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Abstract. Error bounds and upper Lipschitz continuity results are given for mono-
tone linear complementarity problems with a nondegenerate solution. The existence
of a nondegenerate solution considerably simplifies the error bounds compared with
problems for which all solutions are degenerate. Thus when a point satisfies the linear
inequalities of a nondegenerate complementarity problem, the residual that bounds
the distance from a solution point consists of the complementarity condition alone,
whereas for degenerate problems this residual cannot bound the distance to a solution
without adding the square root of the complementarity condition to it. This and other
simplified results are a consequence of the polyhedral characterization of the solution
set as the intersection of the feasible region {z|Mz+¢q > 0, z > 0} with a single linear

affine inequality constraint.
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1. Introduction

We consider the classical monotone linear complementarity problem [2]
(1.1) Mz+¢>0,z2>0, z(Mz+4¢)=0

where M is a given n X n real positive semidefinite matrix and ¢ is a given vector in
the n-dimensional real space R™. For a positive semidefinite M, the map z — Mz +q
is monotone. It is well known that under this assumption the linear complementarity
problem (1.1) is solvable whenever it is feasible, that is whenever there is an z in R"
satisfying Mz +q > 0, z > 0. An underlying assumption of this paper (see Definition

2.1 below) is that some solution & of (1.1) is nondegenerate, that is
(1.2) 4+ Mz4+q¢>0

This assumption is automatically satisfied [4, Corollary 2A] when (1.1) is feasible and
M is skew-symmetric, that is M + M7 = 0, which is the case when the linear comple-
mentarity problem (1.1) represents a pair of feasible standard dual linear programs.
The nondegeneracy assumption considerably simplifies the polyhedral characterization
of the solution set of the monotone linear complementarity problem (Lemma 2.2) over
previous polyhedral characterizations [1, 7]. The simplification consists in characteriz-
ing the solution set of (1.1), when it has some nondegenerate solution, as the solution
set S (see (2.3) below) of the complementarity problem (1.1) linearized around any
of its solution points. The first principal consequence of this simplified characteri-
zation (Theorem 2.6) is a bound on the distance between any point z in R™ and a
point Z(x) in the solution set of (1.1) in terms of residuals determined by only the 3
terms of (1.1) defining the complementarity problem. This is a considerably simpler
residual than that of [11, Theorem 2.7] for the degenerate case. When the point z
satisfies the first two inequalities of (1.1), the residual for the nondegenerate problem
becomes merely the complementarity condition z(Mz + ¢q) (Corollary 2.7) instead of
o(Mz + q) + (z(Mz + q))% as must be the residual for the degenerate problem [11,
Corollary 2.8]. This result leads to a finite perturbation formulation (2.23) of the least
2-norm solution of a nondegenerate monotone linear complementarity problem as a

strongly convex quadratic program (Theorem 2.9) as well as its characterization as a
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problem with a weak sharp minimum (Theorem 2.11) and the finite termination of
the corresponding Proximal Point Algorithm 2.12 which follows from [3]. Finally the
error bound of Theorem 2.6 is used to obtain a global upper Lipschitz continuity result
(Corollary 2.15) for nonnegative perturbations of ¢, as well as a local upper Lipschitz
continuity for arbitrary local perturbations of ¢ (Theorem 2.16).

A brief word about notation and some basic concepts employed. For a vector z in

the n-dimensional real space R™, x4 will denote the vector in R® with components

(z4)i := max {z;,0},7=1,...,n. For a norm ]]:cHﬂ on R", H:n”ﬂ* will denote the
dual norm [5, 12] on R™, that is Ha: ge = ”nﬁax zy, where zy denotes the scalar
ylig=1

n
product Z z;y;. The generalized Cauchy-Schwarz inequality ”zy“ < ”:c” 5 ||y} o>
i=1

