
procedure. Even though there are as many unconstrained coefficients as distinct elements in
so that the order condition for identification is satisfiEglmatrices of this form do not trace out

the whole space of positive definiiés. That is, there ar&’s for which (13) has no solution
subject to these constraints. In drawing from the unconstrained posterior distribufiothef
naive Bayesian procedure would occasionally produce one of ¥&der which there is no
solution. If the usual equation-solving approach for matchijp@ndA to Z in a just-identified

model is applied here, it will fail.

We raise this simple 3x3 case just to show that models that create problems for the naive
Bayesian method exist. More generally, models in which likelihoods have multiple peaks do
arise in overidentified models, and they create difficulties for the naive Bayesian approach. The
difficulties are both numerical — in repeatedly maximizing likelihood over thousands of draws it
is impractical to monitor carefully which peak the algorithm is converging to — and analytical —
when there are multiple peaks the asymptotic approximations that can justify the naive Bayesian
procedure are clearly not accurate in the current sample.

L While this example may appear special, it can easily be embedded in a larger model. If a
larger model had a 3x3 block with this pattern of zero restrictions in its upper left corner, but was
not block triangular, it could be globally identified. Nonetheless, if the true coefficient matrix
were close to block diagonality, there would most likely be two peaks in the likelihood, of
somewhat different, but similar height. This would create the same possibility as in the simple
3x3 example for the naive Bayesian procedure to reflect the likelihood shape only near one of the
peaks.
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To describe a correct procedure for generating Monte Carlo draws from the Bayesian poste-
rior for the parameters in (10), we begin by introducing a reparameterization. In place of (10)
we use

AL Y() =n(D) , (19)

where A=Al and n(t) = Ag(t) so that vam {)=1. There is no real reduction in the
number of free parameters, because the diagongl of always normalized to a vector of ones.

so that an unrestrictedy, has the same number of parameters as a diagotaether with a
normalizedl,. There are a number of reasons to prefer this parameterization. It simplifies the

mapping (17) between reduced form and structural parameters. The usual parameterization can
give a misleading impression of imprecision in the estimate of a rovy of the normalization

happens to set to 1 a particularly ill-determined coefficient in the corresponding rayv ddut
the main reason for introducing this parameterization here is that the likelihood is not in general
integrable when written as a function(d,,,A), requiring some adjustment of the flat prior to

allow formation of a posterior distribution, whereas it is integrable as a 1“uncti@,my°)(22

We can rewrite the likelihood (14) as
1 a1 A N
A" exp{—ztrace(AbAbS(E)—E trac B- B XX B B cM\} . (20)

Taking the prior as flat iB and A,, we can integrate ov& to obtain the marginal posterior on

A,
p(A)O|A[™ exp{—%trace{ AB )} . (21)

Here as with the reduced-form model we have followed the widely used RATS code in dropping
the “degrees of freedom correctiov'in (21). This can be thought of as in effect usjili\gv as

an improper prior, or as the consequence of starting with a flat prior on the coefficigfts) of

then converting to a parameterization in termsAgfand B(L). As can be seen by comparing

%2 |n general, the likelihood, witB andA integrated out, i§(1) in individual elements of ,at

all sample sizes. This does not mean that it fails to be asymptotically normal -- the likelihood
does become small outside a region around the true parameter values. There are also special
cases where the likelihood is integrable, e.g. whéjeis normalized with ones down the
diagonal and restricted to be triangular. For details, see the earlier draft of this paper, Cowles
Foundation Discussion Paper No. 1085. Of course, we could use the standard parameterization
and retain integrability if we made the prior flat #,, then transformed back to th&y(A\)

m+1
parameter space, including the appropriate Jacobian|/l\¢_rm7. But the easiest way to explain

the appearance of this term would be to derive it fromAfig@arameterization, which is in any
case more well-behaved.
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(20) with (21), this has the effect of making the marginal posterioAprproportional to the

concentrated likelihood and thereby eliminating possible discrepancies between posterior modes
and maximum likelihood estimates.

