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Abstract

In this paper, new error bounds for the linear complementarity problem are obtained

when the involved matrix is a weakly chained diagonally dominant B-matrix. The

proposed error bounds are better than some existing results. The advantages of the

results obtained are illustrated by numerical examples.
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1 Introduction

A linear complementarity problem (LCP) is to find a vector x ∈R
n× such that

(Mx + q)Tx = , Mx + q ≥ , x≥ ,

whereM = [mij] ∈R
n×n and q ∈R

n×. The LCP has various applications in the free bound-

ary problems for journal bearing, the contact problem, and the Nash equilibrium point of

a bimatrix game [–].

The LCP has a unique solution for any q ∈R
n× if and only ifM is a P-matrix []. In [],

Chen et al. gave the following error bound for the LCP whenM is a P-matrix:

∥

∥x – x∗
∥

∥

∞
≤ max

d∈[,]n

∥

∥(I –D +DM)–
∥

∥

∞

∥

∥r(x)
∥

∥

∞
,

where x∗ is the solution of the LCP, r(x) = min{x,Mx+q},D = diag(di) with  ≤ di ≤ , and

the min operator r(x) denotes the componentwise minimum of two vectors. IfM satisfies

special structures, then some bounds of maxd∈[,]n ‖(I –D+DM)–‖∞ can be derived [–

].

Definition  ([]) A matrix M = [mij] ∈ R
n×n is called a B-matrix if for any i, j ∈ N =

{, , . . . ,n},

∑

k∈N

mik > ,


n

(

∑

k∈N

mik

)

>mij, j �= i.
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Definition  ([]) A matrix A = [aij] ∈R
n×n is called a weakly chained diagonally domi-

nant (wcdd) matrix if A is diagonally dominant, i.e.,

|aii| ≥ ri(A) =

n
∑

j=, �=i

|aij|, ∀i ∈N,

and for each i /∈ J(A) = {i ∈N : |aii| > ri(A)} �= ∅, there is a sequence of nonzero elements of

A of the form aii ,aii , . . . ,air j with j ∈ J(A).

Definition  ([]) AmatrixM = [mij] ∈ R
n×n is called a weakly chained diagonally dom-

inant (wcdd) B-matrix if it can be written in the form M = B+ + C with B+ a wcdd matrix

whose diagonal entries are all positive.

García-Esnaola et al. [] gave the upper bound for maxd∈[,]n ‖(I –D +DM)–‖∞ when

M is a B-matrix: LetM = [mij] ∈R
n×n be a B-matrix with the form

M = B+ +C,

where

B+ = [bij] =

⎡

⎢

⎢

⎣

m – r+ · · · mn – r+
...

...

mn – r+n · · · mnn – r+n

⎤

⎥

⎥

⎦

, ()

and r+i = max{,mij|j �= i}. Then

max
d∈[,]n

∥

∥(I –D +DM)–
∥

∥

∞
≤

n – 

min{β , }
, ()

where β = mini∈N{βi} and βi = bii –
∑

j �=i |bij|.

To improve the bound in (), Li et al. [] presented the following result: LetM = [mij] ∈

R
n×n be a B-matrix with the formM = B+ +C, where B+ = [bij] is defined as (). Then

max
d∈[,]n

∥

∥(I –D +DM)–
∥

∥

∞
≤

n
∑

i=

n – 

min{β̄i, }

i–
∏

j=

(

 +


β̄j

n
∑

k=j+

|bjk|

)

, ()

where β̄i = bii –
∑n

j=i+ |bij|li(B
+), lk(B

+) = maxk≤i≤n{


|bii|

∑n
j=k, �=i |bij|} and

i–
∏

j=

(

 +


β̄j

n
∑

k=j+

|bjk|

)

= , if i = .

Recently, whenM is a weakly chained diagonally dominant (wcdd)B-matrix, Li et al. []

gave a bound for maxd∈[,]n ‖(I –D +DM)–‖∞: LetM = [mij] ∈ R
n×n be a wcdd B-matrix

with the formM = B+ +C, where B+ = [bij] is defined as (). Then

max
d∈[,]n

∥

∥(I –D +DM)–
∥

∥

∞
≤

n
∑

i=

(

n – 

min{β̃i, }

i–
∏

j=

bjj

β̃j

)

, ()
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where β̃i = bii –
∑n

j=i+ |bij| >  and
∏i–

j=

bjj

β̃j
=  if i = .

This bound in () holds when M is a B-matrix since a B-matrix is a weakly chained

diagonally dominant B-matrix [].

Now, some notation is given, which will be used in the sequel. Let A = [aij] ∈ R
n×n. For

i, j,k ∈ N, denote

ui(A) =


|aii|

n
∑

j=i+

|aij|, un(A) = ,

bk(A) = max
k+≤i≤n

{

∑n
j=k, �=i |aij|

|aii|

}

, bn(A) = ,

pk(A) = max
k+≤i≤n

{

|aik| +
∑n

j=k+, �=i |aij|bk(A)

|aii|

}

, pn(A) = .

