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ERROR BOUNDS FOR A UNIFORM ASYMPTOTIC EXPANSION
OF THE LEGENDRE FUNCTION P~m(coshz)»

By

P. N. SHIVAKUMAR and R. WONG1

University of Manitoba, Winnipeg, Manitoba, Canada

Abstract. For fixed m with m + \ > 0, an asymptotic expansion for large n is

derived for the Legendre function P„m{cosh z),which is uniformly valid for z in the

unbounded interval [0, oo). Our method is based on an integral representation of

this function. The coefficients in the expansion satisfy a recurrence relation. Sim-

ple computable bounds are also constructed for the error terms associated with the

expansion.

1. Introduction. Asymptotic expansions of the Legendre functions P„_m(coshz)

and Q~m(cosh z), for large n and fixed m, which are uniformly valid for z in a

complex domain containing the interval 0 < z < oo, can be found in the book of

Olver [1, Chap. 12, §§12 and 13], where numerical bounds are also provided for the

error terms associated with these expansions. Olver's derivation of the expansions,

and the construction of error bounds, are based on the asymptotic theory which he has

developed for second-order linear differential equations. In a recent paper [4], Ursell

has given an alternative derivation of the expansions, using integral representations

of the Legendre functions, and has described a new method for constructing error

bounds. However, his bounds are not computable, and are valid only for bounded

complex z.

In this paper, we are concerned only with the function P„-m(cosh z), where z is real.

Our objective is to construct error bounds, comparable to those given by Olver [1, p.

466, eq. (12.17)], which are both computable and uniformly valid for z in the infinite

interval [0, oo). Like Ursell, our derivation is based on an integral representation of

P„m{cosh z). Our approach is motivated by the one given by Szego [3] for the case

m = 0. Our expansion differs from, but is equivalent to, those given by Olver [1, p.

466] and Ursell [4]. More precisely, we show that for m + i > 0 and for any positive
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integer p,

P~m(cosh z) —
sinh z

1/2
Tm+u{uz)

£*(*)- Hm+v P
u=0

+ ep(Z, U) (1.1)

where u = n + j and Iv{z) is the modified Bessel function. The coefficients c„(z) are

analytic functions of z, and can be obtained recursively. The first three are given by

<*<*> = ■. ^) = S^(<»-»!C0,h-

T(m + 2)

T (m + 2) 2 2 z

3 3
1 H—r coth z

z2- z
(1.2)

1 , 1 w 3N (1 - zcothz)2
+ o(w- ?)(>»-=)>8v 2n 2' z2 )'

The error term ep(z, u) satisfies

le (= u)\< r(m + p + i2) (2z)P MIm+p[Uz) (13)
|ep(z>M)|< r(w+,) {1 + z)pmp Um+P •

for 0 < z < 00 and n > - j, where Mp is a constant, independent of u and z; cf. [1,

p. 466, eq. (12.17)]. The numerical values of the first three Mp s are given by

1
M\ =

M2 =

m

7

6

1
m--

1

+
1

m ~ 2
3

m-- ;i.4)

19
+ 8

5\ / 3\/ 1
m 2)\m 2)\m 2

Note that when m — j, e,(z, u) = 0 for i = 1,2, 3, 

Expansion (1.1) can be rearranged to agree with those obtained by Olver and

Ursell, but, in doing so, the simple estimate for the remainder given in (1.3) is lost

in the process. A more detailed comparison of our result with the corresponding one

given by Olver can be found in the last section of the paper.

As regards the other Legendre function Q~m(cosh z), our method can be used

to derive the corresponding asymptotic expansion in terms of the modified Bessel

function Ku(z), but, unfortunately, we are unable to obtain error bounds similar to

those given in (1.3).