Expression (21) is not in the form of any standard p.d.f. To generate Monte Carlo samples
from it, we first take a second-order Taylor expansion of it about its peak, which produces the
usual Gaussian approximation to the asymptotic distribution of the elemefjs &ecause this

is not the true form of the posterior p.d.f., we cannot use it directly to produce our Monte Carlo
sample. One approach is importance sampling, in which we draw from the Gaussian
approximation, or from a multivariatevith the same covariance matrix, but weight the draws by
the ratio of (21) to the p.d.f. from which we draw. The weighted sample c.d.f. then approximates
the c.d.f. corresponding to (2%). The weights in practice vary rather widely, so that a given
degree of Monte Carlo sampling error in impulse response bands computed this way generally
requires many times as many Monte Carlo draws as for a reduced form model where weighting is
not required. We found this straightforward importance sampling procedure not to work well for
our task.

We have instead used a version of the random walk Metropolis algorithm for Markov chain
Monte Carlo (MMCMC) sampling from a given p.d.f. Details of the method are set out in
Waggoner and Zha (1997). The simulation results we present ought to be, by several measures,
very accurate, but they did occupy substantial computing time (11 hours on a Pentium Il 233
MHz laptop). We expect that further refinements in the sampling algorithm can reduce this time.

Note that it also possible to compute the error bands without any weighting. This is yet
another example of a method for computing error bands that is asymptotically justified, but
admits no rationale for interpreting its asymmetries as providing information about small-sample

23 This idea, importance sampling, has seen wide use since its introduction into econometrics by
Kloek and Van Dijk (1978).

4 The algorithm used three separate randomly drawn starting points and a multivariate
distribution with 6 degrees of freedom for the jump distribution on changégs.irBecause the
distribution of the remaining parameters conditionalAgns Gaussian, we needed the MMCMC
algorithm only for theA, parameters. The covariance matrix of ttlgstribution was set at the
Hessian of the log likelihood at the peak of the log likelihood, scaled by -.25. We used 480,000
draws for each starting point, discarding the first half of each run, so that final results are based
on 720,000 draws. The “potential reduction scale” of Gelman, Carlin, Stern and Rubin (1995) is
between 1 and 1.0085 for each of the 20 free parametery ,irand for over half of the
parameters it is between 1 and 1.001. The frequency of accepted jumps was about .49 in each of
the three chains. A measure of effective Monte Carlo sample size, which provides some
guidance as to the reliability of the tabulated quantiles, is the Monte Carlo sample size times the
ratio of “within chain” to “between chain” estimates of the variance of a parameter. For our total
sample size of 720,000, the measure ranges from 176, for the elenfgnividh the worst value

of the potential reduction scale, to 772 at the average value of the potential reduction scale across
all parameters.
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deviations from normality. It is even more likely than the naive Bayesian procedure to produce
unrealistically tight bands in the presence of multiple local maxima.

Though in switching to theA, parameterization we have eliminated the need to choose a

normalization in the usual sense, there is still a discrete redundancy in the parameterization: the
sign of a row ofA, can be reversed without changing the likelihood function. It may seem that a

choice of normalization cannot have much effect on substantive results, but this is not true. In
the conventional parameterization, with diagonal elementS,ofiormalized to 1, it is widely

understood that an equation with statistically well-determined coefficients on most of its
variables can be converted to one in which all coefficients seem ill-determined by normalizing
the equation on a variable whose coefficient is insignificantly different from zero. This is
because such a normalization makes the sign of all the coefficients in the equation nearly
indeterminate. A similar phenomenon arises with impulse responses. Casual choice of
normalization can lead to estimates that all responses to, say, a policy shock are “insignificant”,
when a better normalization would make it clear that the responses are actually sharply
determined. Here we follow Waggoner and Zha (1997) in choosing a normalization for each
draw that minimizes the distance 8§ from the ML estimate off,. Our experience confirms

their suggestion that this method will tend to hold down spurious sign-switching of impulse
responses and thereby deliver sharper reSults.

