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Abstract
In Dynamic Programming, convergence of al-
gorithms such as Value Iteration or Policy It-
eration results -in discounted problems- from
a contraction property of the back-up oper-
ator, guaranteeing convergence to its fixed-
point. When approximation is considered,
known results in Approximate Policy Itera-
tion provide bounds on the closeness to op-
timality of the approximate value function
obtained by successive policy improvement
steps as a function of the maximum norm
of value determination errors during policy
evaluation steps. Unfortunately, such results
have limited practical range since most func-
tion approximators (such as linear regres-
sion) select the best fit in a given class of
parameterized functions by minimizing some
(weighted) quadratic norm.

In this paper, we provide error bounds
for Approximate Policy Iteration using
quadratic norms, and illustrate those results
in the case of feature-based linear function
approximation.

1. Introduction

We consider a Markov Decision Process (MDP) (Put-
erman, 1994; Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 1998) evolving on a state space X with 
states. Its dynamics is governed by the transition
probability function P(i,a,j) which gives the prob-
ability that the next state is j E X knowing that
the current state is i E X and the chosen action is
a E A, where A is the (finite) set of possible ac-
tions. A policy 7r is a mapping from X to A. We
write P~ the N x N-matrix whose elements are
P~(i,j) = p(i, zr(i),j). Let r(i,a,j) be the reward
received when a transition from state i, action a, to
state j occurs. Write r ~ the vector whose components
are r~(i) = ~. P~(i,j)r(i, Tr(i),j). Here, we consider
discounted, in~nite horizon problems.

The value function V~(i) for a policy zr is the expected

sum of discounted future rewards when starting from
state i and using policy ~r:

v’(i) = 
t=0

where rt is the reward received at time t and 3, e
[0,1) a discount factor. It is known that V" solves the
Bellman equation

V~(i) : r~(i) +~/ B P’(i’J) 
jEX

Thus V~ (considered as a vector of size N) is the
fixed-point of the back-up operator T~ defined by
T~- = r~ + 3’P~.. Since P~ is a stochastic matrix, it
possesses eigenvalues with module less than or equal
to one, thus (I- 3’P~) is invertible, and we write
V~ = (I - 7P~)-lr~.

The optimal value function V* is the expected gain
when using an optimal policy 7r*: V* = V~" =
sup, V~. We are interested in problems with large
state spaces (N is very large, possibly infinite), which
prevents us from using exact resolution methods such
as Value Iteration or Policy Iteration with look-up ta-
bles. Instead, we consider the Approximate Policy
Iteration algorithm (Bertsekas & Tsitsiklis, 1996) de-
fined iteratively by the two steps:

¯ Approximate policy evaluation: for a given pol-
icy zrk, generate an approximation Vk of the value
function V~k

¯ Policy improvement: generate a new policy ~rk+l
greedy with respect to Vk:

7rk+l (i) = argmax B[r(i,a,j) +~fp(i,a,j)Vk(j)]
aEA jex

These steps are repeated until no more improvement
of the policies is noticed (using some evaluation cri-
terion). Empirically, the value functions "~ rapidly
improve in the first iterations of this algorithm~ then
oscillations occur with no more performance increase.
The behavior in the transitional phase is due to the
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relatively good approximation of the value function
([[Vk -- ~ [ [ i s l ow) in comparison to the closeness t
optimality [IV~ - V* [[, which produces greedy policies
(with respect to the approximate Vk) that are better
than the current policies. Then, once some closeness to
optimality is reached, the error in the value approxima-
tion prevents the policy improvement step from being
efficient: the stationary phase is attained. Hence, this
algorithm does not converge (there is no stabilization
to some policy) but it is very fast and from the intu-
ition above, we can expect to quantify the closeness
to optimality at the stationary phase as a function of
the value approximation errors. And indeed, a known
result (Bertsekas & Tsitsiklis, 1996, chap. 6.2) pro-
vides bounds on the loss V* - V~ of using policy irk
instead of using the optimal one, as a function of the
maximum norm of the approximation errors Vk -- V~k :

