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Abstract

The pricing of options in exponential Lévy models amounts to the computation of

expectations of functionals of Lévy processes. In many situations, Monte Carlo methods

are used. However, the simulation of a Lévy process with infinite Lévy measure generally

requires either truncating or replacing the small jumps by a Brownian motion with the

same variance. We will derive bounds for the errors generated by these two types of

approximation.
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1. Introduction

In recent years, the use of general Lévy processes in financial models has grown extensively

(see [2], [5], and [11]). A variety of numerical methods have been subsequently developed,

in particular methods based on Fourier analysis (see [4], [12], [13], and [15]). Nonetheless,

in many situations, Monte Carlo methods have to be used. The simulation of a Lévy process

with infinite Lévy measure is not straightforward, except in some special cases like the gamma

or inverse Gaussian models. In practice, the small jumps of the Lévy process are either just

truncated or replaced by a Brownian motion with the same variance (see [1], [7], [8], [16],

and [18]). The latter approach was introduced by Asmussen and Rosinski [1], who showed

that, under suitable conditions, the normalized cumulated small jumps asymptotically behave

like a Brownian motion.

The purpose of this paper is to derive bounds for the errors generated by these two methods of

approximation in the computation of functions of Lévy processes at a fixed time or functionals

of the whole path of Lévy processes. We also derive bounds for the cumulative distribution

functions. These bounds can be used to determine which type of approximations to use, since

replacing small jumps by Brownian motion is more time consuming (if we use Monte Carlo

methods). Our bounds can be applied to derive approximation errors for lookback, barrier,

American, or Asian options. But, this latter point will not be developed, and is left to another

paper.

The characteristic function of a real Lévy process X with generating triplet (γ, b2, ν) is

given by

EeiuX t = exp

{

t

(

iγ u − b2u2

2
+

∫ +∞

−∞
(eiux − 1 − iux 1{|x|≤1})ν(dx)

)}

,
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Error bounds for small jumps of Lévy processes 87

where γ ∈ R, b ≥ 0, and ν is a Lévy measure. The process X is the independent sum of a drift

term γ t , a Brownian component bBt , and a compensated jump part with Lévy measure ν. The

process X has finite or infinite activity if ν(R) < ∞ or, respectively, ν(R) = +∞.

For 0 < ε ≤ 1, the process Xε is defined by

Xε
t = γ t + bBt +

∑

0≤s≤t

�Xs 1{|�Xs |>ε} −t

∫

ε<|x|≤1

xν(dx).

The process Xε is obtained (from X) by subtracting the compensated sum of jumps not

exceeding ε in absolute value. Let

Rε = X − Xε. (1)

The process Rε is a Lévy process with characteristic function

EeiuRε
t = exp

{

t

∫

|x|≤ε

(eiux − 1 − iux)ν(dx)

}

.

It holds that E(Rε
t ) = 0 and var(Rε

t ) = σ(ε)2t , where

σ(ε) =
√

∫

|x|≤ε

x2ν(dx).

Note that limε→0 σ(ε) = 0. The behavior of σ(ε) when ε goes to 0 is known for classical models

(VG, NIG, CGMY, etc.). As noted in Example 2.3 of [1], if ν(dx) = |x|−1−αL(x) dx, whereα ∈
(0, 2) and L is slowly varying at 0, then it holds that σ(ε) ∼ ((L(−ε)+L(ε))/(2−α))1/2ε1−α/2;

consequently, limε→0 σ(ε)/ε = +∞.

We also define the process X̂ε by

X̂ε
t = Xε

t + σ(ε)Ŵt , t ≥ 0,

where Ŵ is a standard Brownian motion independent of X. We aim to study the behavior of the

errors made by replacing X by Xε or X̂ε, with respect to the level ε. These errors are studied

for the process X at a fixed date and for its running supremum. Set, for any t ≥ 0,

Mt = sup
0≤s≤t

Xs, Mε
t = sup

0≤s≤t

Xε
s , M̂ε

t = sup
0≤s≤t

X̂ε
s .

Unless stated otherwise, X is a Lévy process with generating triplet (γ, b2, ν).

The paper is organized as follows. In the next section we will study the errors resulting

from the truncation of the compensated sum of small jumps. The results of that section are

based on estimates for the moments of Rε. We also derive an estimate for the expectation

E(Mt − Mε
t ), by using Spitzer’s identity. In Section 3 we study the errors resulting from a

Brownian approximation. The process X will be approximated by the process X̂ε. A major

result of Section 3 is Theorem 2, which gives an error bound for the expectation of a function

of the supremum. This result is the consequence of Theorem 3, which relies on the Skorokhod

embedding theorem.
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2. Truncation of the compensated sum of small jumps

In this section we will study the errors resulting from the approximation of X by Xε. These

errors are related to the moments of Rε. Define

σ0(ε) = max(σ (ε), ε). (2)

The next result will be useful for many proofs in this paper.

Proposition 1. Let X be a Lévy process, and let Rε be as defined in (1). Then

E|Rε
t |4 = t

∫

|x|≤ε

x4ν(dx) + 3(tσ (ε)2)2,

and, for any real q > 0,

E|Rε
t |q ≤ Kq,tσ0(ε)

q ,

where Kq,t is a positive constant which depends only on q and t .

Proof. Let ck(R
ε
t ) denote the kth cumulant of Rε

t . Then c1(R
ε
t ) = E(Rε

t ) = 0, and, for any

k ≥ 2, ck(R
ε
t ) = t

∫

|x|≤ε
xkν(dx) (note that c2(R

ε
t ) = var(Rε

t ) = σ 2(ε)t). See Proposition 1.2

of [20]. Substituting into the general formula

µ′
4 = c4 + 4c3c1 + 3c2

2 + 6c2c
2
1 + c4

1

(cf. (4) below), where, here and below, µ′
k and ck denote the kth moment and kth cumulant of a

distribution, respectively, gives the first part of the proposition. We now prove the second part.

Let n = ⌈q/2⌉. Since 0 < q/(2n) ≤ 1,

E|Rε
t |q ≤ (E|Rε

t |2n)q/(2n)

(by Jensen’s inequality for concave functions). It thus suffices to prove the result for the case

q = 2n, n ∈ N; in fact, for any n ∈ N, it holds that

|E(Rε
t )

n| ≤ Kn,tσ0(ε)
n. (3)

The last inequality can be proved by induction as follows. It is trivial for n = 0, 1, 2. Suppose

that (3) holds for all n < m. Then, by the well-known result (see, e.g. Theorem 2 of [14])

µ′
m =

m−1
∑

n=0

(

m − 1

n

)

µ′
ncm−n, m ≥ 1, (4)

for all m ≥ 2, we have (recall that c1(R
ε
t ) = 0)

|E(Rε
t )

m| ≤
m−2
∑

n=0

(

m − 1

n

)

|E(Rε
t )

n||cm−n(R
ε
t )|.

