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1 Introduction

Let M be an n x n matrix and let q be a vector in Rn , the n-dimensional Euclidean space.

Let X be a polyhedral set in Rn. We consider the following affine variational inequality problem

associated with F and X:

find an x* E X satisfying (x- x*,Mx* + q) > 0, Vx C X. (1.1)

The problem (1.1) is well-known in optimization, containing as special cases linear (and quadratic)

programming, bimatrix games, etc. (see Cottle and Dantzig [CoD68]). When X is the non-negative

orthant in Rn , it is called the linear complementarity problem (LCP for short). We will not attempt

to survey the literature on this problem, which is vast. Expository articles on the subject include

[CoD68], [Eve71b], [CGL80], [Mur88]. For discussion of variational inequality problems in general,

see [Aus76], [BeT89], [CGL80], [KiS80].

Let X* denote the set of solutions of the affine variational inequality problem (1.1), which we

assume hereon to be nonempty. It is well-known (and not difficult to see from the convexity of X)

that X* is precisely the set of fixed points of the nonlinear mapping x ~- [x - Mx - q]+, where

[.]+ denotes the orthogonal projection onto X, i.e., [x] + = argminzex fJx - zil and 11 Ii denotes the

Euclidean norm in Rn so that

X x* E I x* = [X*Mx*-q]+ }. (1.2)

An important topic in the study of variational inequalities and complementarity problems concerns

error bounds for estimating the closeness of a point to X* (see [Pan85],[MaD88],[MaS86]). Such

error bounds can serve as termination criteria for iterative algorithms and can be used to estimate

the amount of error allowable in an inexact computation of the iterates (see [Pan86b]). Recently

Luo and Tseng [LuT90] showed that one such bound, based on the norm of the natural residual

function

lix - [x - Mx - q]+ll, (1.3)

is also useful for analyzing the rate of convergence of iterative algorithms for solving (1.1). In

particular, they showed that, for the problem of minimizing a certain convex essentially smooth

function over a polyhedral set, a bound analogous to the above can be used as the basis for

proving the linear convergence of a number of well-known iterative algorithms (applied to solve

this problem).

The contribution of this paper is two fold: (i) we show that the error bound (1.3) holds locally

for the affine variational inequality problem (1.1) for general M, thus extending a result of [LuT90,

Sec. 2] for the case where M is symmetric positive semi-definite, (ii) we show, by using the above

error bound, that if M is symmetric, then any matrix splitting algorithm using regular Q-splitting,

applied to solve (1.1), is linearly convergent. This latter result extends that in [LuT90, Sec. 5],



which proved linear convergence for the same algorithm under the additional assumption that M

is positive semi-definite. It also improves upon the results by Pang [Pan84, Sec. 4], [Pan86, Sec.

2], which showed convergence (respectively, weak convergence) for a special case of the algorithm,

i.e., one that solves LCP, under the additional assumption that M is non-degenerate (respectively,

strictly copositive). Matrix splitting algorithms using regular Q-splitting represent an important

class of algorithms for solving affine variational inequality problems and LCP's (see [LiP87]), so

the resolution of their convergence (and their rate of convergence) is of great interest. [See Section

3 for a more detailed discussion of the subject.]

This paper proceeds as follows. In Section 2, we prove that an error bound based on (1.3) holds

for all points near X*. In Section 3, we consider the special case of (1.1) where M symmetric and

we use the bound of Section 2 to prove linear convergence for matrix splitting algorithms using

regular Q-splitting, applied to solve this problem. Finally, in Section 4, we give our conclusion and

discuss possible extensions.

We adopt the following notations throughout. For any x E in and y E Rn, we denote by (x, y)

the Euclidean inner product of x with y. For any x E Wn, we denote by JllxH the Euclidean norm

of x, i.e., l1xii = v/(xx). For any two subsets C 1, C 2 of ?n, we denote by d(C1 , C 2) the usual

Euclidean distance between the sets C1 and C 2 , that is

d(C1 C 2 )= inf Ix - y.
xECi,yEC2

For any 1 x k matrix A, we denote by AT the transpose of A, by I IAil I the matrix norm of A induced

by the vector norm 11 11 (i.e., hAil = maxll1ll= 11iAxli), by Ai the i-th column of A and, for any

nonempty I C {1, ... , k}, by AI the submatrix of A obtained by removing all columns i ' I of A.