for  and y in R™, follows immediately from this definition of the dual norm. For

n
1<p, ¢< oo, and 1/p+1/q =1, the p-norm ”a:”p = (Z l:c,-!p)l/p for1<p<oo
1=

and ”xllp = max ]:c,l for p = o0, and the g-norm are dual norms on R" [12]. For an
m xn real matrix A signified by A € R™*", A; denotes the ith row, while AT denotes
the transpose. ”AH 5 denotes the matrix norm [12] subordinate to the vector norm
“ . ”[5’ that is “A“ﬂ = IIE!IIZ%I ”A:cHﬂ The consistency condition “A:c“}6 < ||A”ﬂ||w||ﬂ
follows immediately from this definition of a matrix norm. A monotonic norm on R"®
1s any norm H . ” on R" such that for a, b in R", ||a“ < “b” whenever Ia‘ < fb] or
equivalently if Ha” = “|aH|, where (la[)z = ]ai], i=1,...,n [5, p. 47]. Any p-norm
for co > p > 1 is monotonic {12, p. 52]. A vector of ones in any real space will be
denoted by e. The identity matrix of any order will be denoted by I. The nonnegative

orthant in R"™ will be denoted by R}.



2. Results
We begin with some simple preliminary results for the linear complementarity

problem (1.1). For that purpose we make the following definitions of the feasible set
(2.1) X = {z|Mz +¢ >0, z >0},

the solution set

(2.2) X :={z|Mz+¢>0, >0, 2(Mz + q) =0},

and the polyhedral set obtained by linearizing the linear complementarity problem

(1.1) around any of its solution points
(23) S:={z|Mz+¢>0,2>0, 2(MZ+q)+zZ(Mz+¢) <0} forany z€ X

The set S will characterize the solution set X when a nondegenerate solution exists.
We note immediately that, for M positive semidefinite, the definition S is independent

of the specific choice of  in X, because by [7, Corollary 2]
(24) X=T:={z|Mz2+¢>0,2>0, ¢(2—2)=0, M+ M")(z-z)=0},ze X

Adler and Gale [1], who gave the first polyhedral characterization of X, wrote T in a
slightly different but equivalent form as follows
Ty :={z|Mz+¢>0,2>0, 2(Mz +q) +F Mz +q) =0,
(2.5) _
(M + MT)(z — ) =0}, for some z € X

We also note that if we define
(2.6) f(z) = 2(Mz + q)
then S can be written in the equivalent form

(2.7) S={z|Mz+¢>0,z>0, Vf(Z)(z-%) <0}, e X

2.1 Definition If £ + M& 4 ¢ > 0 for some & € X then the linear complementarity

problem (1.1) is said to be nondegenerate; otherwise it is called degenerate.
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We note that in the definition (2.3) of S, Z need not be taken as a nondegenerate

solution. We are now ready to derive our first result.

2.2 Lemma (Polyhedral characterization of X for nondegenerate problems) Let (1.1)

be nondegenerate and let M be positive semidefinite. Then

(2.8) X=5

Proof (S C X) Let z € S. Then since (1.1) is nondegenerate it follows by (2.3) and
(2.4) that we can replace T in the definition of S by a nondegenerate solution point

&. Thus we have
(2.9) Mz+¢>0,2>20, z(Mé+q)+i(Mz+4q)=0

for some # € X such that & + M& + ¢ > 0, and consequently it follows from the
equality of (2.9) that z(Mz + ¢q) = 0. Hence =z € X.
(X € S) Let z€ X andlet 7 € X. Then

0=z(Mz+q)=Z(Mz+q)+2z(MZ+q)+(z—Z)M(z — )
2 Z(Mz + q) + z(MZ + q)

Hence Z(Mz +q)+z(Mz+¢)<0and ze S. |

2.3 Remark Note that the equality (2.8) does not hold without the nondegeneracy
assumption, as evidenced by the simple example: M =1, ¢ = 0, for which X = {0}
and § = RL . In fact for degenerate problems one must resort to the characterizations
(2.4) or (2.5) [10, 11]. Thus for possibly degenerate monotone linear complementarity

problems we have

(2.10) X=T= S

=~
N

1

whereas for nondegenerate monotone linear complementarity problems we have

(2.11) X=T=T,=38

Thus the solution set X for nondegenerate monotone problems can be characterized

by the intersection of the feasible region X with the single affine linear constraint of
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(2.7), 7 f(z)(z — z) <0, for some z € X. This leads to a considerable simplification
of the error bounds and Lipschitz continuity results given here compared with those

for the possibly degenerate case [10, 11].