Hence, in view of the induction hypothesis, it suffices to show that |cm−n(R
ε
t )| ≤ tσ0(ε)

m−n.

Since m − n ≥ 2, we have cm−n(R
ε
t ) = t

∫

|x|≤ε
xm−nν(dx), and, hence,

|cm−n(R
ε
t )| ≤ t

∫

|x|≤ε

|x|m−nν(dx) ≤ tεm−n−2

∫

|x|≤ε

|x|2ν(dx) ≤ tσ0(ε)
m−n.

The proposition is thus established.
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2.1. Estimates for smooth functions

Let X be a Lévy process, and let f be a C-Lipschitz function, where C > 0. Then

E|f (Xt ) − f (Xε
t )| ≤ CE|Rε

t | ≤ C

√

E|Rε
t |2 ≤ C

√
tσ (ε).

Note that we do not ask that f (Xt ) be integrable. If f is more regular, sharper estimates can

be derived, as shown in the following proposition.

Proposition 2. Let X be an infinite activity Lévy process.

1. If f ∈ C1(R) and satisfies E|f ′(Xε
t )| < ∞, and if there exists β > 1 such that

(supε∈(0,1] E|f ′(Xε
t + θRε

t ) − f ′(Xε
t )|β)1/β is finite and integrable with respect to θ

on [0, 1], then

E(f (Xt ) − f (Xε
t )) = o(σ0(ε)).

2. If f ∈ C2(R) and satisfies E|f ′(Xε
t )| + E|f ′′(Xε

t )| < ∞, and if there exists β > 1 such

that (supε∈(0,1] E|f ′′(Xε
t + θRε

t ) − f ′′(Xε
t )|β)1/β is finite and integrable with respect to

θ on [0, 1], then

E(f (Xt ) − f (Xε
t )) = σ(ε)2t

2
Ef ′′(Xε

t ) + o(σ0(ε)
2).

Note that, if f has bounded derivatives or f is the exponential function and eβXt is integrable,

where β > 1, the conditions in the above proposition are satisfied. Recall that the truncation

of small jumps is used when ν(R) = ∞. In typical applications, we have lim inf σ(ε)/ε > 0,

so that o(σ0(ε)
2) is in fact o(σ (ε)2).

Proof of Proposition 2. To prove part 1, we first write f (Xt ) − f (Xε
t ) as

f (Xt ) − f (Xε
t ) =

∫ 1

0

(f ′(Xε
t + θRε

t ) − f ′(Xε
t ))R

ε
t dθ + f ′(Xε

t )R
ε
t (5)

(by Theorem 27.4 of [17], Rε
t �= 0 almost surely (a.s.)). Since Rε

t and Xε
t are independent,

E[f ′(Xε
t )R

ε
t ] = 0. For any 1 < α < β, by Hölder’s inequality,

E|(f ′(Xε
t + θRε

t ) − f ′(Xε
t ))R

ε
t | ≤ (E|f ′(Xε

t + θRε
t ) − f ′(Xε

t )|α)1/α(E|Rε
t |α/(α−1))(α−1)/α.

By Lyapunov’s inequality,

(E|f ′(Xε
t + θRε

t ) − f ′(Xε
t )|α)1/α ≤ (E|f ′(Xε

t + θRε
t ) − f ′(Xε

t )|β)1/β .

Furthermore, the assumption supε∈(0,1] E|f ′(Xε
t + θRε

t ) − f ′(Xε
t )|β < ∞ implies that the

collection {|f ′(Xε
t + θRε

t ) − f ′(Xε
t )|α}ε∈(0,1] is uniformly integrable; hence, since |f ′(Xε

t +
θRε

t ) − f ′(Xε
t )|α → 0 a.s. as ε → 0, E|f ′(Xε

t + θRε
t ) − f ′(Xε

t )|α → 0 (pointwise for θ ∈
[0, 1]). Therefore, by dominated convergence,

lim
ε→0

∫ 1

0

(E|f ′(Xε
t + θRε

t ) − f ′(Xε
t )|α)1/α dθ = 0.

Combined with Proposition 1, it thus follows that

∫ 1

0

E[(f ′(Xε
t + θRε

t ) − f ′(Xε
t ))R

ε
t ] dθ = o(σ0(ε)).
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Part 1 of the proposition then follows from (5) (using Fubini’s theorem). We now prove the

second part of the proposition. Using Taylor’s formula, we obtain

E(f (Xt ) − f (Xε
t )) = E

[

f ′(Xε
t )(Xt − Xε

t ) +
∫ Xt

Xε
t

f ′′(x)(Xt − x) dx

]

= E

[

f ′(Xε
t )R

ε
t +

∫ 1

0

f ′′(Xε
t + θRε

t )(1 − θ)(Rε
t )

2 dθ

]

= E

[∫ 1

0

f ′′(Xε
t + θRε

t )(1 − θ)(Rε
t )

2 dθ

]

= E

[∫ 1

0

f ′′(Xε
t )(1 − θ)(Rε

t )
2 dθ

]

+ E

[∫ 1

0

(f ′′(Xε
t + θRε

t ) − f ′′(Xε
t ))(1 − θ)(Rε

t )
2 dθ

]

.

The first expectation after the last equality sign is equal to (σ (ε)2t/2)Ef ′′(Xε
t ), while the second

expectation can be shown to be o(σ0(ε)
2) by following the proof of part 1. The proposition is

proved.

Remark 1. Assume that X is an integrable infinite activity Lévy process and that f ∈ C1(R)

with f ′ being C-Lipschitz. Then

|E(f (Xt ) − f (Xε
t ))| ≤ Cσ(ε)2t

2
.

Indeed, E[f ′(Xε
t )R

ε
t ] = 0 (by the assumptions on X and f , E|f ′(Xε

t )| < ∞), and so the result

follows directly from (5) using

|E(f (Xt ) − f (Xε
t ))| ≤ E

[∫ 1

0

|f ′(Xε
t + θRε

t ) − f ′(Xε
t )||Rε

t | dθ

]

.

We will consider now the case of the supremum process.

Proposition 3. Let X be a Lévy process, and let f be a K-Lipschitz function. Then

E|f (Mt ) − f (Mε
t )| ≤ 2K

√
tσ (ε).

Proof. We have

E

∣

∣

∣
f

(

sup
0≤s≤t

Xs

)

− f
(

sup
0≤s≤t

Xε
s

)
∣

∣

∣
≤ KE

∣

∣

∣
sup

0≤s≤t

Xs − sup
0≤s≤t

Xε
s

∣

∣

∣

≤ KE sup
0≤s≤t

|Rε
s |

≤ K

√

E

(

sup
0≤s≤t

|Rε
s |

)2
.