B. Results for a Six-Variable Model

An earlier paper by one of us (Sims (1986)) contains an example of an overidentified VAR
model with an interesting interpretation. (It identifies a money supply shock that produces both a
liquidity effect -- an initial decline in interest rate -- and a correct-signed price effect -- inflation
following a monetary expansion.) The paper contains two sets of identifying restrictions, and we
show calculations for the identification labeled version 2 in the original paper.

Figure 13 shows impulse responses for this model, with .68 and .95 flat-prior probability
bands. The first column shows that the identified monetary policy shocks have an expected
pattern of effects, raising interest rates at least initially, lowering the money stock, lowering
output for at least a year or so, lowering the inflation rate, though perhaps not by much, raising
the unemployment, and at least initially lowering investment. The second column was meant to
be interpreted as the effect of a money demand shock. The wide and strongly asymmetric error
bands show that the effects of this disturbance are ill-determined. The strong asymmetry
suggests that possibly the likelihood has multiple peaks, with qualitatively different “MD”
columns across the peaks. The Y and | columns display private-sector shocks that cause the Fed
to raise interest rates. The Y column is a shock that raises output, but not prices, while the |

%> The method we have used minimizes the Euclidean distance between the ML estimate and the
normalized draw. This makes the method sensitive to the scale of the variables. All our
variables have variances of about the same scale, so this is not in itself a problem, but it would be
better systematically to allow for scale in the metric. This could be accomplished by, say, using
the inverse Hessian of the log likelihood at the maximum to define the distance metric. When
we used other, apparently reasonable, normalization rules, the effects on the estimated error
bands were in every case clearly visible, usually in the direction of widening them.
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shock column raises output and the inflation rate and has a more sharply determined, though
possibly not stronger, interest rate response.
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Decomposition of these responses into components provides useful insight. They are more
like the Blanchard-Quah responses than the Y-M1 responses in that fairly low proportions of the
traces of the covariance matrices for these responses are accounted for by the first few
eigenvalues. The range is from .49 to .97, with a mean of .75. Since our focus here is not an a
detailed substantive assessment of this model, we omit display of decompositions for individual
responses. But it is worthwhile to show the usefulness of cross-variable decompositions. We
stacked the responses to the monetary policy shock of R, M1, P, and Y and decomposed them
jointly. For this decomposition the first six eigenvalues account for the following proportions of
the variance matrix trace: 0.52, 0.25, 0.06, 0.05, 0.04, 0.02. Figure 14 shows .95 probability

Figure 13: Pointwise .68 and .95 Probability Bands, Six-Variable

Model
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bands for these six components.
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Figure 14: Components 1-6 of Joint Response of R, M, P, Y to
Monetary Policy, .95 Bands, Six-Variable Model

2 3 5

The most interesting aspect of this graph emerges only with careful attention to the different
line colors. For the first component, in column 1, the top lines in plots of the responses of M and
Y match the bottom lines in the plots of responses of R and P. Thus more positive responses of
R and P are associated with more negative responses of M and Y. The first three variables are
consistent in suggesting that the main component of uncertainty is simply the uncertainty about
the strength of the effect of the shock — is the increase in R, decline in M, and initial decline in Y
large, or small? But the P component shows the opposite pattern — large R, M, and Y responses
are associated with weak P responses, and vice versa. This pattern could be relevant to
interpretation of the model’s results, and would be very important to include in characterizations
of uncertainty about conditional forecasts from the model used in policy analysis.

The second column weights most heavily on M and P, indeed is more important for M than is
the first component. Here M and P move together. This component suggests that there is
substantial uncertainty about the general effect on nominal variables of monetary contraction,
independent of uncertainty about how strongly monetary contraction affects the interest rate and
output. The third component affects mostly the output response, the fourth mostly the M
response, and the fifth mostly the R response, but all are modest in size.

