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ABSTRACT 

Using wireless LAN technology for location estimation provides 
alternate means to enable location-based applications without 
investment in sensor network infrastructure and special hardware. 
However, the main drawback of wireless LAN-based location 
systems is calibration of signal strength as a function of location 
in spatially high-density, which consumes manual labor and needs 
to be carried out repeatedly. In this paper, we analyze empirical 
error characteristics of calibration-based location algorithms such 
as triangulation in various spatial densities of calibration, using 
commercially available wireless LAN products. Then, we propose 
Triangular Interpolation and eXtrapolation (TIX), a calibration-
free location algorithm, and present empirical performance 
evaluation. TIX can achieve mean distance error within 5.4 m, 
which is comparable to within 4.7 m errors of the calibration-
based algorithms. We also present theoretical analysis on error 
characteristics of the location algorithms deriving accuracy limits 
and quantifying the effect of RF measurement and calibration. 

Categories and Subject Descriptors 

C.2.1 [Computer-communication Networks]: Network 
Architecture and Design – wireless communication; C.4 

[Performance of Systems]: Measurement Techniques; G.1.1 

[Numerical Analysis]: Interpolation – interpolation formulas, 

extrapolation 

General Terms 

Algorithms, Experimentation, Measurement, Performance 

Keywords 

RF-based location estimation, static scene analysis, wireless LAN, 
calibration, triangulation, interpolation, extrapolation 

1. INTRODUCTION 
Location information of a mobile user is regarded as a key 

requirement enabling new means to construct the future mobile 
applications and services. Due to poor indoor coverage of the 
Global Positioning System (GPS), indoor location estimation has 
been a challenging research issue. One approach for indoor 

location is to deploy infrared or ultrasound sensor network 
infrastructures. However, this approach is naturally concerned 
with investment cost, installation, and maintenance of sensor 
network infrastructure and special hardware. An alternate 
approach leverages the existing wireless LAN to enable RF-based 
location estimation as proposed in the previous literature such as 
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Static scene analysis collectively refers to 
the latter approach.  

Static scene analysis employs a number of wireless access 
points (APs) transmitting RF beacons. Using a wireless client as 
location sensor, received signal characteristics of an area covered 
by the location system are examined. However, the main 
drawback of this approach is calibration of signal strength as a 
function location in spatially high-density, which consumes 
manual labor and needs to be carried out repeatedly. So far, few 
known work [6, 7] has addressed the issue of reducing calibration. 
Elimination of calibration, however, has not been addressed in 
any previous work and regarded as a very difficult research 
problem. 

This paper discusses calibration-free techniques for wireless 
LAN-based indoor location estimation. In particular, we propose 
Triangular Interpolation and eXtrapolation (TIX) algorithm, 
which is a central part of our calibration-free techniques. Using 
commercially available IEEE 802.11b wireless LAN products, we 
obtained empirical error characteristics (or accuracy) of both 
calibration-based and calibration-free algorithms. Especially, we 
applied various spatial densities of calibration for calibration-
based classical algorithms. TIX achieved mean distance error 
within 5.4 m, which is 0.7 – 1.4 m worse than densely-calibrated 
classical algorithms. We also present theoretical analysis on error 
characteristics of the location algorithms deriving accuracy limits 
and quantifying the effect of RF measurement and calibration. 

Rest of the paper is organized as follows. Section 2 provides 
background of the work. Section 3 presents empirical error 
characteristics of calibration-based location estimation using 
classical algorithms. Section 4 introduces TIX algorithm, 
describes associated calibration-free techniques, and presents 
empirical error characteristics of calibration-free location 
estimation using TIX. Section 5 presents our theoretical analysis. 
In Section 6, we discuss related work and how our work differs 
from others. Finally, Section 7 concludes the paper.  