20’ Vn~sup IlVk - IIoolimsup IlV* - v’~.ll~ _< (1_7)2
k.-..+ oo

(1)
However, this result is difficult to use in many ap-
proximation architectures (exceptions include (Gor-
don, 1995; Guestrin et al., 2001)) since it is very
costly to control the maximum norm; the weighted
quadratic norms are more commonly used. We recall
that a distribution # on X defines an inner-product
(f,h), = ~1 #(i)f(i)h(i) and a quadratic (semi-)

norm I[h[[~ = (h,h)~/2. Of course, equivalency be-
tween norms implies that [[hi[ < [[h[[c~ _< V~[[h[[
(where [[. I[ denotes the norm defined by the uniform
distribution p -- 1). But then, the bound (1), rewrit-

ten in quadratic norm will include the factor v~,
which is too large for being of any use in most cases.

Our main result, stated in Section 2 and proved in Ap-
pendix A, is to derive analogous bounds in quadratic
norms: the loss [IV* - V~k [[~ (for any distribution #)
is bounded by a function of the approximation error
[[Vk -- V~ [[~ (for some distribution #k related to 
and the policies ~rk and ~r*), as well as by the Bellman
residual (Baird, 1995) [[Vk -TTr~Vk[[~ (for another
distribution ~k).

In Section 3, we apply those results to the feature-
based linear function approximation (where the pa-
rameterized functions are weighted linear combina-
tions of basis functions -the features), which have
been considered in Temporal Difference learning
TD(A) (Tsitsiklis & Van Roy, 1996) and Least-Squares
Temporal Difference: LSTD(0) (Bradtke & Barto,
1996), LSTD(A) (Boyan, 1999), and LS-Q-learning
(Lagoudakis & Parr, 2001).

Both the approximations obtained by minimizing the
quadratic Bellman residual and by finding the TD so-

lution (the fixed-point of a combined operator) are
considered in sections 3.2 and 3.3. Under the as-
sumption of uniform stochasticity of the MDP (Hy-
pothesis 2), bounds on [[V*-V~"[[oo are derived
based on the minimum possible approximation error
infa ][Va - V~[[p.. Proofs are given in Appendix B.

These linear approximation architectures combined
with policy improvement still lack theoretical analy-
sis but have produced very promising experimental re-
sults on large scale control and reinforcement learning
problems (Lagoudakis & Parr, 2001); we hope that
this paper will help better understand their behavior.

2. Quadratic Norm Bounds

Consider the Approximate Policy Iteration algorithm
described in the introduction. 7rk represents the policy
at iteration k, and Vk the approximation of the value
function V~k. The main result of this paper is stated
in this theorem.

Theorem 1 For any distribution # (considered as 
row vector) on X, define the stochastic matrices

Qk = (1- 7)___~2(i_ 7p,.)_l[p~k+,(i_Tp~,+,)_12
+P~" (I - q,p,r~)-l]

0k -- (1 - 7)2 (I- 7P~’)-I[P ~k+’ (I- 0’P~+’)-t
2

(I+TP"")+P~’]

Write #k = #Qk and ~k = #Qk. Then #k and ~k are
distributions on X, and

27_ --llmsuPllVk--T’~’%ll,,,limsupIlV*-V’~ll~’ < (1 7)2 k~
k---~oo (2)

limsup IIv - v
limsup[[V*-V~rk[["k-+oo -< (1 -302 k-+oo

(3)

Some intuition about this result as well as its proof
may be found in Appendix A.

Notice that this result is stronger than the bound in
max-norm (1), since from (3) and using the fact 

H" [[~ < [[" [[~, we deduce that limsupk__~oo Jig* -
~ suPk [[Vk--V~ [[oo for any distributiony ll, _

#, which implies (1).

Moreover, it provides information about what parts of
the state-space are responsible (in terms of local ap-
proximation error Vk -- V7r" ) for the loss V*(i) - ~r~’ (i)
at any state i. This information indicates the areas of
the state space where we should focus our efforts in
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the value approximation (e.g. by locally reallocating
computational resources, such as in variable resolution
discretization (Munos & Moore, 2002)).

In the next section we describe how to use this result
to derive error bounds on the loss V* - V~k in the case
of linear approximation architectures.