Analogously, for any k-vector x, we denote by xi the i-th coordinate of x, and, for any nonempty

subset I C {1, ..., k}, by xi the vector with components xi, i C I (with the xi's arranged in the

same order as in x).
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2 An Error Bound

In this section we show that d(x, X*) can be upper bounded by the norm of x-[x-Mx-q]+ , the

natural residual at x, whenever the latter quantity is small. Our proof, like the proof of Theorem

2.1 in [LuT90], exploits heavily the affine structure of the problem.

Since X is a polyhedral set, we can for convenience express it as

X = { X G En I Ax > b },

for some m x n matrix A and some b E Rm. Then, for any x C X, the vector z = [x - Mx - q]+

is simply the unique vector which, together with some multiplier vector A C sm, satisfies the

Kuhn-Tucker conditions

z - x + Mx + q-A T A = O, Az > b, A > 0, (2.1)

Ai = o, Vi ¢ I(Z), Aiz - b-, Vi e I(x), (2.2)

where we denote

I(x) = { i C {1,...,n} Aiz = bi }.

We say that an I C {1, ... , m} is active at a vector x ¢ X if z = [x - Mx - q]+ together with some

A C R m satisfies

z - x + Mx + q - A T A = O, Az>b, A>O, (2.3)

Ai = O, Vi 9 I, Aiz = bi, Vi C I. (2.4)

[Clearly, I(x) is active at x for all x c X.]

The following lemma, due originally to Hoffman [Hof52] (also see [Rob73], [MaS87]), will be

used extensively in the analysis to follow.

Lemma 2.1. Let B be some k x I matrix and let S = { y E Rl I Cy > d }, for some h x 1 matrix

C and some d E Rh. Then, there exists a scalar constant a > 0 depending on B and C only such

that, for any 0 E S and any e C Rk such that the linear system By = e, y E S is consistent, there

is a point Y E S satisfying By = e and III - ll < • IlBO - ell.

We next have the following lemma which roughly says that if x C X is sufficiently close to X*,

then those constraints that are active at x are also active at some element of X*.

Lemma 2.2. There exists a scalar e > 0 such that, for any x C X with IIx - [x - Mx - q]+1I < E,

I(x) is active at some x* C X*.

Proof. We argue by contradiction. If the claim does not hold, then there would exist an I C

{1, ..., m} and a sequence of vectors {x', X2 ,...} in X satisfying I(xr) = I for all r and xr - zr -- 0,

where we let Zr = [xr - Mxr - q]+ for all r, and yet there is no x* E X* for which I is active at x*.
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For each r, consider the following linear system in x, z, and A:

z x + Mxr- ATA = -q, Az > b, A > O,

Ai = O, Vi £ I, Aiz = bi, Vi E 1,

Z _ Z -- Zr _ r

The above system is consistent since, by I(xr) = I and (2.1)-(2.2), (Xr, zr) together with some

A" E Rm is a solution of it. Then, by Lemma 2.1, it has a solution (ir, r, Ar) whose size is bounded

by some constant (depending on A and M only) times the size of the right hand side. Since the

right hand side of the above system is clearly bounded as r - oo, we have that {(&r, ir, Ar)} is

bounded. Moreover, every one of its limit points, say (zo, zoo, Ao'), satisfies [cf. zr - Xr --+ 0]

z' - x oo + Mx0 -- A T A' = q,A b Az>b, > 0,

A i =0, Vi I, Aizr =bi, Vi C I,

Z -cXo = O.

This shows xzo = [xo - MxOO - q]+ [cf. (2.1), (2.2)] and I is active at xzo, a contradiction of our

earlier hypothesis on I. Q.E.D.

By using Lemma 2.2, we can now establish the main result of this section:

Theorem 2.1. There exist scalars E > 0 and T > 0 such that

d(x,X*) < rlx - [x - Mx -q]+l,

for all x C X with lIx - [x - Mx - q]+fl < e.