Note that Rε is a càdlàg martingale. So, using Doob’s inequality, we obtain

E

∣

∣

∣
f

(

sup
0≤s≤t

Xs

)

− f
(

sup
0≤s≤t

Xε
s

)∣

∣

∣
≤ 2K

√

E|Rε
t |2 = 2K

√
tσ (ε).
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Remark 2. Suppose that X is an integrable Lévy process and that f is a function from R
+ ×R

to R, K-Lipschitz with respect to its second variable. Then

∣

∣

∣
sup

τ∈T[0,t]
Ef (τ, Xτ ) − sup

τ∈T[0,t]
Ef (τ, Xε

τ )

∣

∣

∣
≤ 2K

√
tσ (ε),

where T[0,t] denotes the set of stopping times with values in [0, t]. For a proof, the reader is

referred to [9, pp. 67–68].

The bound in Proposition 3 might not be optimal. This is what suggests the following result.

Theorem 1. Let X be an integrable infinite activity Lévy process. Then

0 ≤ E(Mt − Mε
t ) = o(σ (ε)).

Proof. Using Spitzer’s identity (see Proposition 1 of [10, Section 3] for details), we have

E(Mt − Mε
t ) =

∫ t

0

EX+
s

s
ds −

∫ t

0

E(Xε
s )

+

s
ds =

∫ t

0

E(X+
s − (Xε

s )
+)

ds

s
.

It holds that

X+
s − (Xε

s )
+ = (Xε

s + Rε
s )

+ − (Xε
s )

+

= (Xε
s + Rε

s ) 1{Xε
s +Rε

s >0} −Xε
s 1{Xε

s >0}

= (Xε
s + Rε

s )(1{Xε
s >0} + 1{Xε

s +Rε
s >0, Xε

s ≤0} − 1{Xε
s +Rε

s ≤0, Xε
s >0}) − Xε

s 1{Xε
s >0}

= (Xε
s + Rε

s )(1{Xε
s +Rε

s >0, Xε
s ≤0} − 1{Xε

s +Rε
s ≤0, Xε

s >0}) + Rε
s 1{Xε

s >0}

= (|Rε
s | − |Xε

s |)+(1{Xε
s +Rε

s >0, Xε
s ≤0} + 1{Xε

s +Rε
s ≤0, Xε

s >0}) + Rε
s 1{Xε

s >0}.

Set I ε
s = E(X+

s − (Xε
s )

+). Thus, since E(Rε
s 1{Xε

s >0}) = 0 (by independence),

0 ≤ I ε
s ≤ E(|Rε

s | − |Xε
s |)+.

By the left inequality, E(Mt − Mε
t ) ≥ 0. We now prove that E(Mt − Mε

t ) = o(σ (ε)). Since

(|Rε
s | − |Xε

s |)+ ≤ |Rε
s | 1{|Xε

s |<|Rε
s |}, we obtain I ε

s ≤ E(|Rε
s | 1{|Xε

s |<|Rε
s |}). Hence, by the Cauchy–

Schwarz inequality,

I ε
s ≤ (E|Rε

s |2)1/2(E(1{|Xε
s |<|Rε

s |})
2)1/2 = σ(ε)

√
sP[|Xε

s | < |Rε
s |]1/2.

Thus,

0 ≤ E(Mt − Mε
t ) ≤ σ(ε)

∫ t

0

P[|Xε
s | < |Rε

s |]1/2 ds√
s

.

Since ν(R) = ∞, Rε
s → 0 a.s. and Xε

s → Xs a.s. with Xs �= 0. Hence, P[|Xε
s | < |Rε

s |]1/2 → 0

as ε → 0. Therefore, by dominated convergence,

lim
ε→0

∫ t

0

P[|Xε
s | < |Rε

s |]1/2 ds√
s

= 0,

and so E(Mt − Mε
t ) = o(σ (ε)).

In financial applications, the function f in Proposition 3 is not always Lipschitz, as for the

call lookback option where the function is exponential.
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Proposition 4. Let X be a Lévy process, and let p > 1. If EepM t < ∞ then

E|eMt − eMε
t | ≤ Cp,tσ0(ε),

where Cp,t is a positive constant independent of ε.

Lemma 1. Let p > 0. If EepM t < ∞ then sup0<δ≤1 EepMδ
t < ∞.

Remark 3. For any p > 0, EepM t < ∞ if and only if
∫

x>1 epxν(dx) < ∞.

The ‘only if’ part follows from Theorem 25.3 of [17], noting that epXt ≤ epM t . For the ‘if’

part, decompose X as the independent sum X = Y + Z + Z′ of Lévy processes, where Y has

Lévy measure [ν]{|x|≤1}, and Z and Z′ are pure jump with Lévy measures [ν]{x>1} and [ν]{x<−1},
respectively. Here [ν]E denotes the restriction of ν to E. Note that Mt ≤ sup0≤s≤t Ys+Zt ; thus,

E[epM t ] ≤ E[exp{p sup0≤s≤t Ys}]E[epZt ]. It can be deduced from Theorems 25.3 and 25.18

of [17] that E[exp{p sup0≤s≤t Ys}] is finite; so is E[epZt ] by the former theorem, under the

assumption that
∫

x>1 epxν(dx) < ∞. Hence, E[epM t ] < ∞.

Proof of Lemma 1. For δ ∈ (0, 1], define R̄δ = Xδ − X1. The process R̄δ is the compen-

sated sum of jumps belonging to (δ, 1] in absolute value. So

EepMδ
t ≤ E exp

{

p sup
0≤s≤t

X1
s + p sup

0≤s≤t

R̄δ
s

}

≤ E exp
{

p sup
0≤s≤t

X1
s

}

E exp
{

p sup
0≤s≤t

|R̄δ
s |

}

.

By hypothesis and Remark 3, noting that Remark 3 also holds for M1
t , E exp{p sup0≤s≤t X1

s } <

∞. We need to bound E exp{p sup0≤s≤t |R̄δ
s |} independently of δ. We have

E exp
{

p sup
0≤s≤t

|R̄δ
s |

}

= E

+∞
∑

n=0

(p sup0≤s≤t |R̄δ
s |)n

n!

= 1 + pE sup
0≤s≤t

|R̄δ
s | +

+∞
∑

n=2

pn

n! E

(

sup
0≤s≤t

|R̄δ
s |

)n

.

By Doob’s inequality (R̄δ is a càdlàg martingale),

E exp
{

p sup
0≤s≤t

|R̄δ
s |

}

≤ 1 + p

√

E

(

sup
0≤s≤t

|R̄δ
s |

)2
+

+∞
∑

n=2

pn

n!

