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Error Bounds for Polynomial Spline Interpolation

By Martin H. Schultz

Abstract. New upper and lower bounds for the L2 and L® norms of derivatives of the error
in polynomial spline interpolation are derived. These results improve corresponding results
of Ahlberg, Nilson, and Walsh, cf. [1}, and Schultz and Varga, cf. [5].

1. Introduction. In this paper, we derive new bounds for the L’ and L® norms
of derivatives of the error in polynomial spline interpolation. These bounds improve
and generalize the known error bounds, cf. [1] and [5], in the following important
ways: (1) these bounds can be explicitly calculated and are not merely asymptotic
error bounds such as those given in [1] and [5]; (2) explicit lower bounds are given
for the error for a class of functions; (3) the degree of regularity required of the func-
tion, f, being interpolated is extended, i.e., in [1] and [5] we demand that the mth or
2mth derivative of f be in L?, if we are interpolating by splines of degree 2m — 1, while
here we demand only that some pth derivative of f, where m < p < 2m, be in L?;
and (4) bounds are given for high-order derivatives of the interpolation errors.

2. Notations. Let —o» < a < b < « and for each positive integer, m, let
K™[a, b] denote the collection of all real-valued fuactions u(x) defined on [a, b] such
that u € C™'[a, b] and such that D™ i is absolutely continuous, with D™u & L?[a, b],
where Du = du/dx denotes the derivative of u. For each nonnegative integer, M,
let ®,/(a, b) denote the set of all partitions, A, of [a, b] of the form

2.1 Ara =x < X% < *+» < xpy < Xpyyy = b.

Moreover, let ®a, b) = \U%., ®ula, b).

If A € ®u(a, b), m is a positive integer and z is an integer such that m — 1 =
z £ 2m — 2, we define the spline space, S(2m — 1, A, z), to be the set of all real-valued
functions s(x) & C’[a, b] such that on each subinterval (x;, x,.,),0 < i £ M, s(x) is
a polynomial of degree 2m — 1. We remark that our definition is identical with the
definition of deficient splines of [1]. For generalizations of this concept of spline
subspace, the reader is referred to [5]. In particular, it is easy to verify that all the
results of this paper remain essentially unchanged if one allows the number z to
depend on the partition points, x;, 1 < i £ M, insuch a way thatm — 1 = z(x,) =
2m — 2 for all 1 < i £ M. The details are left to the reader.

Following [1] we define the interpolation mapping 4,.: C™'[a, b] — S2m — 1, 4, 2)
by 9.(f) = s, where

0Zk=m-—1, i=0and M+ 1.
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508 MARTIN H. SCHULTZ

We remark that the preceding interpolation mapping corresponds to the Type 1
interpolation of [1]. It is easy to modify the results of this paper for the cases in which
the interpolation mapping corresponds to Types II, III, and IV interpolation of [1].
The details are left to the reader.

3. Basic L*-Error Bounds. In this section, we obtain explicit upper and lower
bounds for the quantities A(m, p, z, j), | Emm = p<2m,m— 1=z £ 2m — 2,
and 0 £ j £ m, defined by

A(m, p,z, j) = Sup {||D'(f — 9uPllLeta.61/ 11 D7fllLo1a.01
| f € K’la, b), ||D”f||Ls(a.e1 = O}.

First, we recall some basic results from [1] and [5] and introduce some additional
notation.

THEOREM 3.1. The interpolation mapping given by (2.2) is well defined for all
A€ ®a,b),l =madm — 1=z < 2m — 2.

THEOREM 3.2 (FIRST INTEGRAL RELATION). If f € K™[a, b], 1 = m, A & &(a, b),
andm — 1 £ z £ 2m — 2,

(3~2) ”Dmflli'la.bl = lIDm(j - gmf)“i‘la.bl + ”Dmgmf”i‘la-bl'

THEOREM 3.3 (SECOND INTEGRAL RELATION). If f € K*™[a, b], 1 < m, A € &(a, b).
andm — 1 £z £ 2m — 2,

(3.1)

(3.3) 1D7G = $uDllians = [ G = 9D dx.