2. BACKGROUND 

2.1 Static scene analysis 
Static scene analysis examines certain features such as RF 

propagation that can characterize various areas covered by a 
location system. Based on an experimental experience, Bahl et al. 
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[1] claims that signal strength (or a proxy for signal strength) 
serves the best as a measurable RF feature for wireless LAN. 
Received signal strength indicator (RSSI) metric, which is 
measured from captured wireless LAN beacons, is our choice for 
static scene analysis although use of other metrics is also possible. 
In the remainder of this paper, we use two terms ‘RF metric’ and 
‘RSSI’ interchangeably. Static scene analysis using such RF 
metrics consists of ‘offline’ and ‘run-time’ stages. 

1. Offline stage: measurement and sampling RSSIs at known 
locations occur. The eventual purpose is to calibrate the 
location system by relating RSSI value to coordinates of 
the known locations. Collected samples are processed 
statistically and stored in a location database. 

2. Run-time stage: RSSI values are measured at an unknown 
location. Using this run-time RSSI, the location database 
is searched for the closest match among RSSIs of the 
known locations. A location algorithm is then applied to 
estimate the unknown location estimate using coordinates 
of the matched known locations. 

2.2 Classical location algorithms 
Three classical location algorithms that are calibration-based are 

used in our experiments. 

1. Triangulation (TN) is used in numerous systems such as 
GPS. TN requires solving a system of equations of circles 
centered at APs, where the radius of each circle is 
determined by matching the run-time RSSI values to those 
of the offline. Using the solution, vertices of common 
areas shared by the circles are found. Averaging the 
coordinates of the vertices that form the smallest area 
gives the final location estimate. More detailed description 
of TN is found in [4, 5]. 

2. K-nearest neighbor averaging (KNN) uses the run-time 
RSSI values (obtained at an unknown location) to search 
for K closest matches of known locations in signal space 
from the location database. To do so, root mean square 
errors between the run-time and offline RSSI values are 
computed and compared. Averaging the coordinates of the 
K-locations gives the final location estimate. KNN was 
used in RADAR [1]. 

3. Smallest M-vertex polygon (SMP) uses the run-time RSSI 
values to search for a number of candidate locations in 
signal space with respect to each AP separately. M-vertex 
polygons are formed by choosing at least one candidate 
from each AP (total of M APs). SMP chooses the smallest 
polygon, which has the shortest perimeter. Averaging the 
coordinates of vertices of the smallest polygon gives the 
final location estimate. SMP was used in MultiLoc [3]. 

3. EMPIRICAL ERROR 

CHARACTERISTICS OF CLASSICAL 

LOCATION ALGORITHMS 
We adopted ‘mean distance error’ metric to evaluate accuracy of 

classical location algorithms. Mean distance error is computed by 
averaging Euclidean distances between the estimate )ˆ,ˆ( yx  and 

the true location (x, y) in a two-dimensional Cartesian coordinate 

system, i.e., ( ) ( )22 ˆˆ yyxxd −+−= . 

3.1 Description of experiments 
Our experimental testbed spans the entire floor of a multiple-

story building, which is a typical office environment having 
cubicles, small offices, and conference rooms. The floor map and 
our x-y coordinate system are illustrated in Figure 1. The unit grid 
for calibration measurements has a dimension of 1.422 m by 
1.422 m (14/3 ft. by 14/3 ft.). The testbed spans 39.83 m by 25.60 
m, for a total area of 1020 m2 (10975 sq. ft.). 

 

Figure 1: Map and coordinate system of experimental testbed 

We placed four LinkSysTM WAP11 APs labeled W1, W2, W3, 
and W4 in Figure 1. A mobile laptop used in our experiments runs 
Redhat Linux 2.4.18 OS with a LinkSysTM IEEE 802.11b client 
adaptor. We implemented a measurement module for the laptop, 
which is written in C based on the IEEE 802.11b device driver 
developed by the Linux-WLAN Project [11]. RSSI was measured 
in dBm. Not all grid positions were possible for measurement due 
to the presence of desks, walls, and other stationary components 
on the floor. We obtained three independent sets of data and each 
set included RSSI samples from 207 different locations. Each set 
was carried out separately at different time of a day. We obtained 
at least 40 RSSI samples from each of four different directions 
(heading north, south, west, and east) per each AP at one location. 