3. Approximate Policy Evaluation

3.1. Linear feature-based approximation

We consider a class of functions V, = ~a linearly pa-
rameterized by a parameter a (vector of size K, usu-
ally much smaller than N), where ̄ is the set of basis
functions, called features (a N x K matrix in which
each column represents a feature).

We assume that the columns of ~ are linearly inde-
pendent. Such linear architectures include state ag-
gregation methods, CMACs, polynomial or wavelet
regression techniques, radial basis function networks
with fixed bases, and finite-element methods. They
have been used in incremental Temporal Difference
TD(A) (Tsitsiklis & Van Roy, 1996) or Least-Squares
TD (LSTD) (Bradtke & Barto, 1996), (Boyan, 1999).
These LSTD methods which ’knakes efficient use of
training samples collected in any arbitrary manner"
have recently been extended to model-free LS-Q-
learning (Lagoudakis & Parr, 2001). They have
demonstrated very good efficiency in reinforcement
learning and control of large scale problems.

The space of parameterized functions is written [~p]
(the span of the columns of ~). At iteration k, the
approximate policy evaluation step selects a "good"
approximation Vak (written Vk for simplicity) of the
value function V~, in the sense that some (semi-)
norm [[Vk - V~[[p~ be minimized, as much as possi-
ble. Several approaches for this minimization problem
are possible (Bertsekas & Tsitsiklis, 1996; Schoknecht,
2002; Judd, 1998):

¯ Find the optimal approximate solution, which
is the best possible approximation in [~]: Vk is
the orthogonal projection Hp~ V~k of Vnk onto [~]
with respect to the norm [[. I[p~. This regression
problem is very costly since Vnk is unknown, but
estimations may be obtained by Monte-Carlo sim-
ulations.

¯ Find the minimal quadratic residual (QR)
solution, which is the function Vk that minimizes
the quadratic Bellman residual [[Va - T~kV~[[p~.
This problem is easy to solve since it reduces to
the resolution of a linear system of size K: Find

a such that

A = +T (I-- "7PTr" )T Dpk (I--’TP~k 
Aa = b with

cT(I- .7pTrk)TDp~rTrk

(4)
where Dp~ is the N x N diagonal matrix whose
elements are Dp~(i,i) = pk(i). This problem al-
ways admits a solution since A is invertible.

Find the Temporal Difference (TD) solution,
which is the fixed-point of the conjugate operator
Hp~T~ - the back-up operator followed by the
projection onto [~] w.r.t [[. [[pk- i.e. Vk satisfies
Vk = Hpk T*~ Vk. Again, this problem reduces to
a linear system of size K: Find a such that

(5)

Here, A is not always invertible.

The matrix A and vector b of the QR and TD solutions
may be estimated from transition data coming from ar-
bitrary sources, e.g. incrementally (Boyan, 1999) from
the observation of trajectories induced by a given pol-
icy or by random policies (Lagoudakis 8~ Parr, 2001),
or by archived data coming from prior knowledge.

Thus, one needs to specify the distribution Pk used in
the minimization problem, which usually depends on
the policy 7rk. A steady-state distribution ~, which
would weight more the states that are frequently vis-
ited, would be desirable for purely value determina-
tion. However, the policy improvement step may per-
form badly since, from Lemma 3 (see Appendix A), the
gain in policy improvement depends on the value ap-
proximation at states reached by policy ~rk+t as well as
their successors (for policy 7r~), which may be poorly
approximated if they are ill-represented in ~. A more
uniform distribution p~ would give weight to all states
thus insuring a more secure policy improvement step
(Koller & Parr, 2000; Kakade & Langford, 2002). 
consider these possible choices for p~:

Steady-state distribution fi~ (if a such exists). 
satisfies the property ~ = ~ P~.

Constant distribution ~ (does not depend on rc~).

Mixed distribution p~ = ~(I- AP~)-~(1 - 
(for 0 < A < 1), which starts from an initial distri-
bution ~, then transitions induced by zr occur for
a period of time that is a random variable that
follows an exponential law At(1 - A). Thus 
corresponds to the distribution of a Markov chain
that starts from a state sampled according to
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and which, at each iteration, either follows policy
7r with probability A or restarts to a new state
with probability 1 - A. Notice that when A tends
to 0 then pXk tends to the constant distribution -f,
and when A tends to 1, p X tends to the steady-
state distribution.

