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Abstract. Understanding the error structures of remotely

sensed soil moisture observations is essential for correctly

interpreting observed variations and trends in the data or as-

similating them in hydrological or numerical weather pre-

diction models. Nevertheless, a spatially coherent assess-

ment of the quality of the various globally available datasets

is often hampered by the limited availability over space and

time of reliable in-situ measurements. As an alternative, this

study explores the triple collocation error estimation tech-

nique for assessing the relative quality of several globally

available soil moisture products from active (ASCAT) and

passive (AMSR-E and SSM/I) microwave sensors. The triple

collocation is a powerful statistical tool to estimate the root

mean square error while simultaneously solving for system-

atic differences in the climatologies of a set of three linearly

related data sources with independent error structures. Pre-

requisite for this technique is the availability of a sufficiently

large number of timely corresponding observations. In addi-

tion to the active and passive satellite-based datasets, we used

the ERA-Interim and GLDAS-NOAH reanalysis soil mois-

ture datasets as a third, independent reference. The prime

objective is to reveal trends in uncertainty related to differ-

ent observation principles (passive versus active), the use of

different frequencies (C-, X-, and Ku-band) for passive mi-

crowave observations, and the choice of the independent ref-

erence dataset (ERA-Interim versus GLDAS-NOAH).

Correspondence to: W. A. Dorigo

(wd@ipf.tuwien.ac.at)

The results suggest that the triple collocation method pro-

vides realistic error estimates. Observed spatial trends agree

well with the existing theory and studies on the performance

of different observation principles and frequencies with re-

spect to land cover and vegetation density. In addition, if all

theoretical prerequisites are fulfilled (e.g. a sufficiently large

number of common observations is available and errors of

the different datasets are uncorrelated) the errors estimated

for the remote sensing products are hardly influenced by the

choice of the third independent dataset. The results obtained

in this study can help us in developing adequate strategies for

the combined use of various scatterometer and radiometer-

based soil moisture datasets, e.g. for improved flood forecast

modelling or the generation of superior multi-mission long-

term soil moisture datasets.

1 Introduction

In recent years, an increasing number of global soil moisture

products have become available from past and present pas-

sive and active coarse resolution satellite microwave sensors.

Altogether, these datasets span a period of more than 30 years

(Table 1). Knowing the quality of the different datasets and

understanding the various error sources (sensor calibration,

retrieval errors, model parameterisation, etc.) contributing

to the observed soil moisture variations is indispensable if

one wishes to draw conclusions on trends or anomalies in the

datasets, e.g. in relation to climate change (Liu et al., 2009).

But also other applications, like the assimilation of remotely

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2606 W. A. Dorigo et al.: Error characterisation of global active and passive microwave soil

Table 1. Operational products in the field of global monitoring of soil moisture using active and passive satellite microwave instruments

(sorted according to product release date).

Sensor Producer soil Dataset First product Reference

moisture product availability release

ERS-1/2 Vienna University of 1991–2007 2002 Scipal et al. (2002);

scatterometer Technology (TU Wien) Wagner et al. (2007)

AMSR-E US National Snow and 2002–present 2003 Njoku et al. (2003)

radiometer Ice Data Center (NSIDC)

AMSR-E Japanese Aerospace 2002–present 2004 Koike et al. (2004)

radiometer Exploration Agency (JAXA)

AMSR-E and United States Department 2002–present 2007 Jackson (1993)

TRMM-TMI radiometers of Agriculture (USDA)

ERS-1/2 Centre d’Etudes des 1991–present 2008 Zribi et al. (2003)

scatterometer Environnements Terrestre

et Planétaires

Windsat US navy 2003–present 2008 Li et al. (2010)

radiometer

SMMR, SSM/I, Vrije Universiteit 1979–present 2008 Owe et al. (2008)

TRMM-TMI, AMSR-E Amsterdam (VUA) and NASA

and WindSat radiometers

Soil Moisture European Space 2010–present 2010 Wigneron et al. (2007)

and Ocean Salinity Agency (ESA)

mission (SMOS)

sensed soil moisture in flood forecasting (Brocca et al., 2010)

or numerical weather prediction models (Drusch, 2007; Sci-

pal et al., 2008a; Mahfouf, 2010) require accurate estimates

of the quality of the observations.

Most of the globally available microwave-based soil mois-

ture products have been intensively validated using in-situ

observations (e.g. Wagner et al., 2007; Jeu et al., 2008;

Gruhier et al., 2010; Jackson et al., 2010). Even though the

quality of the datasets can be established fairly accurately

for the locations of the in-situ stations, available ground ob-

servations are restricted to a few locations worldwide and

often cover only limited observation periods. In addition, re-

liable error estimation is complicated by representativeness

and scaling errors, which can be larger than the actual re-

trieval error (Martı́nez-Fernández and Ceballos, 2005). Also,

differences in observation times and depths, and inaccuracies

of the in-situ measurements may lead to faulty interpretations

of the obtained validation results (Gruhier et al., 2010).