Proof. Let e be the scalar given in Lemma 2.2. Consider any z E X satisfying the hypothesis

of Lemma 2.2, and let z =[x - Mx - q]+. Then, by (2.1) and (2.2), there exists some A E Rm

satisfying, together with x and z,

Mz- ATA= (I-M)(x-z)-q, Az > b, A>O,

Ai -- O. Vi f I(x), Aiz -- bi, Vi E I(t)-

By Lemma 2.2, there exists an x* C X* such that I(z) is active at x*, so the following linear system

in (x*, A*)

Mx*- ATA* = q, Ax* > b, A* >0,

A! = 0, Vi ' I(x), Aix* = bi, Vi e I(x),
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is consistent. Moreover, every solution (x*, A*) of this linear system satisfies x* E X*. Upon

comparing the above two systems, we see that, by Lemma 2.1, there exists a solution (x*, A*) to

the second system such that

II(x*, A*) -(z, A)11 < 01(I- M)(x - Z)11,

where 0 is some scalar constant depending on A and M only. Hence,

I1X* - Z11 < 111 - MlllX - Zl,

implying that

1lx* - X11 < (011l- MI + 1)llx - Z11.

Since x* C X* so d(x,X*) < lIx* - x1, this then completes the proof. Q.E.D.

Error bounds for estimating the distance from a point to the solution set, similar to that given in

Theorem 2.1, have been fairly well studied. In fact, the same bound had been demonstrated by Pang

[Pan85] for the special case of an LCP where M is positive definite, and by Luo and Tseng [LuT90]

for the special case where M is symmetric and positive semi-definite. [This bound also extends

to strongly monotone variational inequality problems [Pan85] and to problems of minimizing a a

certain convex essentially smooth function over a polyhedral set [LuT90].]

Alternative bounds have also been proposed, by Mangasarian and Shiau [MaS86] for the special

case of an LCP where M is positive senmi-definite, and for strongly convex programs [MaD88].

These alternative error bounds have the advantage that they hold globally (even for points outside

of X), whereas the bound of Theorem 2.1 holds only locally. Might the latter bound hold globally

also? For general matrices M, the answer unfortunately is "no", as shown by an example of a

non-symmetric LCP furnished in [MaS86] (see Example 2.10 therein). What if M is symmetric?

The answer still is "no", as shown by the following modification of Example 2.10 in [MaS86]:

Example 2.1. Let

M 1 1 q= -2 ) X=[0, oo) 2.

It is easily checked that X* = { (1, 1), (0,2) }. Let x(0) = (0, 1), where 0 [0, oo). Then, as

0 -* oo, we have d(x(0),X*) oo but llx(0) - [x(0) - Mx(0) - q]+l remains bounded.

5



3 Linear Convergence of Matrix Splitting Algorithm for the

Symmetric Case

In this section we further assume that M is symmetric, in which case the variational inequality

problem (1.1) may be casted as a quadratic program of the form

minimize f(x) (3.1)

subject to X E X,

where f is the quadratic function in Rn given by

1
f(x) = (x, MX) + (q, X). (3.2)

It is easily seen that the set of stationary points for (3.1) is precisely X* [cf. (1.2)] which, by

assumption, is nonempty. Notice, however, that f may not be bounded from below on X.

Let (B, C) be a regular splitting of M (see, e.g., [OrR70], [Kel65], [LiP87]), i.e.,

M = B + C, B - C is positive definite. (3.3)

Consider the following well-known iterative algorithm for solving (3.1), based on the splitting

(B, C):

Matrix Splitting Algorithm

At the r-th iteration we are given an Xr C X (X° E X is chosen arbitrarily), and we compute a

new iterate x' + l in X satisfying

xr + l = [Xr +l
_ Bzr+ l - Cxr -q + h ]+ , (3.4)

where hr is some n-vector.

The problem of finding an Xr+l satisfying (3.4) may be viewed as an affine variational inequality

problem, whereby Xr
+ l is the vector in X which satisfies the variational inequality

(Bxr+l + ClXr + q - hr, -_ xr+l) > 0, Vz C X. (3.5)

In general, such an Xr+l need not exist, in which case the above algorithm would break down. To

ensure that this does not happen, we will, following [LiP87], assume that

(B, C) is a Q-splitting (3.6)
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or, equivalently, an xr+1 satisfying (3.5) exists for all r. [For example, (B, C) is a Q-splitting if B

is positive definite (see [BeT89], [KiS80]).]

The vector hr can be thought of as an "error" vector arising as a result of an inexact computation

of xr+l. [This idea of introducing an error vector is adopted from Mangasarian [Man90].] Let a

denote the smallest eigenvalue of the synmmetric part of B - C (which by hypothesis is positive)

and let e be a fixed scalar in (0,7/2]. We will consider the following restriction on hr governing

how fast hr tends to zero:

Ilhr1l < -(a/2 - E)1xr- Xr+1I, Vr. (3.7)

[Notice that the above restriction on hr is practically enforceable and can in fact be used as a

termination criterion for any method that computes xr+1.]