3.2 Data processing and calibration 
One of the three data sets was considered offline and used for 

calibration. Samples collected at each measurement location are 
first band-pass filtered, which removes the top and bottom 10 % 
RSSI values, and then averaged. A location database is created 
and stores the calibration table that relates mean RSSI values and 
coordinates of locations where the measurement took place. 

3.3 Implementation of classical algorithms 
We implemented TN, KNN, and SMP in MATLAB. They 

require RSSI measurements from at least three APs. Since four 
wireless APs were deployed in our testbed, the algorithms were 
implemented to operate with either three or four APs. 
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3.4 Performance evaluation 
We present empirically observed errors for TN, KNN, and SMP 

using three or four APs in four different grid sizes (1x, 2x, 3x, and 
4x the unit grid whose side length g = 1.422 m). Total number of 
entries in the calibration table reduces to 119 (57 %) for grid size 
of 2g, 62 (30 %) for grid size of 3g, and 21 (10 %) for grid size of 
4g from 207 (100 %) for the unit grid. 
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Figure 2: Mean distance errors of classical location algorithms 

(TN, KNN, and SMP) using three APs in different grid sizes 

Figure 2 depicts mean distance errors of the classical location 
algorithms using three APs. KNN performs consistently better 
than TN and SMP, yielding the smallest mean distance errors in 
all four grid sizes. Mean distance errors of TN, KNN, and SMP 
do not increase significantly until the grid size is enlarged to 8x. 
This corresponds to using 10 % of the calibration table entries 
used for 1x. Key empirical observation is that accuracy does not 
degrade significantly until the calibration grid size is enlarged to 
some threshold (i.e., 8x). As Figure 3 depicts mean distance errors 
of the same algorithms using four APs, overall errors are smaller 
than using three APs while we observe the similar tendency of 
accuracy degradation as grid size increases (sparser calibration). 

0

2

4

6

8

10

12

14

1x 2x 4x 8x

Grid size (x 1.422 m)

TN KNN SMP
 

Figure 3: Mean distance errors of classical location algorithms 

(TN, KNN, and SMP) using four APs in different grid sizes 

4. CALIBRATION-FREE LOCATION 

ESTIMATION 
Calibration in RF-based static scene analysis repeatedly 

consumes human labors and creates significant maintenance and 
scalability issues. We present calibration-free location estimation 
techniques that eliminate laborious offline RSSI measurements. 

4.1 Overview 
An overview of our calibration-free location estimation 

techniques is depicted in Figure 4, comprising the following steps: 

1. Location request: a mobile node (location client) requests 
location information to location system (location server) 
available online. 

2. Simultaneous RSSI measurement requests. 

a. Mobile measurement request: the location system 
requests the mobile to measure and report RSSIs from 
all listenable APs. 

b. Inter-AP measurement request: location system 
requests all APs to measure and report RSSIs from all 
APs excluding itself. 

3. Generation of mapping curves: location system uses the 
inter-AP measurements (using each observing AP’s 
measurement separately) to generate multiple distance 
mapping curves for each AP observed. The curves map an 
RSSI value to distance from the observed AP. On a log-
linear scale, RSSI vs. distance curve is roughly a straight 
line since the received signal strength in log scale (i.e., 
measured in dBm) decays linearly with increasing range. 

4. Mobile distance approximation: location system 
approximates mobile’s distance from each AP using an 
appropriate mapping curve and the mobile RSSI 
measurement. We use a simple heuristic called Proximity 
in Signal Space (PSS), which is detailed in Section 4.3, to 
select the appropriate curve. 

5. Location estimation using Triangular Interpolation and 

eXtrapolation (TIX) algorithm: approximated distances 
between the mobile and APs and location coordinates of 
APs are input to TIX. TIX (detailed in Section 4.4) infers 
the final location estimate of the mobile. 