(

n

n − 1

)n

E|R̄δ
t |n

≤ 1 + 2p

√

E|R̄δ
t |2 +

+∞
∑

n=2

pn

n! 2n
E|R̄δ

t |n

≤ 2p

√

var(R̄δ
t ) + E

+∞
∑

n=0

pn

n! 2n|R̄δ
t |n

≤ 2p

√

t

∫

δ<|x|≤1

x2ν(dx) + Ee2p|R̄δ
t |

≤ 2p
√

tσ (1)2 + Ee2pR̄δ
t + Ee−2pR̄δ

t .

It thus suffices to show that sup0<δ≤1 EeβR̄δ
t < ∞ for any β ∈ R. Indeed, we have

EeβR̄δ
t = exp

{

t

∫

δ<|x|≤1

(eβx − 1 − βx)ν(dx)

}
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(a moment generating function of a compensated compound Poisson process). By Taylor’s

theorem, eβx − 1 − βx = β2x2eβξ/2 for any |x| ≤ 1, where ξ is some number between 0

and x. This completes the proof, as it implies that

EeβR̄δ
t ≤ exp

{

β2t

2
e|β|

∫

|x|≤1

x2ν(dx)

}

.

Proof of Proposition 4. By the mean value theorem, we have

eMt − eMε
t = (Mt − Mε

t )eM̄ε
t ,

where M̄ε
t is between Mt and Mε

t . Let q be defined such that 1/p + 1/q = 1. Then

E|eMt − eMε
t | ≤ E|Mt − Mε

t |eM̄ε
t

≤ E sup
0≤s≤t

|Rε
s |eM̄ε

t

≤
(

E

(

sup
0≤s≤t

|Rε
s |

)q)1/q

(EepM̄ε
t )1/p.

Hence, using Doob’s inequality and then Proposition 1, we obtain

E|eMt − eMε
t | ≤ q

q − 1
(E|Rε

t |q)1/q(EepM̄ε
t )1/p

≤ Cp,tσ0(ε)(E(epM t + epMε
t ))1/p,

where Cp,t denotes a constant depending on p and t . We conclude the proof by Lemma 1.

2.2. Estimates for cumulative distribution functions

For cumulative distribution functions, bounds are expected to be bigger. However, in some

cases we can get similar results as in the Lipschitz case. In the first result below, we assume

local boundedness of the probability density function of the Lévy process X and its supremum

process M at a fixed time t . The regularity of the probability density function of a Lévy process

is studied in [3] and [17]. For the supremum process, see [6] and [9].

Proposition 5. Let X be a Lévy process.

1. If b > 0 then

sup
x∈R

|P[Xt ≥ x] − P[Xε
t ≥ x]| ≤ 1√

2πb
σ(ε).

2. If Xt has a locally bounded probability density function and x ∈ R, then, for any

q ∈ (0, 1),

|P[Xt ≥ x] − P[Xε
t ≥ x]| ≤ Cx,t,qσ0(ε)

1−q ,

where, here and below, Cx,t,q denotes a positive constant depending on x, t , and q.

3. If Mt has a locally bounded probability density function on (0, +∞) and x > 0, then,

for any q ∈ (0, 1
2
),

|P[Mt ≥ x] − P[Mε
t ≥ x]| ≤ Cx,t,qσ0(ε)

1−q .
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Lemma 2. Let X and Y be two random variables. We assume that X has a bounded density

in a neighborhood of x ∈ R, and that there exists p > 0 such that E|X − Y |p is finite. Then

there exists a constant Kx > 0 such that, for any δ > 0,

|P[X ≥ x] − P[Y ≥ x]| ≤ Kxδ + E|X − Y |p
δp

.

Proof. We have

|P[X ≥ x] − P[Y ≥ x]| = |P[X ≥ x, Y < x] − P[X < x, Y ≥ x]|.

We will study the above terms on the right-hand side of the equality. We have

P[X ≥ x, Y < x] = P[x ≤ X < x + (X − Y )]
= P[x ≤ X < x + (X − Y ), |X − Y | ≤ δ]

+ P[x ≤ X < x + (X − Y ), |X − Y | > δ]
≤ P[x ≤ X < x + δ] + P[|X − Y | > δ].

Suppose that X has a bounded density f in the interval [x − δ0, x + δ0], δ0 > 0 fixed, and let

Kx = max
{

sup
x−δ0≤t≤x+δ0

f (t),
1

δ0

}

.

By considering the cases δ < δ0 and δ ≥ δ0 separately, it is readily checked that

P[x ≤ X < x + δ] ≤ Kxδ

for any δ > 0. Thus, using Markov’s inequality, we obtain

P[X ≥ x, Y < x] ≤ Kxδ + E|X − Y |p
δp

.

Similarly, using P[x − δ ≤ X < x] ≤ Kxδ, it holds that

P[X < x, Y ≥ x] ≤ Kxδ + E|X − Y |p
δp

.

Lemma 2 is thus established.

Proof of Proposition 5. We have

|P[Xt ≥ x] − P[Xε
t ≥ x]| = |P[Xt ≥ x, Xε

t < x] − P[Xt < x, Xε
t ≥ x]|. (6)

It holds that

P[Xt ≥ x, Xε
t < x] = P[x − (Xt − Xε

t ) ≤ Xε
t < x] = P[x − Rε

t ≤ bBt + (Xε
t − bBt ) < x].

Note that bBt is independent of Xε
t − bBt and Rε

t , and 1/(
√

2πtb) is an upper bound of the

probability density function of bBt . Then, by conditioning on the pair (Rε
t , X

ε
t − bBt ), it can

be concluded that

P[x − Rε
t ≤ bBt + (Xε

t − bBt ) < x] ≤ 1√
2πtb

E|Rε
t |.
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Therefore, using the fact that E|Rε
t | ≤ σ(ε)

√
t ,

P[Xt ≥ x, Xε
t < x] ≤ 1√

2πb
σ(ε).

Similarly,
P[Xt < x, Xε

t ≥ x] = P[x ≤ Xε
t < x − (Xt − Xε

t )]
= P[x ≤ bBt + (Xε

t − bBt ) < x − Rε
t ]

≤ 1√
2πb

σ(ε).

Hence, part 1 of the proposition follows from (6).

We now prove part 2 of the proposition. Let p > 0. By Lemma 2 followed by Proposition 1,

there exist positive constants Kx,t and Kp,t such that

|P[Xt ≥ x] − P[Xε
t ≥ x]| ≤ Kx,tδ + E|Xt − Xε

t |p
δp

= Kx,tδ + E|Rε
t |p

δp

≤ Kx,tδ + Kp,t

σ0(ε)
p

δp

for any δ > 0. Choosing δ = σ0(ε)
p/(p+1) yields

|P[Xt ≥ x] − P[Xε
t ≥ x]| ≤ 2 max(Kx,t , Kp,t )σ0(ε)

p/(p+1),

and so the result follows since p/(p + 1) can be chosen arbitrarily in (0, 1).