Finally, following Kolmogorov, cf. [4, p. 146], if ¢ and d are positive integers, let
A\4(?) denote the dth eigenvalue of the boundary value problem,

3.4 (=1 D** p(x) = Ay(x), a < x<b,
(3.5 D'y(@) = D'y(b) =0, t<k<2—1,

where the A, are arranged in order of increasing magnitude and repeated according
to their multiplicity. We remark that the problem (3.4)-(3.5) has a countably infinite
number of eigenvalues, all of which are nonnegative and it may be shown that

Ao = (@/(b— a)" d&*'[1 + 0W@™")], ast<d— .
Using the bootstrapping technique of [1, p. 92], and letting

A= max (x;;, —x) and A= min (x;,,, — x,),
0sSisM 0sisM

for all A € ®(a, b), we have the following generalization of Theorem 7 of [5].
THEOREM 3.4.

(3.6) A m = ) S A, myz, ) S K, (BT
where
3.7) d=WM+ 1D2m —z4+ D +z—j+2
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and
Knim.i =1, ifm—1=2z=2m—2,j=m,
= (I/m" " ifm—1=2z0=<j<m—1,
2 — m)!
g =CEIZM o is:gam-205ism 21
z 2 — !
:%J)_ Hm—1<z<2m—22m—2—2<j<m~—1,

foralll =m0 M, AE Py(a,b)ym—1=2z=<2m—2,and0 = j = m.
Proof. First, we prove the right-hand inequality of (3.6). If m — 1 < z < 2m — 2
and j = m, the result follows directly from Theorem 3.2.
Otherwise, D'(f — 9,/)(x.)) = 0,1 £ i < M, 0= j=<2m — 2 — z and by
the Rayleigh-Ritz inequality, cf. [3, p. 184],

a9 [0 — sy as s (B) [ 00 - saneor ax,

v

0 £ j £ 2m — 2 — . Summing both sides of (3.9) with respect to i from 0 to M,
we obtain

i A i+l
(3.10) HD'(f — 9uhllistam = P HD'™'(f — 9uDllLrians

0 £ j £ 2m — 2 — z Using (3.10) repeatedly we obtain

(é) DT = 9Dl

™

I\

(3.11)  |ID'(f — 9uDlrr1am

Hence, if 2m — 1 — z = m, ie.. z = m — 1, then

IIA

(3.12) ID'(f — 9uDllzsta.01 (1) A" || D"f||Lo1a.b15

T

which is the required result for this special case.

Otherwise, since m < z, applying Rolle’s Theorem to D" *7*(j — d.f) €
C*"™*'[a, b], which vanishes at every mesh point, we have that for each 0 < j =
z — m + 1, there exist points {£}¢'"7 in [a, b] such that
Gy PTG - sn@ =0, 0= m— 1= @m= 22,

=z—m-+1, oI=M+ 1 —
B14) a=&" << <EL=b 0=jSz—mt L
(3.15) P £V <D, foral0 2 IS M+ 1 —j,0Sisz—m+1

and

lIA

(3.16) P -2 G+ DA, 0=SISM-—j0=jsz—m+1,

ie, choose ¢ = x, 0 =1 = M+ 1.
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510 : MARTIN H. SCHULTZ
Thus, applying the Rayleigh-Ritz inequality, we have
()
[ @i — sapeoy ax
¢

: A |2 pEaen
é [(J + I)A] L (Dzm—2—l+(l+l)(1 - 9-f))3 dx

T 1)

3.17)

forall0 = /=M — ;0= j=<z— m+ 1. Summing (3.17) with respect to / from
0to M — j, we have

G NP = e § CEDR D0 = aopllani,

0 = j=2z-— m+ 1 Using (3.18) repeatedly along with (3.2) we have

DG = gullzviem S EE2E @ 107G — 8uDlluvtenn
(3.19)
! oo 1 m
%2-—'"’71—”1); @AD"z ta.01-