In contrast to the locally confined in-situ validations, error

propagation methods can provide a more global picture of the

uncertainty of soil moisture datasets. Error propagation tech-

niques assess the uncertainty of model estimates resulting

from errors in the input variables. Naeimi et al. (2009) used a

combined analytical Gaussian error propagation method and

numerical propagation approach based on Monte Carlo sim-

ulation to estimate the uncertainty in soil moisture retrievals

obtained from scatterometers using the TU Wien method

(Wagner et al., 1999). Parinussa et al. (2010) found an an-

alytical solution for estimating the uncertainties of soil mois-

ture estimates from radiometers based on the LPRM model

(Owe et al., 2008). A big advantage of error propagation

techniques is that they allow for calculating an error estimate

for each individual observation. However, the uncertainties

obtained by error propagation methods only account for ran-

dom errors in the model input variables but do not tell if the

model itself is correct. Therefore the uncertainties obtained

for different models are difficult to compare quantitatively.

Recently, Scipal et al. (2008b) introduced the triple col-

location method in the field of satellite-based soil moisture

research. The triple collocation method allows a simultane-

ous estimation of the error structure and the cross-calibration

of a set of at least three linearly related datasets with uncorre-

lated errors (Stoffelen, 1998). By applying triple collocation

to a combination of TRMM-TMI radiometer data, ERS scat-

terometer data, and modelled ERA-Interim reanalysis soil

moisture, Scipal et al. (2008b) obtained realistic error esti-

mates and were able to successfully distinguish spatial error

trends of retrieved soil moisture. Miralles et al. (2010) suc-

cessfully applied the triple collocation technique to soil mois-

ture data products extracted from passive microwave remote
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sensing, land surface modelling and high density ground-

based observations with the goal of explicitly estimating the

spatial sampling uncertainty of coarse-scale soil moisture es-

timates derived from ground observations.

This study connects to the work of Scipal et al. (2008b)

and uses the triple collocation technique to establish the un-

certainty of various recent passive (radiometer) and active

(scatterometer) microwave soil moisture products. Herein,

the prime objectives will be to reveal trends in uncertainty

related to different observation principles (passive versus

active), the use of different frequencies (C-, X-, and Ku-

band) for passive microwave observations, and the choice

of a third independent reference dataset. To address the

latter we will repeat the triple collocation using two differ-

ent globally available modelled reanalysis datasets (ERA-

Interim and GLDAS-NOAH). Results of this study will be

used for developing appropriate strategies for combining

multiple satellite-based soil moisture products into a merged

product (Liu et al., 2010).

2 Data

2.1 Scatterometer data

The Advanced Scatterometer (ASCAT) on MetOp-A oper-

ates in C-band (5.255 GHz) at VV polarisation and is oper-

ational since October 2006. Six radar antenna beams illu-

minate a continuous ground swath at six different azimuth

angles (at both sides of the platform 45◦, 90◦, and 135◦ side-

ward from the direction of the satellite motion). Incidence

angles range from 25◦ to 64◦ while the measurements used in

this study have a spatial resolution of 50 km. The descending

and ascending local equatorial crossing times of ASCAT are

09:30 and 21:30, respectively. The combined use of ascend-

ing and descending mode observations in this paper leads to

a nearly daily revisit frequency at the Equator.

The backscatter measurements are converted to soil mois-

ture estimates by applying the TU Wien soil moisture re-

trieval algorithm (Wagner et al., 1999; Naeimi et al., 2009).

To correct for the effects of plant growth and decay, the

method uses the multi-incidence angle measurement capa-

bility of the sensor to extract the vegetation sensitive sig-

nature from the backscatter observations. A soil moisture

index is then retrieved by scaling each observation between

dry and wet backscatter references representing the histori-

cally lowest and highest observed backscatter values, respec-

tively. This results in a relative measure of surface (<2 cm)

soil moisture that ranges between 0 (wilting point) and 100%

(saturation). At the time of writing, the ASCAT soil moisture

was available for the period January 2007 to December 2008.

2.2 Radiometer data

Since June 2002, the Advanced Microwave Scanning Ra-

diometer – Earth Observing System (AMSR-E) aboard the

Aqua satellite provides a nearly daily global coverage. The

instrument scans the Earth surface at an incidence angle of

55◦ while radiance is measured at six frequencies. The two

frequencies considered in this study are the dual polarized

C-band operated at 6.9 GHz and the dual polarized X-band

observations operated at 10.7 GHz. Spatial resolutions are

73 × 43 km and 51 × 30 km for the C- and X-band, respec-

tively. In this study we only use AMSR-E night-time ob-

servations (01:30 equatorial local crossing time), as it was

shown that these are better suited for retrieving soil moisture

than day-time observations (Jeu et al., 2008). This leads to

a reduced revisit interval of approximately 2 days depending

on the latitude.