We now prove part 3 of the proposition. Let p > 1. By Lemma 2, there exists a constant

K ′
x,t > 0 such that

|P[Mt ≥ x] − P[Mε
t ≥ x]| ≤ K ′

x,tδ + E|Mt − Mε
t |p

δp

for any δ > 0. On the other hand,

E|Mt − Mε
t |p ≤ E

(

sup
0≤s≤t

|Xs − Xε
s |

)p

= E

(

sup
0≤s≤t

|Rε
s |

)p

.

So, by Doob’s inequality we have, using the constant Kp,t from part 2,

E|Mt − Mε
t |p ≤

(

p

p − 1

)p

E|Rε
t |p ≤ Kp,t

(

p

p − 1

)p

σ0(ε)
p.

Part 3 of the proposition then follows by choosing δ = σ0(ε)
p/(p+1).

3. Approximation of the compensated sum of small jumps by a Brownian motion

In this section we will replace Rε by a Brownian motion. This method gives better results,

subject to a convergence assumption. In fact, Asmussen and Rosinski proved [1, Theorem 2.1]

that, if X is a Lévy process then the process σ(ε)−1Rε converges in distribution to a standard

Brownian motion, when ε → 0, if and only if, for any k > 0,

lim
ε→0

σ(kσ(ε) ∧ ε)

σ (ε)
= 1. (7)
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Condition (7) is implied by the condition

lim
ε→0

σ(ε)

ε
= +∞. (8)

Conditions (7) and (8) are equivalent if ν does not have atoms in some neighborhood of 0

(see [1, Proposition 2.1]).

3.1. Estimates for smooth functions

The errors resulting from the Brownian approximation have not been much studied in the

literature, at least theoretically. Some results are given in [7] and [8].

Proposition 6. Let X be an infinite activity Lévy process, and let t > 0.

1. If f ∈ C1(R) and satisfies E|f ′(Xε
t )| < ∞, and if there exists β > 1 such that

(supε∈(0,1] E|f ′(Xε
t + θσ (ε)Ŵt ) − f ′(Xε

t )|β)1/β and (supε∈(0,1]E|f ′(Xε
t + θRε

t ) −
f ′(Xε

t )|β)1/β are finite and integrable with respect to θ on [0, 1], then

E(f (Xt ) − f (X̂ε
t )) = o(σ0(ε)).

2. If f ∈ C2(R) and satisfies E|f ′(Xε
t )| + E|f ′′(Xε

t )| < ∞, and if there exists β > 1

such that (supε∈(0,1] E|f ′′(Xε
t + θσ (ε)Ŵt ) − f ′′(Xε

t )|β)1/β and (supε∈(0,1] E|f ′′(Xε
t +

θRε
t ) − f ′′(Xε

t )|β)1/β are finite and integrable with respect to θ on [0, 1], then

E(f (Xt ) − f (X̂ε
t )) = o(σ0(ε)

2).

Examples of functions satisfying the above conditions are noted after Proposition 2.

Proof of Proposition 6. We consider only part 2. The proof for part 1 is similar. By

Proposition 2 we have

E(f (Xt ) − f (Xε
t )) = σ(ε)2t

2
Ef ′′(Xε

t ) + o(σ0(ε)
2).

On the other hand, using the same reasoning as in the proof of Proposition 2 (we will replace

Rε by σ(ε)Ŵ ), we obtain

E(f (Xε
t + σ(ε)Ŵt ) − f (Xε

t )) = σ(ε)2t

2
Ef ′′(Xε

t ) + o(σ0(ε)
2).

Hence,

E(f (Xt ) − f (X̂ε
t )) = o(σ0(ε)

2).

The combination of Proposition 6.2 of [7] and Spitzer’s identity for Lévy processes (see

Proposition 1 of [10]) leads to the following result.

Proposition 7. Let X be an integrable infinite activity Lévy process. Then

|EMt − EM̂ε
t | ≤ 33σ(ε)ρ(ε)

(

1 + log

(
√

t

2ρ(ε)

))

,

where ρ(ε) = σ(ε)−3
∫

|x|≤ε
|x|3ν(dx).
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Remark 4. Under condition (8), we have limε→0 ρ(ε) = 0 and, in turn,

σ(ε)ρ(ε)

(

1 + log

(
√

t

2ρ(ε)

))

= o(σ (ε)).

Proof of Proposition 7. Let δ ∈ (0, t). Using Spitzer’s identity for Lévy processes, we have

|EMt − EM̂ε
t | =

∣

∣

∣

∣

∫ t

0

EX+
s

s
ds −

∫ t

0

E(X̂ε
s )

+

s
ds

∣

∣

∣

∣

≤
∫ δ

0

|EX+
s − E(X̂ε

s )
+| ds

s
+

∫ t

δ

|EX+
s − E(X̂ε

s )
+| ds

s
.

On the one hand,

|EX+
s − E(X̂ε

s )
+| ≤ E|(Xε

s + Rε
s )

+ − (Xε
s + σ(ε)Ŵs)

+|
≤ E|Rε

s − σ(ε)Ŵs |

≤
(

1 +
√

2

π

)√
sσ (ε).

On the other hand, it follows from Proposition 6.2 of [7] that

|EX+
s − E(X̂ε

s )
+| ≤ Aσ(ε)ρ(ε),

with A < 16.5 (consider the function f (x) = x+). Therefore,

|EMt − EM̂ε
t | ≤ 2

(

1 +
√

2

π

)

σ(ε)
√

δ + Aσ(ε)ρ(ε) log

(

t

δ

)

≤ 16.5σ(ε)

(√
δ + ρ(ε) log

(

t

δ

))

.

The last expression is minimal for δ = 4ρ(ε)2, and so the desired result follows by substitution.

3.2. Estimates by Skorokhod embedding

We will use a powerful tool to prove the results of this section. This is the Skorokhod

embedding theorem. We will begin by defining some useful notation.

Definition 1. Define

β(ε) =
∫

|x|≤ε
x4ν(dx)

(σ0(ε))4
,

β t
p,θ (ε) = β(ε)pθ/(p+4θ)

[(

log

(

t

β(ε)2θ/(p+4θ)
+ 3

))p

+ 1

]

,

β t
1(ε) = β(ε)1/6

(

√

log

(

t

β(ε)1/3
+ 3

)

+ 1

)

,

β t
2(ε) = β(ε)1/4

(

log

(

t

β(ε)1/4
+ 3

)

+ 1

)

.