2.4 Remark For a solvable monotone linear complementarity problem, relation (2.4)
shows that the solution set is completely characterized by n+1 constants d, o defined

as follows
(2.12) o:=q%, d:=(M+MD)z +q, forany z€ X

Note that in view of (2.4), a and d are independent of the choice of Z in X and are
constants of the problem depending on M and ¢ only. With the definitions (2.12) the

sets S, T and T} can be rewritten as follows.

(2.13) S={z|Mz+¢>0,z>0, de +a <0}
(2.14) T={zMz+¢>0,2>0, gz=0a, M+ Mz =d-q}
(2.15) Ti={z|Mz+¢>0,z2>0,de+a=0,(M+M")z=d-q}

We are now ready to give our first error bound.

2.5 Propostion (Error bound for nondegenerate monotone LCP) Let (1.1) be a non-

degenerate monotone LCP. For each z in R™ there exists an #(z) in X such that
(2.16) ”m - i(a:)”oo < pp(M,q)- H(—Mm —~q, —x, dr + a)+|lﬂ

where ” . H 8 is some norm on R?"*t! with dual norm || . l

(2.12) and

ger and d are defined by

a7 b0 — e, =1
Columns of [MT I d
(2.17) pa(M,q):=  max < Hu,v,SHﬂ* corresponding to nonzero

(u,0,6)€RYMH
elements of (u,v,£)

are linearly independent



Proof Just apply Theorem 2.2’ of [10] to S as defined by (2.13) and use Lemma 2.2
to conclude that z(z) isin X. 1

The condition constant pg(M,q) of (2.17), although a difficult quantity to com-
pute, is a useful generalization of the concept of the norm of the inverse of a square
matrix. For example it allows us (by Theorem 2.6 and Corollary 2.7 below) to deter-
mine which of two arbitrary points is closer to the solution set X .

Note that the residual term of (2.16) contains the unknown quantity (dz + o),
which precludes its practical use as an error bound. However, this term can be easily

bounded as was done in [11, Lemma 2.6] by an easily computed residual as follows

(dz + )y = (2(M + M)z + qz + qf)+
= (z(Mz + q) — (z — T)M(z —-:E))+ < (e(Mz +q))+

We thus have the following more useful bound which involves a residual that can be

calculated for any point in R™.

2.6 Theorem (Error bound for nondegenerate monotone LCP) Let (1.1) be a nonde-

generate monotone LCP. For each z in R™ there exists an #(z) in X such that

(2.18) |z = 2(2)]|, < ne(M,q)-[|[(-Mz — ¢, —2, 2(Mz +9))_ ||,

where pg(M,q) is defined by (2.17).

It is interesting to note the considerably simpler error bound (2.18) above compared
with that of Theorem 2.7 of [11] for the degenerate case. When z is feasible the error
bound (2.18) simplifies further as follows.

2.7 Corollary (Error bound for feasible points of nondegenerate monotone LCP) Let

(1.1) be nondegenerate. For each £ € X there exists an z(z) in X such that

(2.19) |z = 2(2)|| , < too( M, q) - 2(Mz + q)

where po.(M,q) is given by (2.17).
Note that (2.19) is valid for all pg(M,q) for any norm “ . “B We chose poo(M,q)

because it is the infimum of the p-norms, for 1 < p < co.