2. Derivation of the expansion. For m + \ > 0, we have the well-known integral

representation

/)_m(cosh z) = (sinh z) C (cosh - cosh t)m~1/2 dt. (2.1)
\2nJ r(m + J-z

Our first objective is to obtain an appropriate series expansion for the above inte-

grand. To do this, we begin with the result [5, p. 140, (3)]

-7 \ 1/2   00 am

— ) cos Vz2 - 2z6» = -ZT\Jm-1/2(2). (2.2)
nz j m\

m=0
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which holds for all complex values of 6, where /„(z) is the Bessel function of the

first kind. Replacing z by iz and 8 by id, (2.2) becomes

/ 2 \ '/2   00 f_nm
(— I cosh y/z2 -2zd = Y^ (2.3)
^ ' m=0

Here use has been made of the identity Jv{iz) = iuIv{z). Now put z2 - 2zd — t2,

and recall the special cases

/ 2 \ 1/2 / 2 \ 1/2
7-i/2(z) = ^J coshz' /i/2(z) = (^J sinhz-

Inserting these in (2.3) gives

2(cosh z - cosh t) — s'n^ ^ (z2 _ ^
z

where

i + £(-ir^(z)(z2-;2r
i/=i

A) (Z) =  ! ^+1/2^)

M j 2"(i/+1)!z"/1/2(z)-

The desired expansion

(2.4)

(2.5)

(coshz - cosh/)m '/2 - 2m_ 1/2 (Si"hZ) {z2 - t2)m~l/2

oo

.£(-l)>„(z)(z2-/2y (2.6)

u=0

now follows immediately, where the coefficients y/„{z) satisfy the recurrence relation

^,W = i;[(m-i)-^-r(m+i) (t>v+i-j{z)Vj{z), (2.7)

7=0

v = 0,1,2,..., with y/0(z) = 1; see [2], Simple calculation gives

, , 1 / 1 \ 1 — zcoth z
^i(r) =   (2.8)

and

= 55 ("■"{) [?(1 + F)-?»co,h;

1/ 1 \ / 3 \ / 1 - z coth zx 2
+ _lm_-Wm )(   | . (2.9)

We now introduce the remainder Ap(z, t) defined by

2(cosh z - cosh/) z "|m_1/2 ^
7 =52(-iyMz)(z2-t2r

z2 - t2 sinh z
y=0

w^2 _ f2,l+ (-l)P(zz-tyAp(z,t). (2.10)

On account of the well-known formula

T^ny£(z2-'!r"V"'A ,2'M|
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we have, upon inserting (2.10) in (2.1),

Pn m(cosh z) =

where

sinh z

1/2

Li/=0
(2.12)

rn Lw f e~ut(z2 - t2)p+m~l^2Ap(z, t) dt. (2.13)
v/7r(2z)mr(m + \) J-z

The coefficient c„(z) is given explicitly by

P ( rn -1- 1/ 1)

c„(z) = (-1)"—=7— |x2 {2z)vy/v{z)\ (2.14)
T(m + j)

see (1.2).

In the following sections, we shall show that

|Ap(z, 01 < Mp/(\ + z)p, -z<t<z, (2.15)

for some numerical quantity Mp. The first three Mp's are given in (1.4). The desired

estimate (1.3) now follows from (2.13) and (2.11).

3. Some preliminary results. To establish the estimate in (2.15), we shall study in

great detail the function

"sinhz 2(cosh z - cosh t)~
a{z,t) =

sinh z z2-t2
(3.1]

From (2.4), it is easily seen that a is a function of z2 - t2 and so can be written as

OO

a = a(s) = 4>l/{z)slJ, s = z1 — t2. (3.2)

i>=i

By expanding cosh z and cosh t into Maclaurin series, we have

cosh Z - cosh t _ yr z2("_1) + z2("~2'/2 + b t2(n~^ .

z^T2 {2nj! ' ( ]
n= 1

Hence, from (3.1), it follows that

, 2z ^ z2n + z2(n-l)t2 + ... + (2n
I — O — —:  > —   yr — . (3.4)

sinhz-^ (In + 2)
n=0 { '

The right-hand side can be written as a double sum. Interchanging the order of

summations, and re-indexing one of the two sums, we obtain

~ OO OO .