The rest of this paper is organized as follows: In Section , we present some new bounds

for maxd∈[,]n ‖(I – D + DM)–‖∞ when M is a wcdd B-matrix. Numerical examples are

given to verify the corresponding results in Section .

2 Main results

In this section, some new upper bounds for maxd∈[,]n ‖(I – D + DM)–‖∞ are provided

whenM is a wcdd B-matrix. Firstly, several lemmas, which will be used later, are given.

Lemma  ([]) LetM = [mij] ∈R
n×n be a wcdd B-matrix with the formM = B++C,where

B+ is defined as (). Then

∥

∥

(

I +
(

B+
D

)–
CD

)–∥
∥

∞
≤ n – ,

where B+
D = I –D +DB+ and CD =DC.

Lemma  ([]) Let A = [aij] ∈ R
n×n be a wcdd M-matrix with uk(A)pk(A) <  (∀k ∈ N).

Then

∥

∥A–
∥

∥

∞
≤ max

{

n
∑

i=

(



aii( – ui(A)pi(A))

i–
∏

j=

uj(A)

 – uj(A)pj(A)

)

,

n
∑

i=

(

pi(A)

aii( – ui(A)pi(A))

i–
∏

j=



 – uj(A)pj(A)

)}

,

where

i–
∏

j=

uj(A)

 – uj(A)pj(A)
= ,

i–
∏

j=



 – uj(A)pj(A)
= , if i = .

Lemma  ([]) Let γ >  and η ≥ . Then, for any x ∈ [, ],



 – x + γ x
≤



min{γ , }
,

ηx

 – x + γ x
≤

η

γ
.
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Theorem  Let M = [mij] ∈ R
n×n be a wcdd B-matrix with the form M = B+ + C, where

B+ = [bij] is defined as (). If, for each i ∈N,

β̂i = bii –

n
∑

j=i+

|bij|pi
(

B+
)

> ,

then

max
d∈[,]n

∥

∥(I –D +DM)–
∥

∥

∞

≤ max

{

n
∑

i=

n – 

min{β̂i, }

i–
∏

j=

(



β̂j

n
∑

k=j+

|bjk|

)

,

n
∑

i=

(n – )pi(B
+)

min{β̂i, }

i–
∏

j=

bjj

β̂j

}

, ()

where

i–
∏

j=

(



β̂j

n
∑

k=j+

|bjk|

)

= ,

i–
∏

j=

bjj

β̂j

= , if i = .

Proof LetMD = I –D +DM. Then

MD = I –D +DM = I –D +D
(

B+ +C
)

= B+
D +CD,

where B+
D = I –D+DB+. Similar to the proof of Theorem  in [], we see that B+

D is awcdd

M-matrix with positive diagonal elements and CD =DC, and, by Lemma ,

∥

∥M–
D

∥

∥

∞
≤

∥

∥

(

I +
(

B+
D

)–
CD

)–∥
∥

∞

∥

∥

(

B+
D

)–∥
∥

∞
≤ (n – )

∥

∥

(

B+
D

)–∥
∥

∞
. ()

By Lemma , we have

∥

∥

(

B+
D

)–∥
∥

∞
≤ max

{

n
∑

i=



( – di + biidi)( – ui(B
+
D)pi(B

+
D))

i–
∏

j=

uj((B
+
D))

 – uj((B
+
D))pj(B

+
D)

,

n
∑

i=

pi(B
+
D)

( – di + biidi)( – ui((B
+
D))pi(B

+
D))

i–
∏

j=



 – uj(B
+
D)pj(B

+
D)

}

.

By Lemma , we can easily get the following results: for each i, j,k ∈ N,

bk
(

B+
D

)

= max
k+≤i≤n

{

∑n
j=k, �=i |bij|di

 – di + biidi

}

≤ max
k+≤i≤n

{

∑n
j=k, �=i |bij|

bii

}

= bk
(

B+
)

,

pk
(

B+
D

)

= max
k+≤i≤n

{

|bik|di +
∑n

j=k+, �=i |bij|dibk(B
+
D)

 – di + biidi

}

≤ max
k+≤i≤n

{

|bik| +
∑n

j=k+, �=i |bij|bk(B
+
D)

bii

}

≤ max
k+≤i≤n

{

|bik| +
∑n

j=k+, �=i |bij|bk(B
+)

bii

}

= pk
(

B+
)

,
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and



( – di + biidi)( – ui(B
+
D)pi(B

+
D))

=


 – di + biidi –
∑n

j=i+ |bij|dipi(B
+
D)

≤


min{bii –
∑n

j=i+ |bij|pi(B
+), }

=


min{β̂i, }
. ()

Furthermore, by Lemma , we have

ui(B
+
D)

 – ui(B
+
D)pi(B

+
D)

=

∑n
j=i+ |bij|di

 – di + biidi –
∑n

j=i+ |bij|dipi(B
+
D)

≤

∑n
j=i+ |bij|

bii –
∑n

j=i+ |bij|pi(B
+)