Combining (3.11) with (3.19), we have that

3200 ID'G = SDllsrtem S EEETTE @D Yl gerem,

if0 < j = 2m — 2 — z. Otherwise, it follows from (3.18) that
(z+ 2 —
i

Finally, we prove the left-hand inequality of (3.6). This inequality follows directly
from a fundamental result of Kolmogorov, cf. [4, p. 146], which states that

(3.21) ID'(f — 9uhllirtaer S | | D™f||sta81-

(3-22) ‘—+1{2 m = j) é A(ma m,z, j)’

where ¢ = dimension D'(S2m — 1, A, z)), forall 1 £ m, 0 £ M, A € ®xla, b),
m—1=z=<2m— 2,and 0 £ j £ m. But the space D'(S2m — 1, A, z)) has
dimension t = 2m—j}M+1) — +1-)M = (M+1DQ2m—z+1) + z—j+1.
Q.E.D..
We remark that in this case it is easy to verify that there exists a positive constant,
K, such that
ATV S (b - a)"" 1 1 1
¢ =\ x M4+ )" s+ ks M+ 1)
> 1 1 1
ST+ KT M+ 1)

wheres = 2m — z+ 1 4+ (z — j + 2)/(M + 1)), and thus that splines are ‘“‘quasi-

SEGY R

optimal”.
The next result generalizes Theorem 9 of [5).
THEOREM 3.5.
(3.23) NVI@m = ) S Alm, 2m, 2, ) S Kaame (B
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where

(3.29) d=WM+1D)2m —z+ 1D+z—j+ 2

and

(3 25) Kn.Zm.l.i = (Km.n.:.i)(Kn.m.:.O)r fO" aII 1 é m, 0 g M’ A e (PM(a: b):

m—1=2z=2m—2,and0 S jS m.

Proof. Applying the Cauchy-Schwarz inequality to the Second Integral Relation
yields the inequality

(3.26) ID™(f = 9uDllistass S D" fl|estasrllf — Fufllzorass-
Applying the proof of Theorem 3.4, we have

3.27) D't = SmPllLrtass S Kmomeosl | D™(F = Il z21a BV,
Using (3.27) for the special case of j = 0 in (3.26) yields

(3-28) “Dm(f - gmf)”ula.b] = “th”mxa,b) Km.n,l.o(z)"

Using (3.28) to bound the right-hand side of (3.27) gives us the right-hand inequality
of (3.23). The left-hand inequality of (3.23) follows as in Theorem 3.4. Q.E.D.

We now recall a fundamental inequality of E. Schmidt which will be used several
times in the remainder of this paper.

LemMa 3.1. If px(x) is a polynomial of degree N,

E

(3.29) 11 Dowlletam & 3= lonllzsiams
where Ey = (N + 1) v/2.

Proof. Cf. [2]. QE.D.

THEOREM 3.6.
(3.30) MV — ) S A(m, py 2, ) £ Knpai(BY 7,
where
(3.31) d=WM+1D2m —z+ 1)+z—j+ 2
and

2

(332)  Knpuii = {K,.,.z..-,.; + K....,.....,-z“”"""“”[m,—f'm—!] (Z\/A)""’}
foralll Em, 0= M,AE CPu(a,b),ym<p<2mdm—2p—1=2z=2m-—2,

m,

and 0 £ j £ m.

Proof. Consider S2p — 1, A, 2m — 1) C K*"[a, b]. This space is well defined
since 2p — 2 = 2(m + 1) — 2 = 2m. Moreover, if g, denotes the interpolation
mapping of C™'[a, b] into S(2m — 1, A, z) and 9, denotes the interpolation mapping
of C*[a, b] into S2p — 1, A, 2m — 1), then 4,(9,f) = 9.f for all f € C*'[a, b].
In fact, D*g,f interpolates D*fat x;,, 1 £ i £ M,foral0 =k =2p — (2m — 1) —
2 = 2p — 2m — 1, while D*4,,f interpolates D*f at x;,, 1 < i < M, forall0 = k =
m—z—-—2=2m—(@4m—2p—1)—2=2p—2m-— 1L
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512 MARTIN H. SCHULTZ

Thus,

”D’(f - gmf)“b"[..bl é ”D,(j - gvf)”l:’h.b]
+ [|1D'(9,f — Im@o)lLotess, 0SS m.