1 - a = -T=§- y y 7^ i — z2rt2n. (3.5)
sinh z ^ ^ (2n + 2r + 2)!

r=0 n=0

From (3.3), it also follows that

sinhz 2(coshz - cosht)

z2_t2
n= 1

= £>„, (3-6)
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where
2n y,2n _j_ ̂ 2(n —1)^2 _|_ . . . _|_ ,2nZ Z

a" (2/1 + 1)! {2n + 1)!(« + 1)

The last equation can be written as

a Z2-t2 ( 2(n-1) , 2(n-2)( 2 , ,2x ,
(2« + l)!(«+l) lZ +z (z +n +

+ (Z2(«-D + z2("-2)?2 + . . . + ,2(1.-1)) j (3.7)

= To 4 TT {nz2("-x) + («- l)z2("~2)f2 + ■ • • + .
(2« + l)!(n +1)1 J

A combination of (3.1), (3.6) and (3.7) gives

a _ 2z nz2^-1' + (« - l)z2("-2'?2 h 1_ ̂2(«—i)

z2 -12 sinhz ^ (2« + 2)!
n=l

Analogous to (3.4), the right-hand side of (3.8) can again be viewed as a double sum.

Interchanging the order of the summation signs and re-indexing the sums, we obtain

~ OO OO / , 1 \

a = 2: (r+1) 2rt2n (-> Q\

z2 - t2 sinh z (2« + 2r + 4)!
r=0 n=0

Differentiating (3.5) and (3.9) with respect to t, we have, respectively,

da _ 2z y~^ y~^ (" + !)

r=0 n=0

and
d__ a _ 2z (/" + 1)(« + 1) ^2r

dt z .  
r=0 n=0

Lemma 1. The function

jif-(20rrM T A^z2rt2n (3.io)
dt sinhz ^ ^ (2n + 2r + 4)!

r=0 n=0

° = 22 (2t)YY{r + l^n+l) z2rt2n. (3.11)
2 - t2 sinhz [2n + 2r + 6)!

*<*•<> = 73^71 P-'2)

is an even function of f, and is decreasing in the interval 0 < t < z. Furthermore,

0 <S(z,t)<^, 0 <t<z. (3.13)

Proof. We first show that on the interval 0 < t < z, dS/dt is negative. This is

equivalent to showing that

% d a do o

^ ^Wtl2^t2 + ~dtl2^t2< ( ^

Note that if arn > 0 and brn > 0 for r and n = 0, 1,2,..., then

/ OO OO \ / OO OO \ OO OO

(ZZa">2"z2') (£ £ »™'2"z2')=£ £ &,<2v.
^ r=0 n=0 ' ^ r=0 n=0 ' r=0 n=0

where crn is the Cauchy product

r n

Crn — ^ ^ ^ ] &r—k n-j^kj-

k—0 j=0
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Hence, from (3.5), (3.9), (3.10) and (3.11), it follows that the quantity on the left-

hand side of (3.14) is equal to
/ \ 2 °o °o

x ' r=0 n=0

where

1 + 0(v + 1)
M M (2n-2j + 2r-2k+2)'.(2k + 2j + 6)<

V V iH + 1 ~ H + 1) /-> . ̂
(2n-2j + 2r-2k + 4)\{2k + 2j + 4)V 1 '

k=07=0 ' v

The fact that drn < 0, for all nonnegative integers r and n, is proved in the appendix.

This, of course, establishes the validity of (3.14), and hence

S(z,t)<S(z, 0) for 0 < t < z. (3.16)

Now set / = 0 in (3.4) and (3.8). This gives
00 „72(n-l) / 00 7 2n

S(z,0) = V^ —/y Z — (3.17)y ' ^(2n + 2)l/ (2« + 2)! v '
n=1 n=0

The sum in the numerator can be written as
00 -2n+1 t -21 Z2"+2

1 y- Z + 1 f-
2z3^(2/j + l)! z4^(2« + 2)!'