6. Location response: location system responds to mobile’s 
location request by informing the final location estimate. 

 

Figure 4: Calibration-free location estimation techniques 

4.2 Generation of mapping curves 
Generating equation of a line requires at least two points. We 

obtain the first point using inter-AP RSSI measurement and each 
AP’s location, which is known to the system. The second point is 
the maximum RSSI value measured at the minimum measurable 
range, which is also known to the system. Since we have four APs 
collecting RSSIs from all other APs excluding itself, the system 
generates three mapping curves for each AP. 
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4.3 Mobile distance approximation 
There are (N-1) mapping curves for each AP, generated by the 

other (N-1) APs’  measurements, if there are N APs in the system. 
We select one most appropriate mapping curve for each AP to 
approximate mobile’s distance from the AP based on a simple 
heuristic called ‘Proximity in Signal Space (PSS).’ We choose the 
mapping curves generated by using inter-AP measurement of an 
AP, from which the mobile received the highest RSSI value. For 
example, consider a mobile measurement, which results in RSSIs, 
S2 > S1 > S4 > S3, from AP2, AP1, AP4, and AP3, respectively. 
Given that S2 is the highest, it is most probable that the mobile is 
closest to AP2 than AP1, AP3, or AP4. Thus, we approximate the 
mobile distances from AP1, AP4, and AP3 all by using mapping 
curves generated by AP2’s measurement. However, since AP2’s 
measurement excludes itself, the mapping curve generated using 
AP1’s RSSI measurement (AP1 gives the next highest RSSI 
measured by the mobile) approximates the distance between the 
mobile and AP2.  

4.4 Triangular Interpolation and 

eXtrapolation (TIX) algorithm 
TIX algorithm requires at least three APs. In case of more than 

three APs, TIX chooses the best three APs (i.e., highest three 
mobile-measured RSSIs). TIX takes two inputs: 1) distances 
between mobile and APs; 2) location coordinates of APs. TIX 
first forms a triangle, whose vertices are locations of APs. Then, 
TIX uses internal or external dividers of sides of the triangle to 
determine the final location estimate. 

 

Figure 5: Triangular interpolation 

 

Figure 6: Triangular extrapolation 

Figure 5 illustrates TIX algorithm with only internal dividers 
(i.e., triangular interpolation). Vertices of triangle, P1, P2, and P3, 
are locations of three APs, AP1, AP2, and AP3. Sides of triangle 
P1P2P3 are internally divided by points D1, D2, and D3. The 
centroid of triangle D1D2D3 gives the final location estimate. 

Figure 6 illustrates TIX algorithm with at least one external 
divider (i.e., triangular extrapolation). In this case, two sides of 
triangle P1P2P3, connecting P1 and P2, and P1 and P3, are 
externally divided by points D1 and D3 while the side connecting 
P2 and P3 is internally divided by D2. The centroid of triangle 
D1D2D3 gives the final location estimate.  

Triangular interpolation or extrapolation cases are determined 
based on the following:  

1. Triangular Interpolation. If a side of triangle P1P2P3, or 
line P1P2, which is the distance between AP1 and AP2, is 
longer than both d1 and d2, a point along the line P1P2 that 
divides in d1-to-d2 ratio is found using (4.1). We compute 
D1, an internal divider of the line P1P2, or a side of the 
triangle P1P2P3, by interpolation using:  
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where D1 is the coordinate of the internal divider, D1 = 
(D1x, D1y), P1 and P2 are the coordinates of AP1 and AP2 
locations, P1 = (P1x, P1y) and P2 = (P2x, P2y). d1 is larger 
than d2. D1 divides the line connecting P1 and P2 in d1-to-
d2 ratio, internally. 