6



2.8 Remark For degenerate problems the bound (2.19) is not valid. This can be seen
from the example [11, Example 2.9]

(2.20) M::H "i] q=m X = {0}

For the unique solution z = (0,0), Mz + ¢ = (0,1) and hence the problem is degen-

erate. For z(¢) := (¢, €2), 0 < e <1, we have

lz)—0ll,, ¢
z(e)(Mz(e) +q) 262 4 ¢t

Hence the bound (2.19) fails. For such degenerate problems the bound (2.19) must be
replaced by [11, Corollary 2.8]

(2.21)

- 00 as € -0

(2.22) |z - 2(2)]|| < 72(M,q) (m(.M:B +q) + (z(Mz + q)) 5)

where 72(M, q), defined in [11, Equation (2.5)], is a different constant from pg(M,q).

A useful consequence of Corollary 2.7 is that the least 2-norm solution of a non-
degenerate monotone linear complementarity problem can be obtained by a simple
regularization of the minimization problem irg(l f(z) equivalent to (1.1). We have the

following,.

2.9 Theorem (Least 2-norm solution of a nondegenerate monotone linear comple-
mentarity problem) Let (1.1) be nondegenerate. There exists an & > 0 such that
Ve € (0,¢]

- . €
(2.23) Z = argmin flz) + 3 %¢

where Z is the unique solution of (1.1) with least 2-norm, and f and X are as defined

in (2.6) and (2.1) respectively.

Proof Since the set S as given by (2.7), which is a linearization of Iznel%l f(z) around
Z, is equivalent to the solution set X by Lemma 2.2, it follows that S has the same
least 2-norm element as X . By [8, Theorem 5], it follows that the least 2-norm solution
of (1.1) is given by (2.23). §

In fact Corollary 2.7 leads to a more fundamental result for the equivalent formu-

lation ng{l f(z) of the linear complementarity problem (1.1) by showing that rrgﬁ f(z)
T S
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has a weak sharp minimum [3]. An important consequence of this is that the proximal
point algorithm [14] terminates in a finite number of steps just as in the case of linear

programming [13].

2.10 Definition Let f : R® — R and X C R"™ be convex, and let the problem
néigg f(z) have a nonempty closed solution set X. The problem is said to have a
T

weak sharp minimum if there exists a positive constant v such that
f(@) = f(2(2)) 2 vllz — 2(2)| VzeX

where Z(z) € argmi}r_{l Iz — z|| and || - || is some norm on R".
ZE.
In [9] it was shown that all solvable linear programs have weak sharp minima. We
now show that nondegenerate monotone linear complementarity problems also have

weak sharp minima when formulated as Irél;’(l f(z).
T

2.11 Theorem (Nondegenerate monotone LCP as a weak sharp minimum) Let (1.1)
be nondegenerate. Then the problem nél;(l f(z), with f and X as defined in (2.6) and
T

(2.1) respectively, has a weak sharp minimum.

Proof By Corollary 2.7 we have that for ¢ € X \ X, there exists an z(z) € X such
that

pioo(M, ) & = 2(2)loo < (M + ) = f(2) — f(a(a)). B

A direct consequence of Theorem 2.11 is that the following proximal point algo-

rithm for (1.1) converges in a finite number of steps [3].
2.12 Proximal Point Algorithm For a bounded sequence of positive numbers {¢;}
and z° € R},

gt = argiréi}r(l f(z) + % ”x - lelz 1=0,1,...

where f and X are as defined in (2.6) and (2.1) and M is positive semidefinite.