=


β̂i

n
∑

j=i+

|bij| ()

and



 – ui(B
+
D)pi(B

+
D)

=
 – di + biidi

 – di + biidi –
∑n

j=i+ |bij|dipi(B
+
D)

≤
 – di + biidi

bii –
∑n

j=i+ |bij|pi(B
+)

=
bii

β̂i

. ()

By (), (), and (), we obtain

∥

∥

(

B+
D

)–∥
∥

∞
≤ max

{

n
∑

i=



min{β̂i, }

i–
∏

j=

(



β̂j

n
∑

k=j+

|bjk|

)

,

n
∑

i=

pi(B
+)

min{β̂i, }

i–
∏

j=

bjj

β̂j

}

. ()

Therefore, the result in () holds from () and (). �

Since a B-matrix is also a wcdd B-matrix, then by Theorem , we find the following

result.

Corollary  LetM = [mij] ∈R
n×n be a B-matrix with the formM = B++C,where B+ = [bij]

is defined as (). Then

max
d∈[,]n

∥

∥(I –D +DM)–
∥

∥

∞

≤ max

{

n
∑

i=

n – 

min{β̂i, }

i–
∏

j=

(



β̂j

n
∑

k=j+

|bjk|

)

,

n
∑

i=

(n – )pi(B
+)

min{β̂i, }

i–
∏

j=

bjj

β̂j

}

, ()

where β̂i is defined as in Theorem .
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We next give a comparison of the bounds in () and () as follows.

Theorem  Let M = [mij] ∈ R
n×n be a wcdd B-matrix with the form M = B+ + C, where

B+ = [bij] is defined as (). Let β̄i, β̃i, and β̂i be defined as in (), (), and (), respectively.

Then

max

{

n
∑

i=

n – 

min{β̂i, }

i–
∏

j=

(



β̂j

n
∑

k=j+

|bjk|

)

,

n
∑

i=

(n – )pi(B
+)

min{β̂i, }

i–
∏

j=

bjj

β̂j

}

≤

n
∑

i=

(

n – 

min{β̃i, }

i–
∏

j=

bjj

β̃j

)

. ()

Proof Since B+ is a wcdd matrix with positive diagonal elements, for any i ∈N,

 ≤ pi
(

B+
)

≤ , β̃i ≤ β̂i. ()

By (), for each i ∈N,



β̂i

≤


β̃i

,


min{β̂i, }
≤



min{β̃i, }
. ()

The result in () follows by () and (). �

Remark 

(i) Theorem  shows that the bound in () is better than that in ().

(ii) When n is very large, one needs more computations to obtain these upper bounds

by () than by ().

3 Numerical examples

In this section, we present numerical examples to illustrate the advantages of our derived

results.

Example  Consider the family of B-matrices in []:

Mk =

⎡

⎢

⎢

⎢

⎣

. . . .

–. . . .

. –. k
k+

. .

 . . .

⎤

⎥

⎥

⎥

⎦

,

where k ≥ . ThenMk = B+
k +Ck , where

B+
k =

⎡

⎢

⎢

⎢

⎣

  –. 

–.   –.

 –. k
k+

– .  –.

–. –.  

⎤

⎥

⎥

⎥

⎦

.

By (), we have

max
d∈[,]

∥

∥(I –D +DMk)
–

∥

∥

∞
≤

 – 

min{β , }
= (k + ).
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It is obvious that

(k + ) → +∞, if k → +∞.

By (), we get

max
d∈[,]

∥

∥(I –D +DMk)
–

∥

∥

∞
≤ ..

By Theorem  of [], we have

max
d∈[,]

∥

∥(I –D +DMk)
–

∥

∥

∞
≤ ..

By Corollary  of [], we have

max
d∈[,]

∥

∥(I –D +DMk)
–

∥

∥

∞
≤


∑

i=

(



min{β̃i, }

i–
∏

j=

bjj

β̃j

)

≈ ..

By (), we obtain

max
d∈[,]

∥

∥(I –D +DMk)
–

∥

∥

∞
≤ ..

In these two cases, the bounds in () are equal to  (k = ) and  (k = ), respectively.

Example  Consider the wcdd B-matrix in []:

M =

⎡

⎢

⎢

⎢

⎣

. . . .

–. . . .

. –. . .

. . . .

⎤

⎥

⎥

⎥

⎦

.

ThenM = B+ +C, where

B+ =

⎡

⎢

⎢

⎢

⎣

 –. –. 

–.   –.

 –.  –.

–. –.  

⎤

⎥

⎥

⎥

⎦

.

By (), we get

max
d∈[,]

∥

∥(I –D +DM)–
∥

∥

∞
≤ ..

By (), we have

max
d∈[,]

∥

∥(I –D +DM)–
∥

∥

∞
≤ ..
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4 Conclusions

In this paper, we present some new upper bounds for maxd∈[,]n ‖(I –D+DM)–‖∞ when

M is a weakly chained diagonally dominant B-matrix, which improve some existing re-

sults. A numerical example shows that the given bounds are efficient.
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