2. Triangular Extrapolation. If a side of triangle P1P2P3, or 
line P1P2, which is the distance between AP1 and AP2, is 
shorter than either d1 or d2, a point D1 along the line 
connecting P1 and P2, or locations of AP1 and AP2, which 
extends beyond point P1 or P2 and divides in d1-to-d2 ratio 
is found using (4.2). We compute D1, an external divider 
of the line P1P2, or a side of the triangle P1P2P3, beyond 
locations P1 or P2 extrapolating line P1P2 using: 
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where D1 is the coordinate of the external divider, D1 = 
(D1x, D1y), P1 and P2 are the coordinates of AP1 and AP2 
locations, P1 = (P1x, P1y) and P2 = (P2x, P2y). d1 is larger 
than d2. D1 divides the extrapolated line connecting 
beyond P1 and P2 in d1-to-d2 ratio. 

3. Similarly for AP2 and AP3, the point that divides the line 
connecting AP2 and AP3 internally or externally (based 
on conditions given by the previous two steps), or D2, is 
found by using either Step 1 or Step 2. 

4. Similarly for AP1 and AP3, the point that divides the line 
connecting AP1 and AP3 internally or externally (based 
on conditions given by the previous two steps), or D3, is 
found by using either Step 1 or Step 2. 

5. Centroid of the triangle formed by the points D1, D2, and 
D3, (found through Steps 1 to 4) gives the final location 
estimate. 
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4.5 Description of experiments 
We retained most of our experimental methods, tools, and 

software platform used in Section 3 and carried out empirical 
performance evaluation for calibration-free location estimation. 
Figure 7 depicts our evaluation scenario. Locations of our four 
APs remained unchanged and we estimated location of a mobile 
node in two distinct regions. First, we estimated the mobile 
location outside the convex hull connecting the APs (thin lines in 
Figure 7). Three thick dark lines in Figure 7 represent this region 
and 30 different locations were considered. Secondly, we 
estimated inside the convex hull represented as thick bright lines 
in Figure 7 where another 30 different locations were considered. 
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Figure 7: Performance evaluation for calibration-free location 

estimation techniques 

4.6 Error characteristics of calibration-free 

location estimation 
We computed mean distance errors of TIX. Using the same 

RSSI samples collected during the mobile and inter-AP 
measurements, we also computed mean distance errors of the 
following algorithms for comparison: 1) signal strength weighted 
centroid (SSWC) and 2) triangulation (TN).  

SSWC is a simple algorithm, which estimates the user location 
by weighing the coordinates of locations of the APs according to 
their RSSI values. Consider RSSI samples, SAP1, SAP2, SAP3, and 
SAP4, obtained from four APs, AP1, AP2, AP3, and AP4, whose 
locations are LAP1 = (XAP1, YAP1), LAP2 = (XAP2, YAP2), LAP3 = 
(XAP3, YAP3), and LAP4 = (XAP4, YAP4). SSWC computes the 

location estimate, L̂ , as the following: 
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where S = SAP1 + SAP2 + SAP3 + SAP4. 
TN used here solves equations of circles by approximating 

mobile’s distance (from APs) using our calibration-free mobile 
distance approximation as described in Section 4.3. Calibration-
based TN used in Section 3 differs by matching the run-time RSSI 
values to those of the offline to approximate the distance. 

Figure 8 depicts mean distance errors of SSWC, TN, and TIX. 
SSWC has 40 – 65 % greater mean distance error outside the 

convex hull than the inside. TN and TIX errors without Proximity 
in Signal Space (PSS) heuristic display the similar trend, while 
TIX outperforms TN when PSS is applied. Furthermore, TIX’s 
computational complexity is significantly lower than TN requiring 
only a number of arithmetic operations (TN requires solving the 
equations of circles and examining areas formed by solutions). 
Use of PSS heuristic alone improved the accuracy by 20 – 30 %. 
The best mean distance error was 4.7 m, achieved by TIX. 
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Figure 8: Mean distance errors of SSWC, TN, and TIX 

5. THEORETICAL ANALYSIS 
We present theoretical analysis on error characteristics of 

location algorithms primarily focusing on RF issues. We begin by 
quantizing the effect of calibration. 