Remark 5. Note that, under condition (8), we have limε→0 β(ε) = 0.
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The proof of Proposition 7 cannot be extended to the Lipschitz functions, because the

reformulation of the Spitzer identity for Lévy processes cannot be applied in that case. We have

to use another method. Define

Vj,n = Rε
jt/n − Rε

(j−1)t/n, j = 1, . . . , n,

so that Rε
kt/n =

∑k
j=1 Vj,n, k = 1, . . . , n. The Vj,n are independent and identically distributed

(i.i.d.) with the same distribution as Rε
t/n; hence, E(Vj,n) = 0 and var(Vj,n) = σ(ε)2t/n. Thus,

by Skorokhod’s embedding theorem (see Theorem 1 of [19, p. 163]), there exist positive i.i.d.

random variables τj , j = 1, . . . , n, and a standard Brownian motion, B̂, such that the (partial

sums) Rε
kt/n and the B̂τ1+···+τk

, k = 1, . . . , n, have the same joint distributions; moreover,

E(τ1) = var(V1,n) and

Eτ 2
1 ≤ 4EV 4

1,n. (9)

Furthermore, note that the σ(ε)Ŵkt/n and B̂σ(ε)2kt/n, k = 1, . . . , n, have the same joint

distributions. Set

Tk = τ1 + · · · + τk, T ε
k = σ(ε)2kt

n
.

This setting will be used in all of the subsequent results.

Theorem 2. Let X be an integrable infinite activity Lévy process, and let f be a Lipschitz

function. Then

|Ef (Mt ) − Ef (M̂ε
t )| ≤ Ctσ0(ε)β

t
1(ε),

where Ct is a positive constant independent of ε.

Proof. Set

I ε
f =

∣

∣

∣
E

(

f
(

sup
0≤s≤t

Xs

)

− f
(

sup
0≤s≤t

(

Xε
s + σ(ε)Ŵs

)))∣

∣

∣
,

I ε
f (n) =

∣

∣

∣
E

(

f
(

sup
0≤k≤n

Xkt/n

)

− f
(

sup
0≤k≤n

(

Xε
kt/n + σ(ε)Ŵkt/n

)))
∣

∣

∣
.

Because f is, say, K-Lipschitz, we can show that

∣

∣

∣
f

(

sup
0≤k≤n

Xkt/n

)

− f
(

sup
0≤k≤n

(Xε
kt/n + σ(ε)Ŵkt/n)

)
∣

∣

∣
≤ K

(

sup
0≤s≤t

|Rε
s | + σ(ε) sup

0≤s≤t

|Ŵs |
)

.

As the right-hand side expression is integrable, by dominated convergence we can deduce that

limn→+∞ I ε
f (n) = I ε

f . It holds that

I ε
f (n) =

∣

∣

∣
E

(

f
(

sup
0≤k≤n

(Xε
kt/n + B̂Tk

)
)

− f
(

sup
0≤k≤n

(Xε
kt/n + B̂T ε

k
)
))∣

∣

∣

≤ KE

∣

∣

∣
sup

0≤k≤n

(Xε
kt/n + B̂Tk

) − sup
0≤k≤n

(Xε
kt/n + B̂T ε

k
)

∣

∣

∣

≤ KE sup
1≤k≤n

|B̂Tk
− B̂T ε

k
|.

Part 1 of the following theorem concludes the proof.
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Theorem 3. Let X be an infinite activity Lévy process.

1. It holds that

lim sup
n→+∞

E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
| ≤ Ctσ0(ε)β

t
1(ε).

2. It holds that

lim sup
n→+∞

E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
|2 ≤ Ctσ0(ε)

2β t
2(ε).

3. For any reals p ≥ 1 and θ ∈ (0, 1), it holds that

lim sup
n→+∞

E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
|p ≤ Cp,θ,tσ0(ε)

pβ t
p,θ (ε).

In the above, Ct and Cp,θ,t are constants independent of ε.

This theorem is the main result of this section.

Lemma 3. Let X be an infinite activity Lévy process. Then, for any δ > 0,

lim sup
n→+∞

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

]

≤ 4tσ0(ε)
4β(ε)

δ2
.

Proof. As Tk − T ε
k =

∑k
i=1(τi − E(τi)), by Kolmogorov’s inequality,

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

]

≤ var(Tn − T ε
n )

δ2

≤ n var(τ1)

δ2

≤ nEτ 2
1

δ2

≤
4nE(Rε

t/n)
4

δ2
,

where the last inequality follows from (9). The proof then follows from Proposition 1.

Proof of Theorem 3. For δ > 0, we have

E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
| = I1 + I2,

with

I1 = E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
| 1{sup1≤k≤n |Tk−T ε

k |≤δ},

I2 = E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
| 1{sup1≤k≤n |Tk−T ε

k |>δ}.

On {sup1≤k≤n |Tk − T ε
k | ≤ δ}, set, for fixed k,

s1 = T ε
k ∧ Tk, s2 = T ε

k ∨ Tk.
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We have s1 ≤ s2 ≤ s1 +δ. Let j be such that jδ ≤ s1 < (j +1)δ. We have s1 ≤ s2 ≤ (j +2)δ.

If jδ ≤ s1 ≤ s2 ≤ (j + 1)δ, we have

|B̂s1 − B̂s2 | ≤ |B̂s1 − B̂jδ| + |B̂jδ − B̂s2 | ≤ 2 sup
0≤j≤[σ(ε)2t/δ]+1

(

sup
jδ≤u≤(j+1)δ

|B̂u − B̂jδ|
)

.

If jδ ≤ s1 ≤ (j + 1)δ ≤ s2 ≤ (j + 2)δ, we have

|B̂s1 − B̂s2 | ≤ |B̂s1 − B̂jδ| + |B̂jδ − B̂(j+1)δ| + |B̂(j+1)δ − B̂s2 |

≤ 3 sup
0≤j≤[σ(ε)2t/δ]+2

(

sup
jδ≤u≤(j+1)δ

|B̂u − B̂jδ|
)

.

Hence,

I1 ≤ 3E sup
0≤j≤[σ(ε)2t/δ]+2

(

sup
jδ≤u≤(j+1)δ

|B̂u − B̂jδ|
)

= 3E sup
1≤j≤[σ(ε)2t/δ]+3

(

sup
(j−1)δ≤u≤jδ

|B̂u − B̂(j−1)δ|
)

.