¯ Convex combination of constant and steady-state
distributions: p~ = (1 - ~)-f + (i~.

Now, in order to bound the approximation error HVk --
V~ll~k and Bellman residual IIVk -- T~Vkll,k (to be
used in Theorem 1) as a function of the minimum pos-
sible approximation error infa I IVa - V~I I p~, we need
some assumption about the representational power of
the approximation architecture.

Hypothesis 1 (Approximation hypothesis) For
any policy 7r , there exists, in the class o] parameterized
functions, an e-approximation (in p~-norm) of the
value function V~: for some e > O, for all policies 7r,

inf IIV~ - V~llp. <e

where p~ may depend on the policy 7r.

Next, we study the cases where the approximate func-
tion Irk is chosen to be the QR solution (subsection
3.2) and the TD solution (subsection 3.3).

3.2. The Quadratic Residual solution

Consider ~k the parameter that minimizes the Bell-
man residual in quadratic pk-norm (solution to (4)).
Write Irk = Va~ = ~liak the corresponding value func-
tion:

Since, for all o~, Va -T’~kV,~ = (I- 7P~)(V~ -V~k),
we deduce that

IIVk-T~Vkllp~ = infll(I-TP~)(v,~ - v~)ll,~
< IIl_r - ~,P’~,.lllp,. e (6)

where II1" IIIp~ is the matrt~ norm induced by I1" I1~
(i.e. IIIAIIla := supll~ll~=x IIAxllp)- Now we have 
bound on the residual Vk - T~r~vk in pk--norm, but in
Theorem 1 we actually need such a bound in #k--norm-
A crude (but somehow unavailable) bound 

IlVk - T~Vkll~k < II ll IIV - T~’V~II~ (7)

where II_~lloo express the mismatch between the
PU

rather unknown distribution ~u~ = /zQk and the dis-
tribution Pk used in the minimization problem. In or-
der to bound this ratio, we now provide conditions for

which a upper-bound for #k and a lower-bound for Pk
are possible.

We make the following assumption on the MDP.

Hypothesis 2 (Uniform stochasticity) Let -fi be
some distribution, for example a uniform distribution.
There exists a constant C, such that for all policies r,
/or all i, j e X,

P~(i,j) < C-f(j) (8)

Notice that this hypothesis can always be satisfied for
-f(i) = 1IN by choosing C = N. However, we are ac-
tually interested in finding a constant C << N, which
requires, intuitively, that each state possesses many
successors with rather small corresponding transition
probabilities.

Remark 1 An interesting case for which this assump-
tion is satisfied is when the MDP has continuous-space
(thus N = oo but all ideas in previous analysis remain
valid). In such case, if the continuous problem has 
transition probability kernel P~r(x, B) (probability that
the next state belongs to the subset B C X when the
current state is x 6 X and the chosen action is ~r(x)),
then the hypothesis reads that there exists a measure -f
on X (with -f(X) = 1) such that Pr(x,B) < C-f(B)
for all x and all subset B. This is true as long as
the transition probabilities admit a pdf representation:
p~ (x, B) = fB p~(ylx)dy with bounded density p~(.[x).

From this assumption, we derive a bound for #k:

Lemma 1 Assume Hypothesis ~. Then lz~ < C-f.

Remark 2 An assumption on the Markov process,
other than Hypothesis 2, that would guarantee an
upper-bound for #k is that the matrix P~ and the re-
solvent (I - 7P~) -~ (1 - 9’) have bounded entrant prob-
abilities: there exists two constants C~ << N and
02 << N such that for all 7r and all j 6 X

<
i6X

(1-7) E[(I-TP’)-t](i,j) <- Cz
iex

then, a bound is #~ < CtC~Iz (we will not prove this
result here). An important case for which this as-
sumption is satisfied is when the MDP is built from
a discretization of a (continuous-time) Markov diffu-
sion process for which the state-dynamics are governed
by stochastic differential equations with non-degenerate
diffusion coe~O~eients.