The Special Sensor Microwave Imager (SSM/I) is found

on board a series of Defense Meteorological Satellite Pro-

gram (DMSP) platforms. The first satellite was launched

in July 1987, whereas the last one was launched in Octo-

ber 2003. Several platforms are still operational. The SSM/I

sensor operates in a dual polarization mode at four frequen-

cies but only the Ku-band (19.3 GHz) will be considered in

this study. In this band brightness temperatures are measured

at a footprint size is 69 × 43 km. Only descending mode ob-

servations from the F13 satellite (local Equator crossing at

05:30 and a revisit frequency of about 3 days) will be used in

this study for the same reason as for AMSR-E.

The brightness temperatures measured by AMSR-E and

SSM/I are converted to volumetric surface soil moisture

(m3 m−3) applying the Land Parameter Retrieval Model de-

veloped by NASA and the VU University of Amsterdam

(LPRM; Owe et al., 2008). LPRM is based on the solu-

tion of a microwave radiative transfer model and uses both

the horizontal and vertical polarized observations at C-, X,

or Ku-band to solve for soil moisture and vegetation opti-

cal depth. The land surface temperature is calculated from

the vertical polarized Ka band observations (Holmes el al.,

2009). Theoretically, soil moisture values can range between

0.0–1.0 m3 m−3, whereas in practice, usually they do not ex-

ceed 0.6 m3 m−3 (De Jeu et al., 2008).

2.3 Reanalysis data

2.3.1 ERA-Interim

The ERA-Interim reanalysis dataset contains consistent at-

mosphere and surface analyses for the period from 1989 to

present based on the ECMWF Integrated Forecast System

(IFS) model (Simmons et al., 2007). The reanalysis assim-

ilates various types of observations including satellite and

ground based measurements. This system runs at T255 spec-

tral resolution (∼80 km horizontal resolution) with 91 verti-

cal levels. In the IFS, land surface processes are described by
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the Tiled ECMWF Scheme for Surface Exchanges over Land

(TESSEL; Viterbo and Beljaars, 1995). In TESSEL soil pro-

cesses are calculated in four layers. The lower boundary of

each layer is at 0.07, 0.28, 1.0 and 2.68 m depth, respec-

tively. To keep the land surface model simple, TESSEL uses

a globally uniform soil type with fixed soil hydraulic param-

eters. Saturation is prescribed with a value of 0.472 m3 m−3,

field capacity with 0.323 m3 m−3 and the wilting point with

0.171 m3 m−3. Soil moisture estimates are provided at 00:00,

06:00, 12:00 and 18:00 UTC.

2.3.2 GLDAS-NOAH

From the year 2000 onwards, the Noah model from the

Global Land Data Assimilation System (GLDAS) provides

soil moisture and other atmospheric and land surface vari-

ables at a 3-h time interval for a regular global grid with a

spatial resolution of 0.25◦ (Rodell et al., 2004). The model is

forced by a combination of NOAA/GDAS atmospheric anal-

ysis fields, spatially and temporally disaggregated NOAA

Climate Prediction Center Merged Analysis of Precipitation

(CMAP) fields, and observation-based downward shortwave

and longwave radiation fields derived using the method of

the Air Force Weather Agency’s Agricultural Meteorological

system. The soil profile is represented by four vertical lay-

ers with a lower boundary of 0.10, 0.40, 1.00, and 2.00 m,

respectively. Soil moisture is provided in kg m−3 which

can easily be converted into volumetric water content in

m3 m−3. The Noah model uses the same soil property dataset

as LPRM (http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.php),

which is based on the Food and Agriculture Organization

(FAO) Soil Map of the World linked to a global database

of over 1300 soil samples. Even though theoretically pos-

sible, soil moisture values rarely drop below 0.05 m3 m−3 or

exceed 0.45 m3 m−3. Soil moisture and other fields are es-

timated 8 times per day (00:00, 03:00, 06:00, 09:00, 12:00,

15:00, 18:00, 21:00 UTC). Data generated by the GLDAS-

NOAH model are publicly available from ftp://agdisc.gsfc.

nasa.gov/data/s4pa/.

2.4 Spatial and temporal collocation of datasets

For the time period where observations were available for all

three sources (i.e. 1 January 2007–31 December 2008) the

data were binned to daily files, centred at 00:00 UTC, and

collocated to a 0.25◦ regular grid using a nearest neighbour

resampling.