The above matrix splitting algorithmn was first proposed by Pang [Pan82], based on the works of

Hildreth [Hil57], Mangasarian [Man77] and others. [Actually, Pang considered the somewhat sim-

pler case of an LCP with no error vector, i.e., X is the non-negative orthant in Rn and hr = 0 for all

r.] This algorithm has been studied extensively (see [LiP87], [LuT89], [LuT90], [Man77], [Man90],

[Pan82], [Pan84], [Pan86a] and references therein), but, owing to the possible unboundedness of

the set of stationary points, its convergence had been very difficult to establish and were typically

shown under restrictive assumptions on the problem (such as that the stationary point is unique).

It was shown only recently that, if M is positive semi-definite (in addition to being symmetric)

and f given by (3.2) is bounded from below on X, then the iterates generated by this algorithm

converge to a stationary point [LuT89] with a rate of convergence that is at least linear [LuT90,

Sec. 5]. In this section we show that the same linear convergence result holds for any symmetric M,

and thus resolve the issue of convergence (and rate of convergence) for this algorithm on symmetric

problems. The convergence of this algorithm for the special case of a symmetric LCP has been

studied by Pang (see [Pan84, Sec. 4] and [Pan86, Sec. 2]). However, Pang did not analyze the rate

of convergence of the algorithm and his convergence results require restrictive assumptions on the

problem such as that the set of stationary points be finite.

The line of our analysis follows that outlined in [LuT90] (also see [LuT89b] for a similar analysis)

and is based on using the error bound of Theorem 2.1 to show that, asymptotically, the objective

function value, evaluated at the new iterate Xr+l and at some stationary point, differ by only

an order of [Ixr+l - xrIJ 2 [see (3.19)]. This then enables us to show that the objective function

values converge at least linearly, from which one can deduce that the iterates converge at least

linearly. [This is the main motivation for considering the symmetric case, so that an objective

function exists and can be used to monitor the progress of the algorithm. The algorithm itself is

well-defined whether M is symmetric or not.] On the other hand, because f is not convex so the

set of stationary points X* is not necessarily convex or even connected, a new analysis, different

from that in [LuT90], is needed to show the above relation.

We begin our analysis by giving, in the lemma below, a characterization of the connected
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components of X* and the behaviour of f over these connected components.

Lemma 3.1. Suppose that M is symmetric. Let C1, C 2 ,..., Ct denote the connected components

of X*, where t is some positive integer. Then,

t

X* = U Ci,
i=!

and the following hold:

(a) Each Ci is the union of a collection of polyhedral sets.

(b) The Ci's are properly separated from one another, that is, d(Ci, Cj) > 0 for all i $ j.

(c) f given by (3.2) is constant on each Ci.

Proof. Since X is polyhedral set, we can express it as

X ={ x E ' I Ax > b},

for some m x n matrix A and some b C sm. For each I C {1, 2,..., m}, let

XI = { I Ax > b, AIx = b, Mx + q= AT Aforsome A C [O,oo) m with Ai =0 ViMI}. (3.8)

Then, each XI simply comprises those elements of X* at which I is active [see (2.1) and (2.2)], so

it readily follows that

X= U X-,. (3.9)
IC{1,...,m}

Moreover, each XI, if nonempty, is a polyhedral set. We claim that f is constant on each nonempty

XI. To see this, fix any I C {1,..., m} for which XI is nonempty. Let x and y be any two elements

of XI (possibly equal). Since x E XI and y E XI, we have from (3.8) that Ai(x - y) = 0 and there

exists some A E [0, oo)m with My + q = (Ai)TAI-. Then we have from (3.2) that

1
f(x) - f(y) = (My+ q,x - y) + (X - y,M(X - y))

2

= ((AI)TAi, x - y) + I(x - y,M(x - y))

(AI, AI(x - y)) + (x - y,M( - y))

1
= (X - y,M(x-y)).