n=\ n=1

which in turn can be expressed as

jijlsinhz-z) - i^coshz - 1

The sum in the denominator of (3.17) is clearly (cosh z — 1 )/z2. Thus

S(z.0) = ±
z sinh z — 2 cosh z + 2

(3.18)
z cosh z - z

The quantity inside the square bracket has a positive derivative, and hence is increas-

ing. The limit of this quantity, as z —► +oo, is 1. Hence

S(z, 0) < ^- for 0 < z < oo. (3.19)
2 z

The second inequality in (3.13) now follows from (3.16) and (3.19). The first in-

equality in (3.13) is obvious, in view of (3.5) and (3.9). The proof of Lemma 1 is

therefore complete. □

Replacing t by 0 on the right-hand side of (3.3) gives

coshz - cosh? 1
 J2 — ~^2 (cosh z — 1). (3.20)

Put
2z /cosh z - 1 \ , .

ff|Sl~Sh7( ? )■ ' )

Clearly, from (3.1) and (5.2),

1 - a > 1 - ox > 0. (3.22)

The following result is an alternative to Lemma 1.
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Lemma 1'. For -z < t < z, we have

<3-23'

Proof. From (3.3), it follows that

sinhz 2(coshz - cosh/)
OO

— ̂2a"'
z z2 - t2

n=1

where
z2 n z2" + z(2n-\)t2 + ... + t2n

a" ~ (2n + 1)! (2/1 + 1)! {n + 1) '

which can be written as

r2~'2 {z2(»—1) + z2(«-2)(z2 + ,2) + ...
Zz - tl

OLyi
{2n + !)!(« + 1)

1

" [2n + 1)!(« + 1)

Thus

+ (z2(«-l) + z2(n-2)t2 + . . . + ;2(«-l))|

|„Z2(»-D + _ l)z2(«-2),2 + . . . + ,2(».-l) J

G   Z WZ2(" *' + («-l)z2(" 2h2-i +/2'" '' . .

77m -i- mew Z n ' ^ 'z2 - t2 sinhz^—' (2« + l)!(w + 1)

Replacing t2 by z2 and summing up 1 + 2 + ••• + « gives

OO
(7 . Z< z V* - z2f"~n

9 sinh 7 C7m 4- 1 V
n= 1

oo

£

z2 - t2 2 sinh z (2m + 1)!
rt=l

1 1

4 sinh z
n= 1

,(2/i)! (2/1 + 1)!
z2(«-i)(

which in turn yields

a ^ z (cosh z sinhz]

z2_,2 - 4sinhz \ z2 z3 J' j

Coupling (3.21) and (3.25), we obtain

1 a 1 z cosh z - sinh z < 1

1 - tJ] z2 - t2 8 zcoshz-z

thus proving Lemma 1'. □

Lemma 2. Let -z < t < z, and put s = z2 - t2. Then, for any nonnegative integer

n, we have

|cr(")(5-)| < 1
(2 z)«

n n(n - 1) n\
1 + TT +    + ' •• +

2! 3! (« + !)!

1 / 2"+1 - 1

(2z)" \ n + 1

(3.26)
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Proof. Differentiating (3.2) term-by-term gives

o(n\s) = ±(-ir^-\-£-n+% + 1 y.Mz)s"-n. (3.27)
u=n ^ ''

The quotient under the summation sign can be written as

 ! 5—L |+...- 2+(-l).-
(i/ - n + 1)! (v - n + 2)! {u - n + 3)! u\ (i/ + l)!'

Inserting this in (3.27) yields

(j^n^(s) — u -1- uq -f- • • ■ -f- un—[, (3.28)

where

-j = E(~irJ-' I!,'+2(" + IY-Mz)s"-. (3.29)
u—n ^

j — 0, 1,1. A similar expression is given for u. From (2.5), it is easily seen

that

(i/+ l)!&,(z) = (2-)„)|/2(;)j-+i/'M

s/zfl 1 y, {z/2)2p (3-30^

_/>/2(^) z2"^r(p + l)(P-")!'