(3.33)

By Theorem 3.4,
(3'34) “D,(j - gpj)”l-'ll.bl é Ka.a.2n—l.i(5)p—i”Dpf|IL’(c.b]’
and by Theorem 3.5

(3.35) D'Eyf = In@s|210.0) S Kmom,o s (B[ D™, f 121001

But by Schmidt’s inequality and the First Integral Relation, since 4,f is a piece-
wise polynomial of degree 2p — 1 with p > m, we have

2m-p
( H E2p—2m—l+i) ”DprL’(a'bl
=1

HD™3,f [l 12an) S

(3.36) B (&)
< 2<zm~p)/2[ p! :|2 HDD./“)L‘[a.hI.
= 2p + 2m)! @y

The required result now follows from (3.33), (3.34), (3.35), and (3.36). Q.E.D.

4. L’-Error Bounds for Higher Order Derivatives. In this section we give
explicit upper bounds for the quantities A(m, p, z, j) in the special cases of m < p < 2m
and m < j £ p. Since 4,.f is not necessarily in K’[a, b]if z + 1 < j < p, it is neces-
sary to modify the definition of A(m, p, z, j) given in (3.1). The new definition is
given by

M 1/2
A(m, D, z, /) = SUP {(Z ”Dl(f - gmf)lli”xi.zih)) /llef”L’la.hl
4.1) =0

lf G Kp[a, b]9 IlDDf”L’(a.bl #* 0}

The main result of this section is

THEOREM 4.1.
(4'2) A(l", D, ZzZ, j) é Km.p‘x‘f(ﬁ)p—iv
where
i 20 + m) |3fAY "
4.3 Km — Kp popi Km o K ~ 2(1 m)/z[(_p.—_] (-) ] )
( ) WPz, [ PP, + ( Pz + P.P.P, ) (zp —_ j)! é

foralll =m0 = M, A& ®u(a,b),m<p=<2mdm—2p—1=z=<2m-—2,
and m < j £ p.
Proof. By Theorem 3.6,

(4‘4) HD"‘(,’ - gmf)“[/’[a,b] § Km.P.z.m(E)p_mv
and by Theorem 3.4,

4.5 ID*(f — 9Pl S KpowiBY ™", 0=k

I\

p.
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Combining (4.4) and (4.5), we obtain

(4-6) “Dm(gmf - gpf)”L’[a.b] é (Km,p,z,m + Kp.p.p'm)(a)p_m-
Using the Schmidt inequality in (4.6), we obtain

i-m
<H E(Zp—l)—i+i)

i=1

@ay™"

D" Imf — 9D Lr1a.0)

lIA

HDi(gmf - gvf)llll’la‘bl
(4.7) .
é (Km.p.t.m + Kp,p,r.m)(H E2p—l—i+E)(A)"—i(a/é)i-m~

The required result follows from (4.5), (4.7), and

(4.8) ND'(f — 9uPllzstasr £ ID'G — 9Dl|Lstarsr + 11 D(05f — 9uPllLotarsr-
QED.

We remark that in those cases in which 9,,f € K'[a, b], lower bounds of the
form introduced in Section 3 can be given for A(m, p, z, j).

5. L®-Error Bounds. In this section, we give explicit upper bounds for the quan-
tities A*(m, p, z, j), 1 Emm=p=<2mm—1=2z=<2m—2,and0 = j = p,
defined by

Am(m, p,z, ]) = SUp {oma;(l (“D,(j - gmj)”L"lxi.zinl)/'ID’f“L’la.bl
S9is

(5.1)
If € K’la, b], “D’f”L’Ia.M # 0}-

We obtain the following results as corollaries of the results of Section 3 and Section 4.
As an improvement of Theorem 6 of [5], we have