3 Triple collocation

3.1 Overview of theory

Suppose three estimates 2SCAT (scatterometer-derived soil

moisture), 2RAD (radiometer-derived soil moisture) and

2MOD (modelled/reanalysis soil moisture) relate to hypo-

thetical true soil moisture 2 in a linear fashion (Stoffelen,

1998; Scipal et al., 2008b):

2SCAT = αSCAT +βSCAT2+rSCAT

2RAD = αRAD +βRAD2+rRAD

2MOD = αMOD +βMOD2+rMOD

(1)

where rSCAT, rRAD and rMOD denote the residual errors in the

estimates of 2SCAT, 2RAD, and 2MOD and αX and βX (with

subscript X standing for SCAT, RAD, and MOD, respec-

tively) represent the calibration constants. Goal of the triple

collocation is to find an estimate of rSCAT,rRAD and rMOD.

From Eq. (1) we can first eliminate the calibration constants

by introducing the new variables 2∗
X = 2X/βX −αX/βX and

r∗
X = rX/βX, and then eliminate the unknown truth in order

to obtain Eq. (2):

2∗
SCAT −2∗

RAD = r∗
SCAT −r∗

RAD

2∗
SCAT −2∗

MOD = r∗
SCAT −r∗

MOD

2∗
RAD −2∗

MOD = r∗
RAD −r∗

MOD

(2)

By cross-multiplying the equations of Eq. (2) and assuming

that the residual errors rSCAT, rRAD, and rMOD are uncorre-

lated (i.e. the residual covariances become 0), we obtain a

direct estimate of the variance of residual errors e∗2
X =

〈

r∗2
X

〉

if we average over a sufficiently large sample population (in-

dicated by square brackets). The error variances are hence

fully determined by three independent, calibrated soil mois-

ture estimates:

e∗2
SCAT =

〈(

2∗
SCAT −2∗

RAD

)(

2∗
SCAT −2∗

MOD

)〉

e∗2
RAD =

〈(

2∗
SCAT −2∗

RAD

)(

2∗
RAD −2∗

MOD

)〉

e∗2
MOD =

〈(

2∗
SCAT −2∗

MOD

)(

2∗
RAD −2∗

MOD

)〉

(3)

3.2 Implementation

In this study we follow a modification of the input data as

proposed by Miralles et al. (2010). Instead of using the

original absolute soil moisture values, we base our analysis

on soil moisture anomalies from the long-term climatology.

One should be aware that feeding the triple collocation with

anomalies instead of absolute soil moisture values provides

a different type of information on the dataset performance.

While using absolute values provides information on the ca-

pability of the soil moisture products to estimate absolute soil

moisture levels, the anomaly-based approach gives us more

accurate information on the ability of the different datasets to

capture single events of drying and wetting (e.g. due to rain-

fall). As a consequence, the anomaly-based approach tells us

less about absolute deviations between datasets, e.g. like in-

duced by a deviating seasonality. The choice of an anomaly-

based approach in this study is motivated by the fact that

the LPRM soil moisture product from SSM/I at many lo-

cations shows a seasonality that is different from the other
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datasets considered. This is caused by the higher sensitiv-

ity of the Ku-band to atmospheric water vapour and vegeta-

tion. Whereas the use of absolute values would only tell us

that the SSM/I products deviate from the other datasets (i.e.

would show high errors), the use of anomalies still provides

us meaningful information about the capability of this prod-

uct in capturing single events.

If estimated soil moisture is assumed to be a sum of the cli-

matology mean and an anomaly component it can be written

as:

2X(t) = 2DOY
X (t)+2̂X(t) (4)

where 2DOY
X (t) is the climatological expectation for soil

moisture at the day-of-year (DOY) associated with time-step

t , and 2̂X(t) is the anomaly relative to this expectation.

2DOY
X values are obtained by averaging all valid soil mois-

ture estimates in the period of observation found on the re-

spective DOY. The resulting seasonality curves are smoothed

by applying a moving window averaging with a kernel size of

31 days centred on the particular DOY (Crow et al., 2010a).

Due to the short operations period of ASCAT, both ERS and

ASCAT soil moisture estimates were used to obtain a reli-

able seasonality for ASCAT. It is feasible to this because the

ERS-based soil moisture product relies on the same obser-

vation principles and retrieval concepts as the ASCAT-based

product.

Finally, to estimate e∗2
SCAT, e∗2

RAD and e∗2
MOD , one has to

solve for the calibration coefficients in Eq. (1). Since the

real truth is always unknown, one has to choose one of the

datasets as a reference. This means that e∗2
SCAT,e∗2

RAD, and

e∗2
MOD will be expressed in the observation space of the se-

lected reference dataset. The choice of the reference dataset

does not influence the relative magnitude of the errors which

theoretically can be scaled from one observation space into

the other. Unless stated otherwise we choose 2MOD as a

reference. Scipal et al. (2008b) used an iterative linear least-

squares approximation to solve for the calibration constants

in Eq. (1). For the linear fit they assumed errors in both the x

(2X) and y (2Y ) variables.