We now substitute (3.30) in (3.29) and interchange the order of summations. The

result is

I 1 -V7 + 1 t i\ / ^Z/2 V~* (^/2)2p ( — 1)" J" "
M/ = (-1)7 ra(fl-l) ■■■ (n-j)~ f-r > . > 7 ir  —; 77—,—.
' %2(*) ^r(p + f) ^ (i/-« + 2 + ;)!(p — i/)! z2"

After re-indexing, the finite sum on the right can be written as

(-1)"~2~; P~£2+J (p_n + 2 + j\ Sly, p-n-m-j (_n/
s2+jz2("-2-j)(p ~ n + 2 + j)\ \ I ) z21v ' /=j+2 v 7

By the binomial theorem, the last sum is equal to

S \ p n+2+j ? ,/n — n 7 4- i\ .9-'+'
1 - i + (p-„ + 2+j)^-+... + (-iy«('-";f+J'z2/ z2 \ j + 1 J z2^+{y

Applying Taylor's theorem with derivative form of the remainder to the function

(1 -x)m with x = s/z2 and m — p - n + 2 + j, it is easily seen that the above quantity

is bounded by
p - n + 2 + j\ sJ+2

(3.31)

j + 2 J z2(>+2)

A combination of these results gives

n(n -!)••■(« -j)

N" U + 2)!
72 y,   (z/2)2p~2n

J-—* 92«1
Ji/2{z)£?n2 2»T(p + \)(p-n)\

The infinite series on the right can be summed in closed form, and its value is

1 / 2 \ n+1/2 j ,
2^(-) /«+l/2(^)-
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Since In+ 1/2(2) < I\/2{z), we obtain

n{n -!)•••(«-;) 1

{j + 2)! (2z)»

By the same argument, we also have

H "V,,:; (3.32)

\u\ < (3.33)1 1 ~ (2z)" v '

The desired result (3.26) now follows from (3.28), (3.32) and (3.33). □

Lemma 2'. Let —t < z < t and put s = z2 - t2. Then for any nonnegative integer n,

we have

k(n)(*)| < , (2"+1 ~,l\ (3-34)
1 ~ 22T(« + f) v n + 1 J

Proof. The argument here proceeds in exactly the same manner as in the proof of

Lemma 2 until we reach equation (3.31). By comparing the coefficients in the last

power series with those in

_1/2 (^n\2s(£V J , {Z/2)2*
(2J l/2( Er(5+3)5!-

Uj|< H 77~ TT- (3.35)

5=0

it is evident that the quantity inside the square bracket in (3.31) is less than

i r(|)
22" r(« +1)'

Therefore, for j = 0,1,1,

h(/i —i) •••(»- j) r(|)

(y+ 2)! 22"r(« +1)

By the same argument, we also have

rm
M < —, tt- (3-36)1 1 " 22«r(« + |) v '

The desired result (3.34) now follows from (3.28), (3.35), (3.36) and the equality in

(3.26). □
For z > 1, we have from Lemma 2

k(n)(^)l < 1 (2"+' ~ M, (3.37)1 Wl ~ (1 + z)n V n + 1 J

and, for 0 < z < 1, we have from Lemma 2',

|cr(")(5)| < I  /2"+1 - 1 \ (3 38)
1 Ul - (l + z)"2«r(« + |) V n+ 1 J

Consequently,

k(n)(s)l < 1 (2"+' ~ M (3.39)1 v n ~ (1 + z)" V n + 1 J y '

for all z > 0.
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4. Proof of (2.15). By the binomial theorem,

(i - „)-'/2 - g r(t * " + '!„> + aPRf, (4.1)
7^0 r- r(j - m)

where

K2) = 7 r(nTr^P) T f\\ - u)<>-\\- ouT''11-'du. (4.2)

Replacing each or, r — 0, 1,..., p - 1, on the right-hand side of (4.1) by its Taylor

polynomial, we get

(i - <>r-"2 = E (E rJir|.m+m)>j+ 1+a'R'K (43)

where ar(s) = ar(s) and

K" = E ritr7." + ?^l«). <«■«>
7^0 r!r(j-w)

d; being between 0 and 5. Note that (1 - CT)m~1/2 also has the power series expansion

given by (2.6). Comparing (4.3) with that series, we conclude that the finite sum in