THEOREM 5.1.
5.2) A°(m, m,z, ) £ Knmom,. (B2,
where
Komei= Knmoin, if m—1=2z,0=j=m-—1,
= Knmsisr, ifm—1<z=2m—2,0=5/=2m—2—zg

2
(5.3) !
=G —2m+ 3+ z)]/zK,,,_,,,,,,,-“, ifm—1<z=2m-—2,

2m — 2 —z< j=Em-—1,

forall £m 0= MAE ®Pyla,b),m — 1 =2 2z=2m—2,and0 £ jEm— 1

Proof. We give the proof in the special case of m — 1 = 2,0 £ j < m — 1, as

the proof in the other cases is analogous. Given any x € [a, b], there exists a point

y € [a, b] such that D'(f — 4,.f)(») = O and |x — y| < A. Hence, D'(f — 9.f}x) =
[z D'*'(f — 9.f)(2) dt and

ID'(f — 9uDlle=tar < QYD — 9uhllisia,er-

The result now follows from applying Theorem 3.4 to the right-hand side of the pre-
ceding inequality. Q.E.D.
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As in Theorem 5.1, we have as an improvement of Theorem 8 of [5].
THEOREM 5.2.
(5.4) A”(m, 2m, 2, j) S Kpom. /(B2
where
Keomsivn = Kpomsjsr, if m—1=20<j=m-—1,
= Knomsje1, if m—1<z=2m—2,0=52j=2m—2—z,
=G —2m4+ 342" Knomeis, if m—1<zZ2m—2,

2m—2 —z< j<m-—1,

(5.5)

foralll <m0 MAE Cula,b)ym—1=2z=2m—2,and0 = j<m— 1.
As in Theorem 3.6, we have

THEOREM 5.3.
(5.6) A(m, p,z, /) £ Kmpu s(BY V2,
where
® &3 o m— p! 2 E m=>
(5-7) Km.v.t.l = {Kn.v.2m—l.l + Km.?m.:.i'2(2 ,)/2[m] (Z ’

foralll =m0 M,AC ®Pula,b),m<p<2mdm—2p—1=z=2m-—2,
and0 = j=m— 1.

Finally, to give a result analogous to Theorem 4.1, we need an inequality due to
A. A. Markov.

LemMA 5.1. If py(x) is a polynomial of degree N, then

M

(5.8) [|DPy||Lotasr = bTN‘; [on]lz=ta.015
where My = 2N°.

Proof. Cf. [6]. QE.D.
As an extension of Theorem 10 of [5], we prove

THEOREM 5.4.
(5.9) A”(m’ p, 2z, j) é K:.".'i(Z)v—i-l/z,
where
® © @ © —-m+ (2p—m)’ ? 5 fmma1
(5.10) Kuses = {Kp.m.; + (Kmpsi + Kppp. )2 ’(m) (‘é‘)

forall 1=m 0=M, AC®ya, b), n<ps=2m,4m—2p—1=2z=2m-—2
andm = j<p-— 1
Proof. From Theorem 5.1, we have that

5.11)  ||1D*( = INllroten = Ko @Y 21D llrtans 0S kS p—1,
and from Theorem 5.3

(5.12) ID™7'(f — JmDllLotasr = Ka pom-1BY ™2 D?f|| Lrta,er -
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Combining (5.11) and (5.12), we have
(5.13) [|D"'Guf = 9Dllzot0rs S (Kmpreims F+ Kprpo st BY ™ || D°fl|Lstans -

But,
f-m+1
( H sz-l-l-n')

I1D'@nf = 8Dllems10m £ — = gmmer— 10" @af = 8:Dllz=stem
(5.14) - 2i_“ﬂ( @p — m) )2 1
= @ —j— Dl @™

'”Dm-l(gmf - gpf)”l.wAlo.bl’

where

“’”L‘”Alc.bl = m.ax “'”L“ln.zinl'

SisSm

The required result follows directly from (5.11), (5.13), (5.14), and the observation that
ID'(f — IaDllLogtam = [|ID'¢ — I, ta0 + || Dig,f — Iy a1
Q.E.D.
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