As in our case we are dealing with anomalies from the

long-term mean, we can apply a simple rescaling of soil

moisture anomaly 2̂X(t) into the observation space of the

reference dataset R based on the average and variance (VAR)

of the anomalies (Miralles et al., 2010):

2̂∗
X(t) =

¯̂
2R +

√

√

√

√

√

VAR
(

2̂R

)

VAR
(

2̂X

) ·

(

2̂X(t)−
¯̂
2X

)

(5)

where 2̂∗
X(t) is the rescaled soil moisture anomaly for time

step t . These rescaled values can now be inserted into Eq. (3).

Notice that for the reference dataset 2̂X(t) and 2̂∗
X(t) are

equal.

Theoretically, an infinite number of common observations

(i.e. at time step t observations should be available for all

three datasets) are required to obtain unbiased estimates of

e∗2
X . Statistical tests revealed that a minimum number of 100

triplets is a good trade-off (Scipal et al., 2008b). Hence, areas

with less than 100 triplets are masked in the results.

4 Results and discussion

4.1 Comparing scatterometer, radiometer and

reanalysis data

Figure 1a–c show the triple collocation errors for a combi-

nation of ASCAT, AMSR-E C-band, and ERA-Interim soil

moisture estimates. The errors e∗
X (i.e. the square-root of

the values obtained from Eq. (3) are expressed in the dy-

namic range and units of the ERA-Interim reanalysis soil

moisture data. The results of the error estimation suggest

that all three datasets are characterised by a relatively low

error. The mean global error is 0.017 m3 m−3 for the AS-

CAT (e∗
SCAT), 0.019 m3 m−3 for the AMSR-E C-band obser-

vations (e∗
RAD) and 0.018 m3 m−3for ERA-Interim (e∗

MOD).

The low error is partly due to the low dynamic range between

wilting point and saturation of the ERA-Interim soil moisture

dataset which was used as reference. This dynamic range

is known to be generally too low (Balsamo et al., 2009).

Even though the errors are expressed in the dynamic range

of ERA-Interim, it is important to realise that this dataset

does not profit relative to the other datasets from having been

selected as the reference. This means that the relative magni-

tude of the errors remains the same if one of the other datasets

would have been used as a reference.

The average errors are lower than those obtained by

Scipal et al. (2008b) for a combination of the ERS-2

scatterometer (e∗
SCAT = 0.028 m3 m−3), the TMI radiome-

ter (e∗
RAD = 0.046 m3 m−3) and ERA-Interim soil moisture

(e∗
MOD = 0.020 m3 m−3). There are various reasons for this.

The lower average error obtained in our study for the scat-

terometer can be ascribed mainly to the improved design of

ASCAT with respect to the ERS series. Most remarkable are

the lower errors obtained for the AMSR-E radiometer com-

pared to the TMI results obtained by Scipal et al. (2008b).

Substantial improvements can be attributed to improvements

of the LPRM model and the better radiometric accuracy of

AMSR-E, but large part is also explained by the larger wave-

lengths of AMSR-E C-band observations compared to TMI.

This makes AMSR-E-based retrievals less sensitive to vege-

tation structure (See also Sect. 4.2). The average global error

calculated for ERA-Interim is fairly consistent with the av-

erage error obtained by Scipal et al. (2008b). This confirms

the robustness of the triple collocation method and indicates

a high global spatial consistency of ERA-Interim soil mois-

ture, as the study of Scipal et al. (2008b) did not cover north-

ern latitudes due to the limited coverage of the TMI sensor.

The fact that still there is a difference observed for ERA.
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Fig. 1. Spatial errors of (a) ASCAT, (b) AMSR-E C-band, and (c) ERA-Interim surface soil moisture estimates. Errors are expressed in the

climatology of ERA-Interim. (d) shows the areas in which either ASCAT (blue) or AMSR-E (red) shows the smallest error value. White

areas indicate areas for which less than 100 common observations are available.
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However, a quantitative interpretation and a direct com-

parison of the obtained errors with the results of Scipal et

al. (2008b) should be taken with precaution as we based our

calculations on anomalies from the long term seasonality in-

stead of using absolute soil moisture values. Doing so, the

magnitude of the computed errors may be affected in two

ways. First of all, anomalies typically have a lower dynamic

range than absolute soil moisture values. Nevertheless, this

does not necessarily lead to smaller errors as removing the

seasonal signal from the soil moisture series typically leads

to a lower signal-to-noise ratio which has a negative impact

on the error. Secondly, as already pointed out in Sect. 3.2, the

two approaches provide us different types of error structures.