2.13 Finite Termination of Proximal Point Algorithm 2.12 For a nondegenerate
problem (1.1) there exists k > 1 such that z¥, as determined by the Proximal Point
Algorithm 2.12, solves (1.1). Furthermore for each 2° € R7 there exists an g > 0
sufficiently small such that z! solves (1.1).
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Proof By Theorem 9, Corollary 20 and Theorem 22 of [3]. |

From a computational point of view, both the proximal point subproblem and the
least 2-norm problem (2.23) are strongly convex problems with unique solutions and
hence should be more tractable than the original problem il’él)l’(l f(z). The least 2-norm
formulation has the advantage of solving the problem only once, provided ¢ is chosen
sufficiently small. In contrast the proximal point algorithm requires the solution of the
subproblem a finite number of times. The advantage of the latter algorithm is that the
sequence {¢;} is arbitrary, but its choice certainly affects the number of subproblems
solved. For problems for which the € of the least 2-norm problem (2.23) needs to be
extremely small, the proximal point algorithm is preferable. Unfortunately this is not
easy to determine a priori.

We give now some upper Lipschitz continuity results for nondegenerate monotone
linear complementarity problems. For that purpose it is convenient to let LCP(q)
denote the linear complementarity problem (1.1) with a fixed matrix M and a given

vector q.

2.14 Proposition (Global upper Lipschitz continuity) Let M be positive semidefi-
nite, let LCP (¢') be nondegenerate and let LCP (¢?) be solvable. There exist solutions
z', 2% of LCP(q!) and LCP(¢?) respectively such that

(2.24) lo* =2t < up(M, ) - ||(* - ¢', 0, a* (¢ = 4)) ||,
where pg(M,q") is defined by (2.17) and || - ||g is any monotonic norm on R2"+1 .

Proof By Theorem 2.6 for each z® (solving LCP (¢g?)) there exists a solution z! of
LCP(q!) such that

2% — 2|, < na(M,q") - || (-Mz® — ¢, =2, 2*(Ma® +¢")) ||,
=pp(M,q") - ||(-Mz® = ¢' + ¢* — ¢%, 0, 2 (Mz® 4+ ¢* + ¢* — &)

<pp(M,¢")- (& - ¢, 0, 2%(¢" = %), I

)Ml

where the last inequality follows from the norm-monotonicity and the fact z? solves

LCP(¢?). 1§

2.15 Corollary (Global upper Lipschitz continuity for nonnegative perturbations of

nondegenerate monotone LCP’s) If the perturbation of Proposition 2.14 is nonnegative,
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that is

(2.25) @ —-q¢'>0
then
(2.26) o = o], < me(M,a)|(@? - o, 0, 0)]

A local upper Lipschitz continuity result can be obtained for arbitrary local per-
turbations ¢' — ¢ if we assume that LCP(q') is nondegenerate and has a bounded
solution set or if it has a nondegenerate vertex solution (which implies boundedness

of the solution set).

2.16 Theorem (Local upper Lipschitz continuity for nondegenerate monotone LCP’s
with bounded solution sets) Let M be positive semidefinite, let ” . ” 8 be a monotonic
norm on R?"*! and let either (i) LCP(¢!) have a bounded solution set containing some
nondegenerate solution or (ii) LCP(¢') have a nondegenerate vertex solution. Then
there exist a v > 0 and an ¢ > 0 such that for all H(q2 —q', 0, 0)”/6 <e, LCP(¢?) is
solvable and there exist solutions z', z? of LCP(q') and LCP (¢?) respectively such
that

(227) o = o, < (L+ MM, a) - (& — &, 0, 0,

Proof By Corollary 1 and Theorem 2 of [6], assumption (ii) of our theorem here
implies assumption (i). By Theorem 2 xvi of [6], there exists an € > 0 and v > 0 such
that for each ”(q2 —q', 0, 0)”,3 < ¢, LCP(q?) is solvable and each solution z? of
LCP (¢?), satisfies ”(0, 0, ”wz, 0,0 ﬂ*)
that for ”(q2 —q1, 0, O)Hﬂ < € there exist solutions z!, 2% of LCP(q') and LCP(¢?)
respectively such that

o2~ £l < a0, (6 = o, 0, 220" = ),
< np(M, ') - [[[(a* = a*, 0, 0) ||, + ]| (¢* ~ ¢, 0, 0)[| ;] W

[ 8 < v. By Proposition 2.14 above we have
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