2

By symmetry, we also have
1

f(y)-f(X)= - (X - y,M(x - y)),
2

and thus f(x) = f(y). Since the above choice of x and y was arbitrary, then f(y) = f(x) for all

X E Xi, y E Xi.
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Since each XI is connected, it follows from from (3.9) that each Ci is the union of a collection of

nonempty XI's. Since the nonempty XI's are polyhedral and the Ci's are, by definition, mutually

disjoint, this then proves parts (a) and (b). Since f is constant on each Xi, this also proves part

(c). Q.E.D.

[Part (c) of Lemma 3.1 is quite remarkable since the gradient of f needs not be constant on each

Ci, as can be seen from an example.]

By using Theorem 2.1 and Lemma 3.1, we can now prove the main result of this section. (The

first third of our proof follows closely that of Theorem 5.1 in [LuT90].)

Theorem 3.1. Suppose that M is symmetric and that f given by (3.2) is bounded from below on

X. Let {Xt} be iterates generated by the matrix splitting algorithm (3.3), (3.4), (3.6), (3.7). Then

{Xr } converges at least linearly to an element of X*.

Proof. First we claim that

f(xr+l) _ f(Xr) < _ll-r+1 _ Xr1, 2 Vr. (3.10)

To see this, fix any r. Since the variational inequality (3.5) holds, then, by plugging in Xr for z in

(3.5), we obtain

(BXr+l + Cax + q - h, Xr+l - xr) < O.

Also, from M = B + C [cf. (3.3)] and the definition of f [cf. (3.2)] we have that

f( Xr+) f(Xr) = (BXr+l + Cxr + q, +l - Xr) + (r+l - r (C - B)(r+l - Xr))/2

Combining the above two relations then gives

f(Xr+l) - f(Xr) < (hr, r+ - Xr) + (Xr+l - r, (C - B)(Xr+l - xr))/2

_< _hrllll
+

zllXA
+ l

_ _XrI2/2

< -al r+ 1_ -r 12,

where the last inequality follows from (3.7). Thus, (3.10) holds.

Next we claim that there exists a scalar constant ,q > 0 for which

[Ir [x' - Mx' - q]+fl -< ll+ xr+l - xrI, Vr. (3.11)

To see this, fix any r. From (3.4) we have that

Ix [xr MXr - ]+I l = IIX _ [Xr _ M x r - q]+ - Xr+l + [Xr+l - B x +l - C - q + h ]+ l

< 1 X _ Xr+11I + It[Xr - MXr - q]+ - [Xr+l - Bx.+l _ CXr - q + hr]+11
< 211 - x'r+lll + IlMxr - Bxr+l - Car + hrlI

< 21x -r _ xr+1I + IIB(xr _ xr+1)II + jlhrlI

< (2 + IIBII + 7y/2)l11X _ xr+[,
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where the second inequality follows from the nonexpansive property of the projection operator [.]+,

the third inequality follows from M = B + C, and the last inequality follows from (3.7). This shows

that (3.11) holds with r.l = 2 + IJBII + 7/2.

Since f is bounded from below on X, (3.10) implies

IlIr+l - Xr I -+ 0. (3.12)

Then we have from (3.11) that IIxr - [Xr -Mxr -q]+l --+ 0, so, by Theorem 2.1 (and using (3.11)),

there exist a scalar constant nC2 > 0 and an index rl such that

d(xr, X*) < 21Ir+ -_ rllI, Vr > rl. (3.13)

Thus, we also have from (3.12) that

d(r,X*)-r 0. (3.14)

Let C1 , C2 , ... , Ct denote the connected components of X*, where t is some positive integer. By

Lemma 3.1 (b), the Ci's are properly separated from one another, so (3.12) and (3.14) imply that,

for all r sufficiently large, it is the same connected component of X* which is nearest to Xr. In

other words, there exists a k C {1, ... , t} and a scalar r 2 > r, such that

d(xr, X*) = d(xr, Ck), Vr > r2. (3.15)

Since d(xr,X*) -- 0 [cf. (3.14)], it follows from (3.15) that d(xr, Ck) - 0. By Lemma 3.1 (c),

f is constant on Ck. Let us denote this constant by f o.

We now show that f(xr) -+ fro and estimate the speed at which this convergence takes place.