5.1 Impact of calibration 
RF propagation is imperfect. RSSI values collected over time 

can vary significantly. Although regarded dynamic in general, 
proper statistical processing techniques can help to statically 
characterize RSSI. 

5.1.1 Primary and secondary nearest neighbors in 

square grid space 
Figure 9 depicts a square grid for calibration with grid size g. A 

center grid location (designated as l in Figure 9) has four closest 
grid positions (designated as n in Figure 9) that are located in the 
next coordinate vertically or horizontally. We name these points 
as the primary nearest neighbors. The next closest grid positions 
are the secondary nearest neighbors and designated as u in 
Figure 9. The secondary nearest neighbors are located in the next 
coordinate diagonally from the center location. 

2

g

g2

gsizeGrid ,

2

g

 

Figure 9: Nearest neighbors in square-grid space 
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Calibration-based algorithms are most effective when RSSI 
values acquired at center grid positions and their nearest 
neighbors exhibit clearly distinguished statistical patterns. In other 
words, if mean RSSI values of a center position and its primary 
nearest neighbors are the same, measurements at such grid alone 
contribute errors up to g. This inclusion of errors is known as 
aliasing in signal space, where RF properties of grid positions are 
blurred by physically different grid positions. 

5.1.2 Gaussian approximation on nearest neighbor 

error inclusions 
RF measurements occur during particular periods of time and 

collect a finite set of RSSI samples. Benefit of Gaussian 
approximation is that the (marginal) distribution of an arbitrary 
(or unknown) stochastic process at any finite set of points can be 
specified, and is Gaussian [6]. In fact, we observed that RSSI 
samples obtained empirically at our measurement locations were 
roughly normally-distributed. 

Table 1: Confidence intervals vs. ranges 

Confidence Interval (CI) Range 

0.800 ±1.2816σ 

0.900 ±1.6449σ 

0.950 ±1.9600σ 

0.990 ±2.5758σ 

0.999 ±3.2905σ 

 
The Gaussian approximation considers the first and second 

order statistics (e.g., mean and variance/standard deviation). 
Consider the center location in Figure 9 has mean RSSI value and 

standard deviation pair, (µ0, σ0). Equivalently, the primary and 

secondary nearest neighbors have (µ1, σ1) and (µ2, σ2). In the 
Gaussian approximation, range in multiples of the standard 
deviation from the mean value corresponding to Confidence 
Interval (CI) can be determined using error function (erf) [6] as 
summarized in Table 1.  

 

Figure 10: Error inclusion with grid size g in calibration 

A simple band-pass filtering was applied for our data processing 
method (see Section 3.2), which excludes the highest and lowest 
10 % of RSSI samples. This corresponds to the first entry in Table 

1 (highlighted), approximately ±1.3σ variation from the mean 
received signal strength is expected according to the Gaussian 
approximation. 

In Figure 10, we explain the impact of calibration with grid size 
g and the band-pass filtering at sample acquisition, which 
corresponds to the inclusion of errors from the primary and 

secondary nearest neighbors. There are two regions of inclusion 
where only error from the primary nearest neighbors and from 
both the primary and secondary nearest neighbors are considered. 

Using the same notation of Figure 10, total error contribution 
from the primary and secondary nearest neighbors, e, in 
calibration with grid size g based on the Gaussian approximation 
is: 
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where B is Gaussian range of the center position, I1 is the range 
of the region where only the primary nearest neighbors contribute 
to the error, I2 is the range of region where both the primary and 
secondary nearest neighbors contribute to the error. As depicted in 
Figures 10 and 11, the primary nearest neighbors contributes 
distance error of g with probability of I1/B. The secondary nearest 
neighbors contributes 2 g with probability of I2/B. There is also 

another component of error, which is due to the center location 

itself. The maximum self-error contribution is g/ 2  with 

probability of 1 – I1/B – I2/B.  
Combining the self-error contribution with (5.1), the total 

distance error due to the effect of calibration with grid size g is: 
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5.2 Accuracy of classical location algorithms 