The anomaly-based error estimates provide us information

on the ability of the product to capture single events, but do

not include any information on the systematic errors between

datasets. Therefore, unless seasonalities perfectly match, er-

rors are expected to be higher when absolute values are used.

Additional research is needed to further quantify the effect

of using anomalies instead of absolute values. Nonetheless,

spatial patterns and relative error budgets can still give us vi-

able information on the differences in performance between

the various datasets.

Generally, error estimates are lowest in arid regions such

as Southern Africa, mainland Australia, or Central Asia

(Fig. 1a–c). This is explained by the very low amounts of

precipitation received and hence the very low variability of

soil moisture. The global picture would look different if rel-

ative instead of absolute errors were considered, as low errors

in dry regions (low overall soil moisture content) have larger

relative impact than in humid regions.

Despite the similar average errors of the three datasets,

several characteristic differences in the spatial distribution of

the errors can be observed between the datasets (Fig. 1a–c).

In very dry areas (e.g. those of central Australia) error es-

timates derived for AMSR-E C–band are remarkably lower

than error estimates derived for ASCAT and, to a smaller de-

gree, than those obtained for ERA-Interim. In these regions

the AMSR-E observations are hardly disturbed by vegeta-

tion which explains the low error estimates. The relatively

high errors obtained for scatterometer data in these areas

are a well-known phenomenon believed to be related to vol-

ume scattering effects in dry, loose sand and the systematic

orientation of sand ripples and dunes over large areas lead-

ing to systematic influence of the azimuth viewing direction

(Bartalis et al., 2006).

On the other hand, soil moisture derived from AMSR-E is

prone to larger random errors in moderately to densely veg-

etated areas, like for instance found in south-eastern North

America and northern Argentina. Vegetation affects passive

microwave observations from above the canopy in two ways.

First, vegetation will absorb or scatter the radiation emanat-

ing from the soil. Secondly, also the vegetation canopy itself

emits radiation. These two effects tend to counteract each

other. The observable soil emission will decrease with in-

creased vegetation, while the emission from the vegetation

canopy will increase. Under a sufficiently dense canopy,

the emitted soil radiation will become totally masked, and

the observed emissivity will be due largely to the vegetation

(Owe et al., 2001). As similar vegetation interaction is ex-

pected for active microwave signals (Ulaby et al., 1982), it

is suggested that the differences in errors over vegetation

should be mainly attributed to the retrieval method. Re-

cently, Crow et al. (2010b) pointed out that first order ra-

diative transfer models are not able to accurately describe ra-

diation attenuation in denser vegetation, especially for larger

incidence angles. This finding would explain the shortcom-

ings of LPRM, which is based on a simple linear radiative

transfer model, in describing the higher order scattering that

is very likely to occur in canopies with heavier vegetation

cover. Hence, larger uncertainties in retrieved soil moisture

would occur in these areas. In contrast, vegetation correction

in the TU Wien algorithm is data-driven and therefore im-

plicitly accounts for higher order scattering effects. And even

though uncertainties in observed soil moisture increase with

increasing vegetation density, effects are not as pronounced

as for LPRM. However, more research and model compari-

son is needed to verify this hypothesis.

Figure 1d shows the areas for which either ASCAT (shown

in blue) or AMSR-E (red) gives the lowest triple colloca-

tion errors. Such a map can be useful for ranking the dif-

ferent products in an attempt to merge the datasets (Liu et

al., 2010). Nevertheless, the resulting Boolean map should

be taken with precaution as, especially in transition areas, er-

rors may be very similar and none of the products should be

excluded on beforehand. In areas where less than 100 triplets

are available (left blank in the image) it is expected that AS-

CAT would provide lower errors in moderately to densely

vegetated areas while AMSR-E would show lower errors in

dry areas. These assumptions could be used to fill the map in

Figure 1d in order to obtain a complete global coverage.

4.2 Influence of radiometer observation wavelength

Figure 2 illustrates the influence of decreasing observation

wavelength on the error structures obtained for radiometer

observations. The triple collocation was based on a combi-

nation of ERA-Interim, ASCAT, and the respective radiome-

ter dataset. On average, there is a clear increase in errors

with decreasing observation wavelength, especially in areas

characterised by moderate to dense vegetation cover, like in

southeast Siberia. This behaviour can be explained by the

fact that for the corresponding decrease in wavelength (i.e.