564

The distributions pX and P~k previously defined,
which mix the steady-state distribution to a rather
uniform distribution ~, can be lower-bounded when
,~ < 1 or 6 < 1, which allows to use inequalities (7)
and (2) to derive an error bound on the loss V* - ~k

when using the QR solution:

Theorem 2 Assume that Hypothesis 2 holds with
some distribution -fi and constant C.

¯ Assume that Hypothesis 1 holds with the distribu-
tionp~ = ~(/-AP’~)-I(1-A) (withO < A < 1),
then

limsup IlV" - V.~.llo~ _<
k~

2"7
(1_7)2 I~_~C~ (l+7~min(l_-~C~,~))~

¯ Assume that Hypothesis 1 holds with the distribu-
tionp~. = (1-6)~+5~=. (withO < 6 < 1) (where

-~ is the steady-state distribution for nk), then

lim sup IIV* - V="ll _<
k-~co

27 7v )
(1_:~)2 1~C~ lq- "

Remark 3 Note that if the steady-state distribution
~ is itself lower-bounded by some constant-fi ) O,
then the bounds on p~, P~k can be tightened for A and
6 close to 1, which would suppress the terms 1 - A and
1 - 6 in the denominators of the right hand side of the
above inequalities.

3.3. Temporal Difference solution

Now, we consider that Vk is the Temporal Difference
solution, i.e. the fixed-point of the combined operator
Hp~ T~. We notice that Vk solves the system (equiv-
alent to (5) because ̄ has full column rank):

( I - 7IIpk PTr~ ) Vk = Vk -- Hp~ ( T~ Vk ~ ) =Hpk r~

(9)
which has a solution if the matrix (I - 3’Hp~ P~") 
invertible. The approximation error ek = Yk --VTM

solves the system

(I - "rIIp~ P~ )ek = IIp~ ~ - V~+ I Ip~ (T~V~ -r~)

=HpkV~- V~ := ek (10)

where ¢k is the optimal approximation error.

3.3.1. WHICH DISTRIBUTION?

If Pk is the steady-state distribution fi~ for policy zrk,
then we have [[[Pn~l[[P-k = 1 (Tsitsiklis & Van Roy,

1996). Thus, if Hypothesis 1 is satisfied for the steady-
state distribution, then from (10), we deduce a bound
on the approximation error

-- "/II pa-u ~--1IlVk-V"’ll . < Ill(Z- 
1 E

-< X-’rlllP’"lll~.. ~-< 1-’r (11)

Now, ifpk is different from ~,,. then IIIP"’III~. (which
is always > 1 since P~" is a stochastic matrix) may be
greater than 1/7 and (11) does not hold any more.
Even if we assume that for all policies 7r~ the ma-
trices I - 7Hp~ P~’ are invertible (thus, that the V~
are well-defined), which means that the eigenvalues
of IIp~ P~ are all different from 1/0’, it seems dif-
ficult to provide bounds on the approximation error
e~ = (I - 7Hp~ ~ ) -~ because those eigenvalues
may be close to 1/3’: we can easily build simple exam-
ples for which the ratio of [[e~[[p~ (as well as the Bell-
man residual [[Vk - Tn~Vkl[p~ = [[(I - 7P~r~)ek[lp~)
by e is as large as desired. Some numerical experi-
ments showed that the TD solution provided better
policies than the QR solution although the value func-
tions were not so accurately approximated. The rea-
son argued was that the TD solution ~preserved the
shape of the value function to some extent rather than
trying to fit the absolute values", thus %he improved
policy from the approximate value function is "closer"
to the improved policy from the corresponding exact
value function" (Lagoudakis & Parr, 2001). More for-
really, this would mean that the difference between the
backed-up errors using zr~+~ and another policy zr

d~ := T""+’(V~ - ,~) - T’r(Vk -- rr" )

is small for 7r = 7r~.+~, the greedy policy w.r.t. V~.