This model shows only moderate simultaneity, so that difference between these correctly
computed bands and bands computed by the naive Bayesian method or by using unweighted
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draws from the asymptotic normal approximation to the p.d.f. Agrare correspondingly

modest. The bands around responses to monetary policy disturbances are particularly similar
across methods, probably because these responses are relatively sharply determined. Differences
are more clearly visible in the responses to MD and Y shocks, which are more ill-determined. In
Figure 15 we compare bands constructed correctly by Metropolis chain, by the naive Bayesian
method, and by unweighted draws from the Gaussian approximation based on the Hessian of the
log likelihood at the MLE. One response that is of interpretive interest for which bands come out
differently across these methods is that of R to a Y shock. The Y shock is major source of
variation in output, and a positive response of R to this shock suggests that monetary policy tends
to tighten when output expands. But note that in Figure 15 the 95% band extends well into
negative range for the initial R-to-Y response, indicating considerable uncertainty about the
strength of this response. The two other methods, by contrast, show 95% bands that in each case
are entirely positive. The responses to MD are of less substantive interest, since the results seem
to show that this set of responses is so ill-determined that interpretation is dubious. However, it
can be seen that there is a general tendency for the third and fifth columns, using the naive and
unweighted methods, to give narrower bands than the first column Finally, the band for the
response of price to MD in the third column, corresponding to the naive Bayesian procedure,
shows hardly any skewness, while the likelihood in fact shows very strong skewness, with the
68% band lying almost entirely below the point estiriate.

26 \We are confident that the differences discussed here are not artifacts of Monte Carlo sampling
error. 8000 independent draws were used for the naive Bayesian and unweighted Bayesian
bands, allowing quite precise estimates of the positions of bands. For the Metropolis chain
estimates in the first two columns, we compared results for the pooled Monte Carlo sample with
those for the three independent chains separately. The differences across the bands from the
three chains were barely detectable by eye, so every pattern we discuss in the text is sharply
determined.

42



Figure 15: Six-Variable Model, Responses to Money Demand and Y,
Comparing Correct, Naive, and Unweighted Bayesian Bands
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We also checked bootstrap methods for this model. The other-percentile method without
bias correction does surprisingly well. Where the likelihood shows skewness, the uncorrected
other-percentile bands tend to exaggerate the skewness, probably because of their bias-
amplification tendency. These bands show the point estimate almost entirely outside a 68% band
in five instances and almost entirely outside a 95% band (the skewed P to MD response) in one
instance, but the qualitative picture presented by these bands is otherwise in line with the
likelihood-based bands. The other-percentile method with bias correction performs badly. In a
relatively large model like this, there are likely to be a few roots at or just outside the boundary of
the region of stationarity. Bias correction of the bootstrap distributioA(df) tends to push

these roots unrealistically far into the nonstationary region. The result is that bands from the
bias-corrected bootstrap tend to splay out rapidly with increasifgr small, disagreement of

these bands with likelihood-based bands is more modest, but still important. The bands tend to
be wider than the likelihood-based bands even for sinalhd for the substantively important
response of P to MS, the bias-corrected bootstrap includes 0 in its 68% bands, whereas the
likelihood-based method (and all the others, as well) show 0 as well above the 68% band.
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Conclusions about whether the model shows a “price puzzle” might therefore be distorted by use
of bias-corrected bootstrap intervals.

IX. Conclusion

We have explained the reasons for computing likelihood-characterizing error bands in
dynamic models, shown how to go beyond the standard pointwise bands to display shape
information, shown that the methods we propose are computationally feasible, and shown that
other approaches can fall short in characterizing actual likelihoods, even though they are known
to provide accurate approximations in large enough samples. We hope to have convinced
applied researchers that likelihood-characterizing bands are the best approach to providing error
bands in time series models. We hope to have convinced theoretical researchers that improving
likelihood-based approaches is a more productive use of intellectual effort than further attempts
to provide confidence bands with asymptotic justification.
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