4.3, 2.8, and 1.6 cm for AMSR-E C-band, AMSR-E X-band

and SSM/I Ku-band, respectively) the soil moisture signal

emitted from the surface is increasingly absorbed by the veg-

etation canopy. For SSM/I Ku-band observations over mod-

erate and dense canopies this usually implies that measured

brightness temperatures no longer contain a detectable soil

moisture signal. This is also the main reason of the reduced
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Fig. 2. Spatial errors e∗
PAS

of (a) AMSR-E C-band, (b) AMSR-E X-band, and (c) SSM/I Ku-band observations obtained with triple colloca-

tion based on ERA-Interim, ASCAT, and the respective radiometer dataset. Errors are expressed in the climatology of ERA-Interim.

spatial coverage seen in Fig. 2c for SSM/I as LPRM fails to

converge in densely vegetated areas and hence these pixels

are masked. The trends observed for the different observation

bands correspond well to the trends in wavelength-related

uncertainties of LPRM products obtained by error propaga-

tion (Parinussa et al., 2010).

Despite the fact that many areas cannot be observed due

to the increased sensitivity of the signal to vegetation, ob-

servations in Ku-band can still be very valuable in arid to

semi-arid areas. For example, in the desert areas of North

Africa and the Middle East no significant difference can be

observed between Fig. 2a–c which is an indication that in

such areas estimates from Ku-band are similarly accurate as

those obtained from observations in lower frequency bands.

This is also illustrated by comparing the average errors of

each passive dataset over the areas where all datasets have

more than 100 triplets. This area is approximately equal to

the valid grid points in Fig. 2c. For this area, the average

errors for AMSR-E C-band, AMSR-E X-band, and SSM/I

Ku-band are 0.0158, 0.0177, and 0.0175 m−3 m−3, respec-

tively. This indicates that for this area there is only a slight

loss in accuracy of the Ku-band compared to C-band and a

nearly similar accuracy with respect to the X-band observa-

tions. However, the conclusions should be taken with caution
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as the trends in error structures obtained for the AMSR-E and

SSM/I sensors do not rely only on differences in observation

wevelength but also on differences in instrument design, ra-

diometric accuracy, overpass times and so on.

4.3 Influence of reference dataset

So far, the results presented were based on ASCAT, one

of the radiometer datasets, and the ERA-Interim reanalysis

dataset. Theoretically, the choice of the third dataset should

not influence the results obtained for the other datasets, given

the errors of all three datasets are uncorrelated. To test this

theoretical hypothesis we repeated the triple collocation with

ASCAT and AMSR-E C-band while using GLDAS-NOAH

instead of ERA-Interim as a third, independent, dataset. To

be able to directly compare the error structures based on the

different reanalysis datasets, errors must be expressed in the

same units and dynamic range. For this reason, the AMSR-

E C-band dataset was used as a reference against which the

other observations were rescaled.

Figure 3a and b show the errors obtained for AMSR-E C-

band observations, using ERA-Interim and GLDAS-NOAH

as the third, independent data source, respectively. The spa-

tial distributions of the error structures are very similar for

most areas. Comparable results were obtained for ASCAT

error estimates (results not shown). If we look at the areas

where differences between the two combinations are largest

(Fig. 3c) we see that these commonly coincide with the ar-

eas where least observations are available, like for instance

around the most northern latitudes and the Sahel countries

(Fig. 3d). This implies that the minimum number of 100

triplets is not in every occasion a satisfying proxy for the infi-

nite number of common observations theoretically required,

as this approximation is based on the assumption that system-

atic biases are absent. Even though theoretically systematic

biases should have been removed by using anomalies from

the long-term seasonality and the subsequent rescaling, they

may still persist in areas with high soil moisture variability

and in areas where the signal-to-noise ratio of soil moisture

observations is low, like in densely vegetated areas and desert

regions (e.g. in Southwest Australia and Southern Africa).

Nevertheless, the average global errors for both combi-

nations are very similar (e∗
RAD = 0.054 and 0.053 m3 m−3

based on ERA-Interim and GLDAS-NOAH, respectively;

e∗
SCAT = 0.050 and 0.053 m3 m−3 based on ERA-Interim and

GLDAS-NOAH, respectively), underlining the robustness of

the triple collocation approach for different dataset combi-

nations. Note, that the absolute errors shown here are con-

siderably larger than the errors found for e∗
RAD and e∗

SCAT in

Sect. 4.1. This is due to the use of the AMSR-E C-band as

the reference dataset, which has a much larger dynamic range

than the dynamic range of ERA-Interim.

5 Conclusions and outlook

The triple collocation technique is a promising method to es-

timate the error structures of global soil moisture datasets.

The errors retrieved in this study appear reasonable and the

observed patterns can be explained by known performance

issues of each dataset. This study underscores the conclu-

sions drawn by Scipal et al. (2008b) concerning the differ-

ences between scatterometer, radiometer and reanalysis soil

moisture datasets and shows the improvements of ASCAT

and AMSR-E compared to the ERS-2 and TRMM sensors,

respectively. Yet unclear is to what degree the deviating

trends observed for active and passive datasets can be as-

cribed to the observation principle (active versus passive)

and how much depends on the retrieval method itself. In-

cluding soil moisture datasets based on the same sensors but

obtained with different retrieval concepts could shed light on

this issue and provide insight into the relative performance of

the retrieval methods. Nevertheless, several studies already

pointed out the limited soil moisture retrieval capability of C-

band passive microwave observations over moderate to dense

vegetated regions (e.g. Kirdyashev et al., 1979; Jackson et al.,

1982; Parinussa et al., 2010).