Since r~+~ is unknown, d~ would need to be small for
any policy 7r. We have

d~ = 7(P ~+’ - P~)ek

= 7(P~+’ - P~)(I- 7Hp~P~r~)-~ek

Thus, there are two possibilities: either e~ belongs to
the intersection (for all r) of the kernels of (P~+t 
P~), in which case d~ is zero, or if this is not the
case, d~k is also unstable whenever the eigenvalues of
II~P~ are close to 1/7. The first case, which would
be ideal (since then, 7rk+~ would be equal to 7r~+l)
does not hold in general. Indeed, if it was true, this
would mean that ek is collinear to the unit vector 1 :=
(1 1 ... 1)T, say ek = ekl for some scalar e~ (then, V~
would be equal to V~ up to an additive constant)
and we would have ek = (Z -- 7Hp~ P’~)ek = ck (I 
7Hp~)l. But, by definition, ek is orthogonal to [0]
w.r.t, the inner product (.,.)~ whereas the vector
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(I-TIIp~)l is not (for q, < 1) in general (the exception
being if 1 is orthogonal to [¢] w.r.t. (., .)p~). Thus,
as soon as the eigenvalues of Hp~P~ are close to 1/%
the approximation error ek as well as the difference in
the backed-up errors d~k becomes large.

Thus, we believe that in general, the TD solution is less
stable and predictable (as long as we do not control the
eigenvalues of IIp~ p-k) than the QR solution. How-
ever, the TD solution may be preferable in model-free
Reinforcement Learning, when unbiased estimators of
A and b in (4) and (5) need to be derived from observed
data (Munos, 2003).

3.3.2. STEADY-STATE DISTRIBUTION

If we consider the case of the steady-state distribution
and assume that it is bounded from below (for example
if all policies induce an irreducible, aperiodic Markov
chain (Puterman, 1994)), we are able to derive 
following error bound on the loss V* - V~.

Theorem 3 Assume that Hypothesis 2 holds for a dis-
tribution-fi (for example uniform) and a constant 
that Hypothesis 1 holds with the steady-state distribu-
tions -fi,, and that -fi~ is bounded from below by-~#l-
(with ~ a constant), then

limsup IIV* - V"lloo < 2"r V~-C~
k~,, - (1 - ,),)3

4. Conclusion

The main contribution of this paper is the error bounds
on IIV* - V~k II, derived as a function of the approxi-
mation errors I IVk- V’~II~ and the Bellman residuals
I IVk - T’~ Vkll~,k. The distributions #k and ~k indicate
the states that are responsible for the approximation
accuracy. An application of this result to linear func-
tion approximation is derived and error bounds that do
not depend on the number of states are given, provided
that the MDP satisfies some uniform stochasticity as-
sumption (that leads to an upper-bound for #k and
~) and that the distribution used in the minimization
problem is lower-bounded (in order to insure some re-
liability of the value approximation uniformly over the
state-space, which secures policy improvement steps).
In the case of the QR solution, this was guaranteed by
using a somehow uniform mixed distribution, whereas
in the case of the TD solution, we assumed that the
steady-state distribution was already bounded from
below.

A. Proof of Theorem 1.
Define the approximation error: ek = Vk - V~,

the gain between iteration k and k + 1: g~ = V~+1 -
V~, the loss of using policy Irk instead of the optimal
policy: lk ---- V* - V’rk, and the Bellman residual
of the approximate value function: bk = Vk -- T~ Vk.
Those ek, gk, lk, and bk are column vectors of size N.
We first state and prove the following results:

Lemma 2 It is true that:

lk+l <_ 7[Pr*lk + p~k+, (ek -- gk) -- P’r*ek]

Proof: Indeed,

lk+l = T’*V* - T~’V"~ + T’’V"~ - T~’Vk

-TU~+I V~k 4- Tn~+I Vuk -- Tnk+I V’rk +’

< 3,[P~° l~ 4- P’~+’ (V"~ - V"~+’)

4-(P~+’ - P’*)(Vk Vr~)]

where we used the fact that T"Va -T~+~ Vk <_ 0 since
~rk+l is greedy with respect to Vk. []