(4.3) must agree with the first n terms in (2.6). Thus

p~'
(l -o)m-x'2 = + -R[p]+ °pR(p]- (4.5)

u=0 P'

From (2.10), it now follows that

|AP(2,01 < (4.6)

Since a^rp\s) can be expressed as a finite sum of products of a and <7(j), j — 1, p,

it follows from (3.39) that there is a computable number such that

I4"l ̂  E <<V(1 + z)p-
r=0 r- 1 \2 m)

The first few M^'s are given by

(4.7)

M,(1) = 0, A/2(1) =

Mj" = ^
1

m - -
57

+ T

1
2~m

3
m - -

1
m — —

(4.8)

To obtain a bound for R{2\ we first observe that since 0 < a < 1, we have 1 - u <

1 - au. Hence,

[ (\-u)p~\\- ou)m-x'2-P du< [\l -ou)m-V2du< —
Jo Jo \ — a

(4.9)
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for m + 5 > 0. In view of (3.22), it follows from (4.2) that

\R^\<M^/{\-ax), (4.10)

where

M?]=<T(\~vroP)Y <4-u>(p - 1)! r(j - m)

An alternative bound for Rfi) can be constructed as follows: since (1 - a)p < (1 - a)

for p > 1, (4.9) gives

j\X-Uy-l^„au)rn-XI2-Pdu (4.12)

Consequently, we get from (4.2)

!42)|<A/(2)/(l-<7)'. (4.13)

By Lemma 1,

\R(P]\ <^2)/(20P. (4.14)

and by Lemma 1'

(4.15)

For z > 1, (4.14) implies

{^r~p)P\r[p]\ <M™i{\ + zy, (4.16)

and for 0 < z < 1, (4.15) yields

(^T7l)P|42)l ^ Mf)/(22»(l + z)"). (4.17)

Since the right-hand side of (4.16) is greater than the right-hand side of (4.17), we

have

P\R(p]\ ̂  mp]A1 + Z)P (4-18)

for all z > 0.

A combination of (4.6), (4.7) and (4.18) gives

|Ap(z, t)\ < Mp/(\ + z)p (4.19)

with Mp = jycf. (2.15). The desired result now follows from (2.13) and

(2.11).

5. Comparison with Olver's result. To compare our results with earlier ones, we

first recall the expansion given by Olver [1, Chap. 12, §12]

1 ( z V/2I,i / z \1/z JL A~m

p-«(coshz) = -(sffiI) |/„(«*) ^2s
5=0

Z ir—\ Bs m(z2) . 2\ \ u ,1
+ -Im-l(uz) J2 -~2.-s— + *bp+ l,l(". z ) \ • (5-1)

5=0 J
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where

\niP+\,\{u,z2)\ < X\{m)Im{uz) exp
Ai (m)

V0,z{zB~m(z2)}
V0 ,z{zB'm(z2)}

u2p+1
(5.2)

X\{m)= sup {2xIm(x)Km{x)}, (5.3)
x6(0,oo)

and where Vab{f) denotes the total variation of / over the interval (a,b). The

coefficients A~m(Q and B~m(Q are determined successively by

Brm(0 = -Ajm\0 + ^ [^6^ {csch2(yl/2) - l}Asm{ V)

— (5 4)
v1/2 1 j

A-7(0 = -m{B-m{Q + ̂ ""(O)} - (0

4m2 - 1 ^
+ 16

and Aq '"(C) = 1. In particular,

-jT |csch2(v1/2) ~ ~ j B~m{v)dv, (5.5)

Bom{z2)= 1 (coth z ~ (5-6)

A~m{z2) = l-z2{B~m{z2)}2 -(m- i) V(z2) -{(22) - ^m(i - m2),(5.7)

where

= 15 8)

cf. [1, Chap. 12, Ex. 12.1].