The random variables (sup(j−1)δ≤u≤jδ |B̂u − B̂(j−1)δ|)1≤j≤[σ(ε)2t/δ]+3 are i.i.d. with the same

distribution as sup0≤u≤δ |B̂u| and, in turn,
√

δ sup0≤u≤1 |B̂u|. Then

I1 ≤ 3
√

δE sup
1≤j≤[σ(ε)2t/δ]+3

Vj ,

where the (Vj )1≤j≤[σ(ε)2t/δ]+3 are i.i.d. random variables with the same distribution as

sup0≤u≤1 |B̂u|. On the other hand, we know that if (Vj )1≤j≤m are i.i.d. random variables

satisfying EeαV 2
1 < ∞, where α is a positive real, then

E sup
1≤j≤m

Vj ≤ g(mEeαV 2
1 ),

where g : x ∈ [1, +∞) →
√

log(x)/α. Indeed, since g is concave, we have

E sup
1≤j≤m

Vj = E sup
1≤j≤m

g(e
αV 2

j )

= Eg
(

sup
1≤j≤m

e
αV 2

j

)

(because g is nondecreasing)

≤ g
(

E sup
1≤j≤m

e
αV 2

j

)

(by Jensen’s inequality)

≤ g

(

E

m
∑

j=1

e
αV 2

j

)

(because g is nondecreasing)

= g(mEeαV 2
1 ).

In our case V1 = sup0≤u≤1 |B̂u|. So

V1 ≤ sup
0≤u≤1

B̂u + sup
0≤u≤1

(−B̂u).
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For α ∈ (0, 1
8
), we have

EeαV 2
1 ≤ E exp

{

2α
((

sup
0≤u≤1

B̂u

)2
+

(

sup
0≤u≤1

(−B̂u)
)2)}

≤
(

E exp
{

4α
(

sup
0≤u≤1

B̂u

)2})1/2(

E exp
{

4α
(

sup
0≤u≤1

(−B̂u)
)2})1/2

= E exp
{

4α
(

sup
0≤u≤1

B̂u

)2}

= (1 − 8α)−1/2.

The last equality follows from (sup0≤u≤1 B̂u)
2 ∼ χ2

1 upon using the moment generating

function of the χ2
1 distribution, given by (1 − 2β)−1/2 for β < 1

2
.

It follows straightforwardly from the above that, for α ∈ (0, 1
8
),

I1 ≤ Cα

√
δ

√

log

(

σ(ε)2t

δ
+ 3

)

,

where

Cα = 3

√

1

α

(

1 − log(1 − 8α)

2 log(3)

)

.

Let us now consider I2. We have

I2 ≤
(

E

(

sup
1≤k≤n

|B̂Tk
− B̂T ε

k
|
)2)1/2(

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

])1/2

≤
(

E

(

sup
1≤k≤n

|B̂Tk
| + sup

1≤k≤n

|B̂T ε
k
|
)2)1/2(

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

])1/2

≤
((

E sup
0≤s≤t

|Rε
s |2

)1/2
+

(

E sup
0≤s≤σ(ε)2t

|B̂s |2
)1/2)(

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

])1/2

≤ 2((E|Rε
t |2)1/2 + (E|B̂σ(ε)2t |2)1/2)

(

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

])1/2

≤ 4
√

tσ (ε)
(

P

[

sup
1≤k≤n

|Tk − T ε
k | > δ

])1/2
,

where the fourth inequality is obtained using Doob’s inequality. So, by Lemma 3 we have

lim sup
n→+∞

I2 ≤ 4
√

tσ (ε)

(

4tσ0(ε)
4β(ε)

δ2

)1/2

.

Hence,

lim sup
n→+∞

E sup
1≤k≤n

|B̂Tk
− B̂T ε

k
| ≤ Cα

√

δ log

(

σ(ε)2t

δ
+ 3

)

+ 8t

δ
σ (ε)σ0(ε)

2
√

β(ε).

Part 1 now follows by letting Ct = max(Cα, 8t) and choosing δ = σ0(ε)
2β(ε)1/3.

For the proofs of parts 2 and 3 of the theorem, we refer the reader to [9, pp. 86–89]. However,

some small corrections are needed in the proof of part 3 in order to comply with the definition

of β t
p,θ (ε).
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Remark 6. Letting θ = 1
2

and p = 1, 2 in the definition of β t
p,θ (ε), we see that part 3 of

Theorem 3 partially generalizes parts 1 and 2. It may be relevant to note here that, for part 3,

the proof used the function g(x) = (α−1 log(x))p, whereas, for parts 1 and 2, it used the

function g(x) = (α−1 log(x))p/2, p = 1, 2, respectively.

The following result follows directly from part 1 of Theorem 3.

Proposition 8. Let X be an integrable infinite activity Lévy process, and let f be a Lipschitz

function. Then

|Ef (Xt ) − Ef (X̂ε
t )| ≤ Ctβ

t
1(ε)σ0(ε),

where Ct is a positive constant.

Proof. We have Rε
t

d= B̂Tn and σ(ε)Ŵt
d= B̂T ε

n
. So, if f is K-Lipschitz, we have

|Ef (Xt ) − Ef (X̂ε
t )| = |Ef (Xε

t + B̂Tn) − Ef (Xε
t + B̂T ε

n
)| ≤ KE|B̂Tn − B̂T ε

n
|.

We conclude with Theorem 3.

For non-Lipschitz functions, we have the following result (corresponding to the payoff of a

lookback option).

Proposition 9. Let X be an infinite activity Lévy process, and let p > 1. If EepM t < ∞ then,

for any x ∈ R and any θ ∈ (0, 1),

|E(eMt − x)+ − E(eM̂ε
t − x)+| ≤ Cp,θ,tσ0(ε)(β

t
p/(p−1),θ (ε))

1−1/p,

where Cp,θ,t is a positive constant independent of ε.

Proof. Define

Mn
t = sup

0≤k≤n

(Xε
kt/n + Rε

kt/n), M̂
ε,n
t = sup

0≤k≤n

(Xε
kt/n + σ(ε)Ŵkt/n).

We know that limn→+∞ Mn
t = Mt a.s. and limn→+∞ M̂

ε,n
t = M̂ε

t a.s. Set

Un
t = sup

0≤k≤n

(Xε
kt/n + B̂Tk

), Û
ε,n
t = sup

0≤k≤n

(Xε
kt/n + B̂T ε

k
).