Lemma 3 It is true that:

g~ >_ _3,(i _ 9,p,~+,)-l(pu~+, _ p,r~) ek

Proof: Indeed,

gk : TU~’+~ V~r~’+~ -- T’~+~ V~ 4- T’~+I V"~ - T’~+~ Vk
4- T~+ ~ Vk - T’~ V~ 4- T~r~ Vk _ T~r,, V,~

>_ 7P~+~g~ - 7(P"~+~ - P~) e~

> -7(I - 7P~+’)-~(P ~+’ - P~) ek

since T~+~ Vk -T~Vk >_ O. []

Lemxna 4 It is true that:

l~+~ < 7P’* (V* - ~) +7[P"~+’ (I - 7 P~’+’)-~

-P’" (z - ~P")-~]b~ (12)
Or equivalently

Ik+~ < ~/P’* (V*-V’~)+7[P"~+’(I-TPr~+’)-~

(I - 7P’r’) - P’*]ek (13)

Proof: From Lemma 3, we have

ek -- g~ <_ [I-- 7(I-- 7P’~+’)-~(Pr~ -- P~+’)]ek

< (I-- 7P"+’)-1(I- 7P~’)ek

and (13) follows from Lemma 2. Inequality (12) 
derived by factorizing (I- 7P~) and by noticing that
(I - 7P~)ek ---- Vk -- TM -T’~(Vk - "~) -- V} -
T~ V~ -- bk is the Bellman residual of the approximate
function Vk, which terminates the proof. []

Now, from Lemma 4, we derive the following results:



Corollary 1 We have

lim sup lk <’y(I -- 7P~’)-tlim sup[P~k+’ (I - 7P~+~ )-1
k--+oo k--~oo

-P’" (I - ~,p.~)-l] (14)

or equivalently that

lira sup lk _<7(I -- 7P~’)-qim sup[P~k+’ (I - 7P~+’)-
k-+oo k--+c~

(I - 7P~k ) - P~" ]ek

Proof: Write fk = 7[P~+’(I - 7P~+’)-t - P~" (I 
7P~)-t]bk. Then, from Lemma 4, lk+l < ~[P~’lk +
fk. By taking the limit superior component-wise

(I - ")’P~" ) lim sup lk < lira sup fk
k ---~ co k--~oo

And the result follows since I-TP~" is invertible. The
proof of the other inequality is similar. []

Corollary 2 By defining the stochastic matrices Qk
and Qk as in Theorem 1, we have

limsuplk < 2")’ limsup Qk[bk[

lim sup lk < 2~%---~limsupQklek[
k~oo (1 -- 7)2 k~oo

where Ibkl and [ekl are vectors whose components are

Ibk(OI and lek(OI.

Proof: First, the fact that Qk and Q~ are stochastic
matrices is a consequence of the properties that if P1
and P2 are stochastic matrices, then P1P2, P2-~z, and
(1-7) ([-TP1)-1 are stochastic matrices too (the third
property resulting from the two first and the rewrit-

v" 9’tP t~ The result followsing of (I - 7P1)-1 as z.,t>0 lJ.
when taking the absolute--value in the inequalities of
Corollary 1. []

Now we axe able to prove Theorem 1:

The fact that #~ and ~k are distributions (positive
vectors whose components sum to one) results from
Qk and Qk being stochastic matrices. Let us prove
(2). For any vector h, define 2 t he vector whose com-
ponents are h~. We have, from the convexity of the
square function and from Corollary 2,

limsuPlllkll~ = limsup#12
k--+oa k~cxa

472
< (1 7~)4 limsup#[Qklbkl]2k-~oo

472 lira sup #Qk b~
-< (1 777)4 k~o

4"Y2 lim sup #kb~
< (1--~p k-,~
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Thus limsupk~ Ill,~ll. _< 04-q~y~ limsuPk--~oo Ilbkll.,..
Inequality (3) is deduced similarly. 

Remark 4 Some intuition about these bounds may be
perceived in a specific case: assume that the policy r~
were to converge, say to ~, and write ~r the approxi-
mation of V~. Then from Corollary I,

g* - ~" <_ 7(I-TP~’)-I(P ~- P’~’)(~ "- V~)

The right hand side of this inequality measures the ex-
pected difference between the backed-up approximation
errors using ~ and 7r’with respect to the discounted
future state-distribution induced by the optimal policy.
Thus here, the states responsible for the approximation
accuracy are the states reached by the optimal policy as
well as their successors (for policy ~).