5.2.1 Triangulation (TN) 
In Figure 11, the final triangle (smallest area formed by 

solutions of equations of circles) in TN is depicted. C is the 
centroid of the triangle, thus the final location estimate. Distances 
from C to each vertex, d1, d2, and d3, represent maximum distance 
errors of TN. Using the property of a triangle that the sum of two 
sides is larger than the length of the longest side, we observe: 

 
132 Sdd >+ ,   (5.3) 

 
231 Sdd >+ ,   (5.4) 

 
321 Sdd >+ .   (5.5) 

Combining (5.3), (5.4), and (5.5) yields: 

  
32

1

3
321321 SSSddd ++⋅>++ .   (5.6) 

Right side of (5.6) is mean maximum error of TN. Thus, we find 
the lower bound for mean maximum error of TN: 

 
STNofErrorMaximumMean ⋅>

2

1 ,  (5.7) 

where S is mean length of sides of the final triangle in TN.  

5.2.2 K-Nearest Neighbors (KNN) 
We consider lower bound for mean maximum error of KNN, 

with K = 3. Figure 12 depicts KNN in a grid space with grid size 
g. Averaging distances from C, which is the centroid of the 
triangle and hence the final estimate of KNN, yields: 
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5.2.3 Smallest M-Polygon (SMP) 
We derive the lower bound for mean maximum error of SMP, 

for M = 3 (i.e., the polygon is triangle). Using similar principle 
from 5.2.1, we obtain: 

 
PPSMPofErrorMaximumMean

6

1
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1

2
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where P  is mean perimeter length of the smallest polygons. 

5.3 Accuracy of TIX 
We applied the same analysis used for TN in Section 5.2.1. 

Given S , mean length of sides of triangle formed by TIX, lower 

bound for the mean maximum error of TIX is:  

      
STIXofErrorMaximumMean ⋅>

2

1 .   (5.10) 

 

Figure 11: Final triangle and error approximation in TN 
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Figure 12: Error approximation in KNN 

5.4 Comparison between empirical and 

theoretical errors 
In Section 3.4, we observed that mean distance errors of TN, 

KNN, and SMP did not increase significantly until the grid size is 
enlarged to a certain threshold (i.e., 8x). To explain this, we first 
show how calibration in different grid sizes affects the distance 
error under the presence of the primary and secondary nearest 
neighbor inclusions. Figure 13 illustrates maximum possible 
distance errors contributed from self and nearest neighbor 
inclusions using the analysis in Section 5.1. We computed 
Equations (5.1) and (5.2) using the empirical values. As depicted 
in Figure 13, error contribution from the nearest neighbors 
decreases as grid size increases. On the other hand, the self error 
contribution increases linearly as grid size increases. The eventual 

outcome is that the total error combining the both rises sharply 
after some threshold grid size (between 4x and 8x). 

We present theoretical errors for TN, KNN, and SMP in Figure 
14, which combines the analyses of Sections 5.1 and 5.2. 
Theoretical errors are smaller than our empirical results by 20 – 
30 %. We observe similar behaviors between the empirical and 
theoretical error characteristics: 1) Errors increase gradually as 
grid size increases until some threshold (near 8x); 2) TN results 
with the highest error while KNN results with the smallest error; 
3) At 8x, errors for TN and SMP become similar. 

Theoretical errors for TIX are displayed in Figure 15. We 
computed theoretical errors in two estimation regions (inside and 
outside convex hull formed by APs) separately using TIX error 
Equation (5.10). Comparing to empirical errors that we presented 
in Section 4.6, theoretical errors are smaller by 12 – 17 %. 
Theoretical approximation for TIX reflects the empirical results 
better because there is no effect of calibration to be considered. 