So Mn
t

d= Un
t and M̂

ε,n
t

d= Û
ε,n
t . By the mean value theorem we have

eUn
t − eÛ

ε,n
t = (Un

t − Û
ε,n
t )eŪ

ε,n
t ,

where Ū
ε,n
t is between Un

t and Û
ε,n
t . Set

I ε
n = |E(eUn

t − x)+ − E(eÛ
ε,n
t − x)+|.
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Thus,

I ε
n ≤ E|eUn

t − eÛ
ε,n
t |

≤ E|Un
t − Û

ε,n
t |eŪ

ε,n
t

≤ E sup
0≤k≤n

|B̂Tk
− B̂T ε

k
|eŪ

ε,n
t

≤
(

E sup
0≤k≤n

|B̂Tk
− B̂T ε

k
|p/(p−1)

)1−1/p

(EepŪ
ε,n
t )1/p

≤
(

E sup
0≤k≤n

|B̂Tk
− B̂T ε

k
|p/(p−1)

)1−1/p

(E(epMn
t + epM̂

ε,n
t ))1/p

≤
(

E sup
0≤k≤n

|B̂Tk
− B̂T ε

k
|p/(p−1)

)1−1/p

(E(epM t + epM̂ε
t ))1/p.

But,

E(epM t + epM̂ε
t ) ≤ E

(

epM t + exp
{

pσ(ε) sup
0≤s≤t

Ŵs

}

epMε
t

)

≤ EepM t + 2ep2σ(ε)2t/2
EepMε

t

≤ 2ep2σ(ε)2t/2
E(epM t + epMε

t ).

So, using dominated convergence, Theorem 3, and Lemma 1, we obtain

|E(eMt − x)+ − E(eM̂ε
t − x)+| = lim

n→+∞
|E(eMn

t − x)+ − E(eM̂
ε,n
t − x)+|

= lim sup
n→+∞

|E(eUn
t − x)+ − E(eÛ

ε,n
t − x)+|

≤ Cp,θ,tσ0(ε)(β
t
p/(p−1),θ (ε))

1−1/p.

3.3. Estimates for cumulative distribution functions

The bounds obtained in this section are better than those obtained by truncation, provided

that condition (8) is satisfied.

Proposition 10. Let X be an infinite activity Lévy process. Below, the constants Ct and Cx,t,q,θ

are independent of ε.

1. If b > 0 then

sup
x∈R

|P[Xt ≥ x] − P[X̂ε
t ≥ x]| ≤ Ctσ0(ε)β

t
1(ε).

2. If Xt has a locally bounded probability density function and x ∈ R, then, for any pair of

reals θ ∈ (0, 1), q ∈ (0, 1
2
],

|P[Xt ≥ x] − P[X̂ε
t ≥ x]| ≤ Cx,t,q,θσ0(ε)

1−q(β t
1/q−1,θ (ε))

q .

3. If Mt has a locally bounded probability density function on (0, +∞) and x > 0, then,

for any pair of reals θ ∈ (0, 1), q ∈ (0, 1
2
],

|P[Mt ≥ x] − P[M̂ε
t ≥ x]| ≤ Cx,t,q,θσ0(ε)

1−q(β t
1/q−1,θ (ε))

q .
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Proof. Recall that Rε
t

d= B̂Tn and σ(ε)Ŵt
d= B̂T ε

n
. Set

Yt = Xε
t + B̂Tn , Ŷ ε

t = Xε
t + B̂T ε

n
.

Thus,

|P[Xt ≥ x] − P[X̂ε
t ≥ x]| = |P[Yt ≥ x] − P[Ŷ ε

t ≥ x]|
= |P[Yt ≥ x, Ŷ ε

t < x] − P[Yt < x, Ŷ ε
t ≥ x]|.

It holds that

P[Yt ≥ x, Ŷ ε
t < x] = P[x − (Yt − Ŷ ε

t ) ≤ Ŷ ε
t < x]

= P[x − (B̂Tn − B̂T ε
n
) ≤ bBt + (Ŷ ε

t − bBt ) < x].

By construction, bBt is independent of (Ŷ ε
t −bBt ) and of (B̂Tn−B̂T ε

n
). Furthermore, 1/(b

√
2πt)

is an upper bound of the probability density function of bBt . By conditioning on the pair

(B̂Tn − B̂T ε
n
, Ŷ ε

t − bBt ), it can thus be concluded that

P[Yt ≥ x, Ŷ ε
t < x] ≤ 1

b
√

2πt
E|B̂Tn − B̂T ε

n
|.

Analogously, it also holds that

P[Yt < x, Ŷ ε
t ≥ x] ≤ 1

b
√

2πt
E|B̂Tn − B̂T ε

n
|.

We get the first part of the proposition by using Theorem 3.

We now prove the second part of the proposition. Let p ≥ 1. By Lemma 2, there exists

Kx,t > 0 such that, for any δ > 0,

|P[Yt ≥ x] − P[Ŷ ε
t ≥ x]| ≤ Kx,tδ + E|Yt − Ŷ ε

t |p
δp

= Kx,tδ +
E|B̂Tn − B̂T ε

n
|p

δp
.

Hence, given θ ∈ (0, 1), by Theorem 3, there exists a constant Cp,θ,t > 0 such that

|P[Yt ≥ x] − P[Ŷ ε
t ≥ x]| ≤ Kx,tδ + Cp,θ,t

σ0(ε)
pβ t

p,θ (ε)

δp
.

Choosing δ = σ0(ε)
p/(p+1)β t

p,θ (ε)
1/(p+1) yields

|P[Yt ≥ x] − P[Ŷ ε
t ≥ x]| ≤ 2 max(Kx,t , Cp,θ,t )σ0(ε)

p/(p+1)β t
p,θ (ε)

1/(p+1).

The result then follows by substituting p = 1/q − 1.

For the third part of the proposition, we use the notation of Proposition 9. Note that

|P[Mt ≥ x] − P[M̂ε
t ≥ x]| = lim

n→∞
|P[Mn

t ≥ x] − P[M̂ε,n
t ≥ x]|

= lim
n→∞

|P[Un
t ≥ x] − P[Û ε,n

t ≥ x]|.

Let p ≥ 1, and put Ix,δ = [x − δ, x + δ). Using the proof of Lemma 2, we have, for any δ > 0,

|P[Un
t ≥ x] − P[Û ε,n

t ≥ x]| ≤ P[Un
t ∈ Ix,δ] + E|Un

t − Û
ε,n
t |p

δp

≤ P[Mn
t ∈ Ix,δ] +

E sup1≤k≤n |B̂Tk
− B̂T ε

k
|p

δp
.
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By the assumption on Mt , there exists a constant K ′
x,t > 0 such that P[Mt ∈ Ix,δ]< K ′

x,tδ for

any δ > 0. Combined with Theorem 3, letting n → ∞ yields

lim
n→∞

|P[Un
t ≥ x] − P[Û ε,n

t ≥ x]| ≤ K ′
x,tδ + Cp,θ,t

σ0(ε)
pβ t

p,θ (ε)

δp

for some constant Cp,θ,t > 0. So, as in part 2, the result follows by choosing δ = σ0(ε)
p/(p+1)

β t
p,θ (ε)

1/(p+1).
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