An advantage of Olver's expansion (5.1) is that it involves only two Bessel func-

tions Im and Im-1, whereas our expansion (1.1) involves all the Bessel functions Im+I/,

u = 0, 1, 2 A disadvantage of Olver's expansion is the difficulty in the calculation

of the coefficients A~m(z2) and B~m(z2) given in (5.4) and (5.5). Although there is

an alternative way of evaluating these coefficients as outlined in [1, Chap. 12, Ex.

5.2], it still seems simpler to calculate the coefficients cs(z) given in (2.14). Another

point which deserves mentioning is that for small z, the coefficient cs(z) is 0(zs).

Thus the terms in (1.1) are smaller than the corresponding terms in (5.1). As we

have mentioned in §1, it is possible to rearrange our expansion (1.1) so that it agrees

with Olver's expansion in (5.1), but the simplicity of the error estimate given in (1.3)

will be lost in the process.

To assess our error bound (1.3), we examine the ratio R~m(z, u) of this bound to

the first neglected term cp(z)Im+p(uz)/um+p. After cancelling a common factor, this

ratio simplifies to

R-m<z u) = Mp{2zyn\ + zy
P [ 'U> (-\)p(2z)py/p(z) ' { j
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where y/>(z) is defined recursively in (2.7). Explicit formulas for if/\ and ^2 are given

in (2.8) and (2.9). For any specific value of m, the maximum value of {2z)p\y/p{z)\

in 0 < z < 00 can be computed numerically. Since y/p{z) is analytic in 0 < z < 00

and <//p{z) = 0(z~p) as z —► 00, this value is a finite number. On the other hand,

the maximum value of (2z)p/(l + z)p in 0 < z < 00 is 2". Thus, if Rpm denotes the

ratio of the maxima of the absolute values of the numerator and the denominator in

(5.9) over the interval 0 < z < 00, then R~m is finite for each p > 1. Furthermore,

it can easily be verified that

R~m = 0{ 1) as m —> 00. (5.10)

From (5.9), it is also evident that the error bound in (1.3) mimics the behavior of

the first neglected term near both z = 0 and z = 00. Therefore, our bound shares

similar features with that of Olver, whereas Ursell's bound [4] breaks down when z

becomes unbounded.

Direct comparison between our error bound (1.3) and Olver's bound (5.2) is dif-

ficult, since the forms of these bounds are different, and so are the two expansions

(1.1) and (5.1). The closest comparison that we can give is to take the one-term

approximation given in each of the expansions (1.1) and (5.1). With p = 1 in (1.1),

our expansion gives

Pn m(cosh z) — (
\sinh z

1/2
wz / \

br1 +ei(*.")

where, since z < 1 + z,

\£\(z,«)| < 2 m2
'm+1 (wz)

7^1   J_ I 2 — 1 I

(5.11)

(5.12)

From [1, Chap. 12, Ex. 12.1], we have V0oo{zB0 m(z2)} = m2 - ||. Thus, Olver's

expansion gives

1/2

Pn m(coshz)

with

1 , , ,2 \ ■ - 1

= (-

— \ri\A{u, zz)| < -A,(m

\sinh z

2 1m — -
4

\{uz) 1 . 2>
-—~ H ^1 1 z }
u um ' ,n '

exp
Ai_(m)

2u
2 1m — —

4 }*,

r (UZ)

um+1

(5.13)

(5.14)

Since (m) > 1 and /m(wz) > Im+l (uz), due to the exponential factor, the right-hand

side of (5.14) is greater than the corresponding side of (5.12) for large or moderately

large values of m.
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Appendix. In this appendix, we shall prove that the number

j _ y- (^ + 1)(7 + 1) * 

hh>{2n~2j+2r~2k+2)! (2j+2k+6'!