In general, a decrease of random error was observed for

increasing wavelength. In this prospect, extending the triple

collocation analysis with SMOS observations would provide

an interesting insight into the performance of soil moisture

retrievals in L-band.

The results presented in this study should however be in-

terpreted carefully. Two assumptions are central for the va-

lidity of the derived error model: (i) residual errors should

be uncorrelated, and (ii) the different datasets observe the

same physical phenomenon. As the measurement technique

and retrieval concept of the datasets used in this study are

fundamentally different, the assumption of uncorrelated er-

rors appears justified. It may be argued that a small inter-

dependence may exist between the reanalysis datasets and

SSM/I-based soil moisture retrievals. In fact, SSM/I is one

of many datasets used in the atmospheric analysis of ERA-

Interim and GLDAS-NOAH, but SSM/I radiances are only

assimilated over the ocean and only in the case when no rain-

fall is detected. The relative contribution of SSM/I to the

reanalysis soil moisture estimates is therefore indirect and

negligible. The second assumption, i.e. the datasets observe

the same physical phenomenon, is not necessarily true. Even

though all three datasets represent the same physical quan-

tity, they observe different soil 1layers and, hence, differ-

ent dynamics. Therefore, a higher order calibration might

be necessary to avoid the introduction of systematic errors

(Drusch et al., 2005).

The error characterisation based on different independent

reanalysis datasets provides us important insight in the ro-

bustness of the triple collocation technique. The results in-

dicate that even a minimum number of 100 joint observa-

tions in some areas are not sufficient to statistically describe
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Fig. 3. (a) Spatial errors e∗
PAS

obtained with a combination of ASCAT, AMSR-E C-band, and ERA-Interim. (b) Spatial errors e∗
PAS

obtained

with a combination of ASCAT, AMSR-E C-band, and GLDAS-NOAH. Both in (a) and (b) errors are expressed in the climatology of

AMSR-E. (c) Difference between AMSR-E C-band errors obtained using GLDAS-NOAH and using ERA-Interim as third independent soil

moisture dataset, respectively. (d) Number of triplets.
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the soil moisture deviations, particularly in areas with high

soil moisture dynamics and areas with a low signal-to-noise

ratio of soil moisture, like in areas with dense vegetation

cover or desert areas. This poses one of the major limitations

of the triple collocation technique since a sufficient number

of triplets can only be obtained when the overlapping time

period is large enough. For the characterisation of some his-

toric sensors (e.g. SMMR) this condition cannot be met for

the combination with active soil moisture datasets and other

sources need to be explored. For the most recent missions

such as SMOS, this condition can only be met after a certain

period of operation.

Even though the triple collocation method seems to pro-

vide plausible error estimates of soil moisture, the results

presented in this paper were based on anomalies from the

long-term seasonality. This means that higher order system-

atic deviations between the different datasets are not properly

accounted for. Hence, it is expected that applying the triple

collocation to absolute soil moisture values will to some ex-

tent increase the errors obtained in this study, especially for

SSM/I-based soil moisture which shows a seasonality that

is clearly distinctive form the other datasets. In addition, the

representativeness of seasonalities based on long observation

periods for present soil moisture observations should be criti-

cally evaluated in the light of climate change as some authors

have reported significant trends in soil moisture over the last

few decades (Liu et al., 2009; Dorigo et al., 2010).

The exact accuracy of the error estimates can only be

assessed by cross-validating them with independent data

sources such as in-situ soil moisture measurements. These

could also provide information about the absolute biases of

soil moisture estimates, something that is not accounted for

by the triple collocation technique. It should also be recalled

that the triple collocation technique provides only one error

estimate for the entire time series and thus it can be primar-

ily used to characterise differences between sites. Neverthe-

less, in combination with other uncertainty estimates, e.g. er-

ror propagation results, the triple collocation results could be

used to obtain daily error budgets that are comparable be-

tween datasets. Therefore, the different accuracy assessment

techniques should be seen as highly complementary.

The triple collocation results presented in this study allow

us to identify systematic differences and agreements between

active and passive microwave-derived soil moisture products,

and between different observation bands of radiometers, e.g.

with respect to varying land cover or climatological con-

ditions. This in turn will help us in developing adequate

strategies for merging active and passive observations for the

generation of superior multi-mission long-term soil moisture

datasets.
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