B. Proofs of Section 3

Proof of Lern_ma 1

First, for two stochastic matrices /’1 and P2 satis-
fying (S), for all i and j, we have (P~P2)(i,j) 

Ek Pt (i, k)P2 (k, j) < C~(j) Ek Pt (i, k) = C~(j) 
recursively, for all k, (P1)k(i,j) < C-fi(j). Thus also
(1 -- ’T) (/-- ")’P,) --1 (i, j) = (I -- "7) Et>_0 "7t (p1)t (i, _<

c-~(i).
We deduce that Q~ defined in Theorem 1 satisfies
Vk(i,j) <_ C-fi(j). Thus, pk(j) = (PQk)(J) 

)-~i tz(i)Q~(i,J) < C~(j) Y]~i p(i) = Cfi(j). 

Proof of Theorem 2

Let us state and prove the two Lemmas:

Lemma 5 Lower bounds for p~. and p5k.

We have pX >_ (1- A)~ and p~k > (1-5)~.

Proof: We have p~ = (1 - A)-fi)-~.t>oTt(P~) t > (1 --

A)~, and P~k = (1 - 5)~+ 5~,~ > (1 - 5)~. 

Lemma 6 Upper bound for IIIP’~lll, ~ and IllP’~lllpt.
We have

IIIP-,lll~ ~ _<min( ,-~) and IIIP~,lll~t <c

Proof: First consider pX. From Hypothesis 2,

[[P~h[[p~ = p~(P~h)2 _< P~.P~h~

< C-fih ~ =CIIhll~

Moreover,-fi = ~7xpX~(I- AP,~) 5 ~-~P~k, thus

Ilh[l~- = Ph~ < ~ ,~xh2_ r-:-x,-k,o -- ~_--~llhll~g- Therefore, for
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7rk 2 (7 an h, lip hll,~ _< ,_-:~llhllp~. Now, it is a~o true that

oo

IIP~.hlt~ = (1 - ,~)-fiE~t(PTrk)t(P~"h)2
t=0
oo

< (1- A)-fiEAt(P"")t+lh2
t=0
oo

< C _
t=O

Thus IIIP~"III~ _< min(~_--~, ½).
Now consider P~k" For any vector h,

IIP~hll~ = p~(P’~h)2

_< (1 -- 5)-fiP~ 2 +~-fikP~ h2

< C(1 - 5)-fib 2 + 5-ilkh~

_< c(1- ~)llhll~-+ ~llhll~-,

(where we used the property of the steady distribu-
tion ~ = ~kP’~). Moreover, ~ = 11_-~(p6k -- 5~k),

thus Ilhll~-= ’ 2 iP=~hll~, _<,_-:~(llhll~ -~llhll~-,). Thus 
C(llhll~ - ~llhll~-,) + &llhll~, _< CIIhll~, since C _> 

~kh 2Thus IIIP IIIpg < c.
Proof of Theorem 2"

For any distribution #, putting together (2),
(7) and (6), we have limsup~lll~ll. <

U-~ lim suPk-~c° ~-~ll~lllZ - 7P=~lll,..e¯
Now, from Lemmas 1, 5, 6, and by using the fact that

IllZ-7P~lll~. -< 1 + 7111P~lll~., we deduce the bound
in I[" []#, but since this is true for any distribution #,

the same bound holds in II-I1~. []

Proof of Theorem 3

For any distribution ~u, let #k = ~)k with ~)k defined
in Theorem 1. Analogously to (7) we have Ile~ll~ _<
I1~11oo lle~ll~-..Similarly to Lemma 1, we have #k <

OF, thus I1~11~ < ~¢-Since ~k is the steady-state

distribution, ]]e~l]~, < ~_~, thus Ilekl]~, < ~ ~-:i’

and from (3),

lim sup IItkll, <
k~oo -- (1 - 7)3‘

and since this bound holds for any distribution #, it
also holds in max-norm. []
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