Fix any r > r2 . Let yr be any element of Ck nearest to xr, so

f(y") = fI (3.16)

and, by (3.15), Ilyr - xrll = d(xr,X*). Since r > ri [cf. r2 > r1 ] so that (3.13) holds, then the

latter implies

Ilyr _ XrI < ;21Ixr+1 - XrII. (3.17)

This in turn implies

(My' + q,xr+ - yr) < (Myr + q,xr+l - yr) + (Bx r + l + CX r
-+ q - hr, y r

- Xr+l)

- (B(xr+l - xr) + M(Xr - y r) hr,yr _ Xr+l)

< (Bll -llXr+ - xrll + IIMIIIIxr - yrIl + IlhrI) Ilyr _ Xr+-

< (IBIIII "r+1 - Xrj1 + IIMII1 2 I1X"r+ - XrI1 + IIhVlI) (,~2 + 1)I1Xr+l - xr1

< (I1BII + IIMII, 2 + -y/2) (K2 + 1)Ilxr+l - Xr"l2, (3.18)
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where the first inequality follows from (3.5) with z set to y', the equality follows from C = M - B

[cf. (3.3)], the third inequality follows from (3.17), and the last inequality follows from (3.7). For

convenience, let K3 denote the scalar constant on the right hand side of (3.18). Then we obtain

from (3.16) that

f(xr+l) 
- f

oo = f(xr+l)
- f

(yr)

= (Myr + q,z - ) + (X+ - yr, M(xrl+ - yr))
2

1
• K3 f1 lr+I - Xr jI2 + 1 IMI;IXr+l _ yr112

2

_ /¢3 + 1IIMII(K 2 + 1)) IllXr+l _ XrI2 (3.19)

where the second equality follows from (3.2), the first inequality follows from (3.18), and the last

inequality follows from (3.17).

Let K4 denote the scalar constant on the right hand side of (3.19). Then (3.10) and (3.19) yield

f(X+l) - fe < KI/4rIX+
1

_ Xrl1
2

< 4(f(Xr) _ f(Xr+l)), Vr > r2 .

Upon rearranging terms, we find that

K~~~~~~~~E4(1 + 4)(f(x+1) - fc) < 4 (f(X-) _ fw), Vr > r2-
E E

Hence f(xr) converges at least linearly to foe. By (3.10), {Xr} also converges at least linearly.

Since d(xr, X*) - 0 [cf. (3.14)], the point to which {Xr} converges is an element of X*. Q.E.D.

Notice that we can allow the matrix splitting (B, C) to vary from iteration to iteration, provided

that the eigenvalues of the symmetric part of B - C are bounded away from zero and that IIB[[ is

bounded.

Also notice that because f is not convex, the point to which the iterates converge needs not be

an optimal solution of (3.1). [In some cases, finding such an optimal solution may be desirable.] On

the other hand, it is easily seen from Lemma 3.1 (c) and the fact that the f value of the iterates are

monotonically decreasing that local convergence to an optimal solution holds, that is, if the initial

iterate (namely x ° ) is sufficiently close to the optimal solution set of (3.1), then the point to which

the iterates converge is an optimal solution of (3.1).



4 Concluding Remarks

In this paper, we have shown that a certain error bound holds locally for the afflne variational

inequality problem. By using this bound, we are able to prove the linear convergence of matrix

splitting algorithms using regular Q-splitting for the symmetric case of the problem.

There are a number of open questions raised by our work. The first question concerns whether

the error bound studied here holds globally. Example 2.1 shows that it does not hold globally even

when M is symmetric. But what if M in addition is positive semi-definite? A "yes" answer to

this question would allow us to show global linear convergence for the matrix splitting algorithm

of Section 3 on symmetric monotone problems. Also, our convergence result (Theorem 3.1) asserts

convergence only when f given by (3.2) is bounded from below on X. If this were not the case,

can something meaningful about convergence still be said? Another question concerns whether

other error bounds, such as those proposed in [MaD88] and [MaS86], can be used to analyze the

convergence of iterative algorithm, like is done here. Also, can the analysis of Section 3 be extended

to the non-symmetric case by finding an appropriate "objective function" to work with? Or to

the simpler case of a non-symmetric LCP? [It is well-known that any LCP can be converted to a

quadratic program. However, except under certain conditions (see [CPV89]), the set of solutions

for the former need not coincide with the set of stationary points for the latter.]

It would also be worthwhile to find other problem classes for which the error bound studied

here holds. Then, we can be hopeful of proving linear convergence results for these other problems.

Acknowledgement. We thank Professor O.L. Mangasarian for pointing out to us the references

on error bounds and the examples therein.
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