 (n + 1 - j) {k + 1) fA 11
^ (2n - 2j + 2r - 2k + 4)! (2 j + 2k + 4)! 1 ' J
k=0j=0 v J ' v J '
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in (3.15) is negative. Since the first double sum on the right-hand side involves j + 1,

replacing the lower limit j — 0 by j = -1 does not change the value of drn. By

a similar argument, we may replace the upper limit j = n in the second sum by

j = n + 1. Now we re-index the first double sum by writing j for j + 1. This gives

d =^ry* (2j-n - i)(fc +1)  (A2x
(2n-2j + 2r-2k + 4)l{2j + 2k + 4)V y '

k=07=0 v J ,y '

With j + k — I, (A.2) can also be expressed as

r n+k+l

'■ = EE 777). (A3)
k=o i=k J w

where

ak, = {2l-2k-n- l){k+ 1), /(/) = (2« + 2r - 2/ + 4)!(2/ +4)!. (A.4)

Note that

f(n + r -/) = /(/). (A.5)

From (A.l), it is easily seen that drn = dm for all r, n = 0,1,2, Thus, without

loss of generality, we may assume that « > r. The remainder of the proof consists of

two cases: (i) n + r even, and (ii) n + r odd. Since the arguments in both cases are

parallel, we shall present only the details for case (i). First, we split the inner sum

in (A.3) into two with one extending over / = k to / = \{n + r) and the other over

/ = j(/j + r) + 1 \o I = n + k+\. Next, we let / = n 4- r - /' and k = r — k' — 1 in the

second resulting sum; after this, we write / for /' and k for k' + 1. In view of (A.5),

this yields

r i(«+r)-l j

drn ^ ^ ] rr j\ [@kl @r — k n+r — /]

,=0
' 1 r 1

+ 77£ _ \\ar~k "+r~k+1 + ^2 f, l(„ _i_ i (»+»■)•1) "+r-"+1 £s/ti(»+o]

The double sum on the right is expressible as

r r r i («+r)— 1

EE+E E ■
k=0 l=k k=0 l=r+1

Interchanging the order of summation signs in both terms gives

r i (/!+r)-1

rf'" = S"+ MB' + 7ii(^c (a'6)
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where

1 J, 1
~~ ~f[F) ^ i^kl "I" ®r—k n+r-l) "f" ^ _ j ̂  &r—l n+r—l+l (A.7)

r

Bl = ^2(akl + «r-/c «+/■-/) (A.8)
k= 0

r

C = T,akkn+rY (A-9)
k=0

To prove that the numbers drn are negative, it suffices to show that

r

£><0, B[ < 0, and C<0. (A.10)
/=o

From (A.4), it is easily shown that

fl/t/ + &r—k n+r—i — —4(/c + 1)^ + (4/ — 2n + If + 8)(k + 1) + [v + 2){n — 21 — 3).

Hence

' ,

,+r-/) = -t(/ + 1)(/ + 2)(3r + 3-2/) (A.l 1)
A:=0

+ («+l)(/+l)(r-/),

»+r-/) = ~\(r + l)(r + 2)(r + 3), (A. 12)
A:=0

XX i(„+r) = -r('"+ !)('" + 2)(r + 3). (A.13)
k=o

The last two inequalities in (A. 10) now follow immediately from (A. 12) and (A.13).

To prove the first inequality in (A. 10), we note that

ar_, „+r_/+i = (r -/ + 1)(« + 1),

which, together with (A.7) and (A.l 1), gives

a _ 1 (' + l)(l + 2)(3r + 3-2/) [n + 1)(/ + l)(r - /)

7U> £ Tffl

+ E'"+^--1)+"- (A.M)

In the second sum on the right, we may replace the limits of summation / = 0 and

/ = r by / = -1 and / = r - 1, respectively, without changing the value of the sum.

After this change, we re-index the summation by writing / for / + 1. The last two

sums are then added together. This yields

!> = £
1=0 1=0

(« + l)(r-/+!)(/+ 1) (/ +!)(/ + 2)(3r + 3-2/)

/(/-I) 3/(/)
(A. 15)
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Now it can be shown directly that each term under the summation on the right-hand

side is negative. This establishes the first inequality in (A. 10), and completes the

proof of our claim.
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