 

Figure 13: Maximum possible distance errors contributed 

from self and nearest neighbor inclusions in different grid sizes 

 

Figure 14: Theoretical errors for TN, KNN, and SMP 

 

Figure 15:  Theoretical errors for TIX 

8



6. RELATED WORK 
Early work in wireless LAN-based location estimation included 

the RADAR [1] system. RADAR used KNN location algorithm in 
a static scene analysis framework. RADAR showed that fairly 
accurate indoor location could be estimated without a separate 
sensor network infrastructure. In their following work [2], 
RADAR was enhanced by a Viterbi-like algorithm. 

In [3], an empirical work on a RADAR-like location system was 
presented. The authors adopted KNN location algorithm, which 
was used by RADAR, and experimented with various choices of 
K. They validated that choosing K > 3 (RADAR chose K = 3) did 
not improve the accuracy but degraded it by 5 – 20 %.  

Pandya et al. [4] presented the MultiLoc system, which utilizes 
information from multiple RF technologies to improve accuracy. 
The MultiLoc system employs two simple ‘sensor fusion’ 
techniques to illustrate the benefit of using multiple technologies. 
In [5], more sophisticated algorithm for sensor fusion, namely 
SELFLOC, was presented. The authors also showed that multiple 
estimation algorithms could be combined to further improve 
accuracy using SELFLOC. 

Techniques described in [6] were one of the first location 
algorithms with reduced calibration. Triangulation Mapping 
Interpolation (TMI) algorithm could achieve smaller distance 
error than RADAR although TMI required smaller calibration 
table constructed from sparser grid space. Mapping and 
interpolation schemes based on signal processing algorithms were 
used. Krumm and Platt [7] presented a more experiment-oriented 
work in minimizing calibration for wireless LAN-based location 
systems. They showed a series of empirical estimation errors 
while varying amount of calibration with KNN algorithm. They 
also described an interpolation function for smoothing estimates 
with reduced amount of calibration. 

Ladd et al. [8] developed a wireless LAN-based location system 
using Bayesian reasoning and a hidden Markov model. While it 
achieved fine accuracy (in 1 – 2 m errors), very dense calibration 
is required. They acknowledged the extraordinary effort in 
calibration and suggested the use of robotics-based approach for 
it. Although Nibble [9] system was based on RF-based static 
scene analysis, it did not use any geometric location algorithms 
such as triangulation, but took a purely probabilistic approach 
(based on Bayesian network). 

There are a number of other classes of location technologies. Ad 
hoc networking-based location systems, which require no 
calibration, typically impose other types of requirements such as 
certain degree of distribution of ad hoc users over an area covered 
by the location system. APS [10] is based on mixture of ad hoc 
routing, and range (e.g., ToA, TDoA) and angle (AoA) 
measurement technologies. 

Our work differs from others in several aspects. First, we 
consider zero calibration. Location algorithms in [6,7] considered 
reduced amount of calibration, but never eliminated it. TIX 
algorithm combined with our proposed calibration-free techniques 
only requires at least three APs in communicative range (25 – 40 
m), yet achieves comparable accuracy performance to those of 
calibration-based algorithms. We did not only empirically 
demonstrate how the impact of calibration, grid size, and use of 

location algorithms resulted in error characteristics of RF-based 
static scene analysis, but also qualitatively explained with 
theoretical analysis on the same parameters. To the best of our 
knowledge, such theoretical analysis is unprecedented in any 
previous literature of similar arts. 

7. CONCLUSIONS 
We presented empirical error characteristics of the classical 

location algorithms in various spatial densities of calibration, and 
calibration-free TIX algorithm. TIX achieved mean distance error 
within 5.4 m with zero calibration, which is comparable to within 
4.7 m errors of laborious calibration-based algorithms. Increasing 
calibration grid size for coarser granularity had gradual effect on 
estimation errors unless it was increased to a certain threshold. 
We presented theoretical analysis on error characteristics of 
location algorithms and validated key sources of errors in both 
calibration-based and calibration-free algorithms. 
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